請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44999
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳志毅 | |
dc.contributor.author | ChienTsung Huang | en |
dc.contributor.author | 黃建璁 | zh_TW |
dc.date.accessioned | 2021-06-15T04:00:52Z | - |
dc.date.available | 2012-03-10 | |
dc.date.copyright | 2010-03-10 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-02-23 | |
dc.identifier.citation | Bibliography
[1] W Brutting, H Riel, T Beierlein, and W Riess. In uence of trapped and interfacial charges in organic multilayer light-emitting devices. Journal of Applied Physics, 89:1704, 2001. [2] Y Divayana, XW Sun, B Chen, GQ Lo, C Jiang, DL Kwong, and KR Sarma. Undoped white organic light-emitting diodes utilizing two sources of excitons. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1 REGULAR PAPERS SHORT NOTES AND REVIEW PA- PERS, 46(8A):5164, 2007. [3] JH Jou, SM Shen, CC Chen, YC Chung, CJ Wang, MF Hsu, WB Wang, MH Wu, CJ Yang, and CP Liu. High-e ciency uores- cent white organic light-emitting diodes using double hole-transporting- layers. 6999:69992S, 2008. Proceedings of SPIE. [4] howstu works? http://electronics.howstuffworks.com/oled1. htm. [5] CW Chen and CI Wu. Analytical solution to space charge limited cur- rents with exponentially distributed traps. Journal of Applied Physics, 104:123706, 2008. [6] OLED Materials and Devices of Dream Displays. [7] WIKIPEDIA. http://en.wikipedia.org/wiki/SILVACO. [8] H Ishii, K Sugiyama, E Ito, and K Seki. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Advanced Materials, 11(8):605{625, 1999. [9] M Lebental, H Choukri, S Chenais, S Forget, A Siove, B Ge roy, and E Tuti. Di usion of triplet excitons in an operational organic light- emitting diode. Physical Review B, 79(16):165318, 2009. 57 [10] CC Lee, YD Jong, PT Huang, YC Chen, PJ Hu, and Y Chang. Numeri- cal simulation of electrical model for organic light-emitting devices with uorescent dopant in the emitting layer. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 44:8147{8152, 2005. [11] G Yang, Q Jiang, J Cheng, J Zhong, W Chen, XQ Wei, J Wang, H Lin, M Xie, and S Chen. 1.8-in. 128x160 full color passive matrix oled. 6722:67224H, 2007. Proceedings of SPIE. [12] Silvaco manual-ATLAS. [13] B Ruhstaller, SA Carter, S Barth, H Riel, W Riess, and JC Scott. Tran- sient and steady-state behavior of space charges in multilayer organic light-emitting diodes. Journal of Applied Physics, 89:4575, 2001. [14] S Schols, S Verlaak, C Rolin, D Cheyns, J Genoe, and P Heremans. An organic light-emitting diode with eld-e ect electron transport. Ad- vanced Functional Materials, 18(1):136, 2008. [15] J Shen and J Yang. Physical mechanisms in double-carrier trap-charge limited transport processes in organic electroluminescent devices: A nu- merical study. Journal of Applied Physics, 83:7706, 1998. [16] WD Gill. Drift mobilities in amorphous charge transfer complexes of trinitro uorenone and poly n vinylcarbazole. Journal of Applied Physics, 43:5033, 1972. [17] G Horowitz. Organic eld-e ect transistors. Advanced Materials, 10(5):365{377, 1998. [18] T Wang, J Yu, J Wang, L Li, and Y Jiang. Electrical characteristics of phosphorescent organic light emitting devices with various emissive lm thickness. 7282:72823A, 2009. Proceedings of SPIE. [19] SW Liu, JH Lee, CC Lee, CT Chen, and JK Wang. Charge carrier mobility of mixed-layer organic light-emitting diodes. Applied Physics Letters, 91:142106, 2007. [20] F Li, G Cheng, J Feng, and S Liu. Highly e cient and bright organic light-emitting devices using a sn/al cathode. 4594:380, 2001. Proceed- ings of SPIE. 58 [21] TC Lin, CH Hsiao, and JH Lee. Study of the recombination zone of the npb/alq3 mixed layer organic light-emitting device. 5937:59371Q{1. Proc. of SPIE Vol. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44999 | - |
dc.description.abstract | 摘要:
本篇論文著眼於運用TCAD – ATLAS技術,對最為科學家們廣為探索之有機物質--- tris-(8-Hydroxyquinoline)-aluminum (Alq3)、N,N '-bis(1-naphthyl)- N,N '-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)所組成之OLED進行物理特性調變並研究其電性特性,並於文末嘗試變換電洞傳輸層(HTL)物質作更進一步之模擬。 藉由電流特性偏移及曲度改變所表現出之現象觀察,探討有機電激發光二極體之物理機制。同時,邏輯性地比對實驗數據分析物理模型,定下模擬成果結論。 旨在探討以下兩種物理機制:1. 此一元件結構下,單一載子傳輸模型之假設的準確性。藉由僅調變鋁之功函數數值,並固定其它有機材料物理特徵,作turn on Voltage及J-V curve shift之觀察;2. 其次,藉由調變Alq3之LUMO(保持HOMO相對於真空能階之維持不變),再次觀察電性turn on Voltage及J-V curve shift之變化。 藉由經Marquart Algorithm fitting後之元件物理特性,伴隨OLED能帶指數函數陷阱之模型,探討模擬結果與實驗之間之差異。 關鍵字:電洞傳輸層、功函數、turn on Voltage、LUMO、HOMO、真空能階、Marquart Algorithm、指數函數陷阱模型 | zh_TW |
dc.description.abstract | Abstract:
This paper concentrate on the use of TCAD - ATLAS techniques to modulate organic light emitting diode(OLED) physical characteristics and simulated the device which is composed of tris-(8-Hydroxyquinoline)-aluminum (Alq3) - quinoline Lin Kong-based aluminum (Alq3) & N,N '-bis(1-naphthyl)- N,N '-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)(NPB). We'll discuss the physical phenomena of the mechanism in OLED by extracting the models' current density versus voltage and make comparison between the experimental data and simulated data. In the analysis of the J-V curves in each case we'll implement, we'll know the physical characteristics dependence on onset[1] voltage of device and J-V shift ralated to the thickness of devices. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:00:52Z (GMT). No. of bitstreams: 1 ntu-99-R96941026-1.pdf: 12982788 bytes, checksum: ea60382a8c70f0ae1046aac072c7da67 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Contents
1 Prologue 6 1.1 OLED - the star of the next generation . . . . . . . . . . . . . . 6 1.2 Silvaco TCAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Physics & Industry Development 9 2.1 Physical characteristics of OLED . . . . . . . . . . . . . . . . . 9 2.1.1 Physics Model . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 How do OLEDs Emit Light? . . . . . . . . . . . . . . . . 9 2.1.3 SCLC & PFMOB . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Industry Survey & Application . . . . . . . . . . . . . . . . . . . 12 2.2.1 Industry Survey . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 OLED pplications . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Comparison in Solid-States . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Application in Lighting: OLED vs LED . . . . . . . . . 15 2.3.2 Application in Display: OLED vs LCD . . . . . . . . . 16 2.3.3 AMOLED vs PMOLED . . . . . . . . . . . . . . . . . . . 17 3 Theoretical model & Algorithm in Program Package 18 3.1 Physical Models & Algorithms . . . . . . . . . . . . . . . . . . . 18 3.1.1 Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.2 Organic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Main Equations for Semiconductor . . . . . . . . . . . . 20 Extensions for Organic . . . . . . . . . . . . . . . . . . . 21 3.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Levenberg-Marquart Algorithm . . . . . . . . . . . . . . 26 4 Simulation Results 27 4.1 SingleLayer Al=Alq3=Al Modulation . . . . . . . . . . . . . . . . . 28 4.2 Double-Layer OLED Modulation . . . . . . . . . . . . . . . . . . 32 4.2.1 Double-Layer:ITO=NPB=Alq3=Al . . . . . . . . . . . . . . 32 1 Commence Modulation 36 4.2.2 Metal's Modulation . . . . . . . . . . . . . . . . . . . . 36 4.2.3 Alq3 LUMO xed Eg Modulation . . . . . . . . . . . . . 37 4.2.4 Alq3 HOMO xed LUMO Modulation . . . . . . . . . . 38 4.3 Double-Layer OLED Simulation . . . . . . . . . . . . . . . . . . 40 4.3.1 Experimental Data Review . . . . . . . . . . . . . . . . . 40 Commence Simulation 41 4.3.2 Alq3 Thickness Simulation[2] . . . . . . . . . . . . . . . . 41 4.3.3 NPB Thickness Simulation[3] . . . . . . . . . . . . . . . 42 4.3.4 ETL & HTL Ratio Fixed Thickness Tuning . . . . . . 43 1x, Saturation J Consideration . . . . . . . . . . . . . . 44 4.4 Advanced Tuning for Further Physical Phenomenon . . . . . . 45 4.4.1 Organic Defect Model Issue . . . . . . . . . . . . . . . . 45 4.4.2 Temperature Simulation with single-layer structure . . 46 4.4.3 HTL modulation with TPD . . . . . . . . . . . . . . . . 47 4.5 Device Potential Prole & Langevin Prole Record . . . . . . 48 4.5.1 Device Potential Prole . . . . . . . . . . . . . . . . . . . 48 4.5.2 Langevin Prole . . . . . . . . . . . . . . . . . . . . . . . 48 5 Future Work 56 Bibliography 57 | |
dc.language.iso | en | |
dc.title | TCAD技術於OLED之議題:物理調變&電特性探討 | zh_TW |
dc.title | TCAD Techniques on OrganicLED Issue : Study on Physical Modulation& Electricity Characteristics | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳奕君,吳育任 | |
dc.subject.keyword | 物理特性,調變,指數函數,陷阱模型,電洞傳輸層,功函數, | zh_TW |
dc.subject.keyword | TCAD,modulation,simulation,turn on Voltage,LUMO,ETL,HOMO,Marquart, | en |
dc.relation.page | 59 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-02-23 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 12.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。