請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44965
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 汪根欉 | |
dc.contributor.author | Liang-Chen Chi | en |
dc.contributor.author | 紀良臻 | zh_TW |
dc.date.accessioned | 2021-06-15T03:59:46Z | - |
dc.date.available | 2015-04-02 | |
dc.date.copyright | 2010-04-02 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-03-30 | |
dc.identifier.citation | 1.Pope, M.; Kailmann, H. P. J. Chem Phys. 1963, 38, 2042.
2.Adachi, C.; Tokito, S.; Tsutsui, T. Saito, S. Japan J. Appl. Phys. 1988, 27, L713. 3.Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610. 4.(a) Chen, B.; Lee, C. S.; Lee, S. T.; Webb, P.; Chan, Y. C.; Gambling, W.; Tian, H.; Zhu, W. Jpn. J. Phys. Part1, 2000, 39, 1190. (b) Fujikawa, H.; Ishii, M.; Tokito, S.; Taga, Y. Mater. Res. Soc. Symp. Proc. 2000, 621, Q 3.4.1. 5.(a) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489. (b) Kido, J.; Ohtaki, C.; Honggawa, K.; Okuyama, K.; Nagai, K. Jpn. J. Phys. Part2. 1993, 32, L917. (c) Shi, J.; Tang, C. W.; Chen, C. H. 1997, U.S. Patent 5646948. 6.Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature, 1998, 395, 151. 7.Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4. 8.Förster, T. Discuss Faraday Soc. 1959, 27, 7. 9.Dexter, D. L. J. Chem. Phys. 1953, 21, 836. 10.(a) Pai, D. M.; Yanus, J. F.; Stolka, M. J. Phys. Chem. 1984, 88, 4714. (b) Gong, X.; Robinson, M. R.; Ostrowski, J. C.; Moses, D. Bazan, G. C.; Heeger, A. J. Adv. Mater. 2001, 14, 581. 11.Adachi, C.; Kwong, R. C.; Djurovch, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phy. Lett. 2001, 79, 2082. 12.Tokito, S.; Iijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T, Sato, F. Appl. Phy. Lett. 2003, 83, 569. 13.Holmes, R. J.; Forrest, S. R.; Tung, Y.-J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E. Appl. Phy. Lett. 2003, 82, 2422. 14.Yeh, S. J.; Wu, W. C.; Chen, C. T.; Song, Y. H.; Chi, Y.; Ho, M. H.; Hsu, S. F.; Chen, C. H. Adv. Mater. 2005, 17, 285. 15.Wong, K.-T.; Chen, Y.-M.; Lin, Y.-T.; Su, H.-C.; Wu, C.-C. Org. Lett. 2005, 24, 5361. 16.Tsai, M.-H.; Ke, T.-H.; Lin H.-W.; Wu, C.-C.; Chiu, S.-F.; Fang, F.-C.; Liao, Y.-L.; Wong, K.-T.; Chen, Y.-H.; Wu, C.-I. ACS Appl. Mater. Interfaces, 2009, 3, 567. 17.Inomata, H.; Goushi, K.; Masuko, T.; Konno, T.; Imai, T.; Sasabe, H.; Brown, J. J.; Adachi, C. Chem. Mater. 2006, 16, 1285. 18.Son, K. S.; Yahiro, M.; Imai, T.; Yoshizaki, H.; Adachi, C. Chem. Mater. 2008, 20, 4439. 19.Su, S.-J.; Sasabe, H.; Takeda, T.; Kido, J. Chem. Mater. 2008, 20, 1691. 20.Shi, J.; Tang, C. W.; Chen, C. H. U.S. Patent 5646948 (1997). 21.Takizawa, S.-Y.; Montes, V, Anzenbacher, J. P. Chem. Mater. 2009, 21, 2452. 22.Liao, Y.-L.; Lin, C.-Y.; Wong, K.-T.; Hou, T.-H.; Hung, W.-Y. Org. Lett. 2007, 9, 4511. 23.Gao, Z. Q.; Luo, M.; Sun, X. H.; Tam, H. L.; Wong, M. S.; Mi, B. X.; Xia, P. F.; Cheah, K. W.; Chen, C. H. Adv. Mater. 2009, 21, 688. 24.Su, S.-J.; Gonmori, E.; Sasabe, H.; Kido, J. Adv. Mater. 2008, 20, 4189. 25.Lai, M.-Y.; Chen, C.-H.; Huang, W.-S.; Lin, J. T.; Ke, T.-H.; Chen, L.-Y.; Tsai, M.-H.; Wu, C.-C. Angew. Chem. Int. Ed. 2008, 47, 581. 26.Jeon, S. O.; Yook, K. S.; Joo, C. W.; Lee, J. Y. Adv. Funct. Mater. 2009, 19, 3644. 27.Shirota, Y.; Kinoshita, M.; Noda, T.; Okumoto, K.; Ohara, T. J. Am. Chem. Soc. 2000, 122, 11021. 28.Jiang, X.; Register, R. A. Chem. Mater. 2000, 12, 2542. 29.(a) Tao, Y.; Wang, Q.; Yang, C.; Wang, Q.; Zhang, Z.; Zou, T.; Qin, J.; Ma, D. Angew. Chem. Int. Ed. 2008, 47, 8104. (b) Ge, Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto, M.-a. Adv. Funct. Mater. 2008, 18, 584. 30.(a) Sasabe, H.; Chiba, T.; Su, S.-J.; Pu, Y.-J.; Nakayama, K.-i.; Kido, J. Chem. Comm. 2008, 44, 5821. (b) Su, S.-J.; Chiba, T.; Takeda, T.; Kido, J. Adv. Mater. 2008, 20, 2125. (c) Sasabe, H.; Gonmori, E. Chiba, T.; Li, Y.-J.; Tanaka, D.; Su, S.-J.; Takeda, T.; Pu, Y.-J.; Nakayama, K.-i.; Kido, J. Chem. Mater. 2008, 20, 5951. 31.Wong, K.-T.; Chao, T.-C.; Chi, L.-C.; Chu, Y.-Y.; Balaiah, A.; Chiu, S.-F.; Liu, Y.-H.; Wang, Y. Org. Lett. 2006, 8, 5033. 32.Kim, J. H.; Yoon, D. Y.; Kim, J. W.; Kim, J.-J. Synth. Met. 2007, 157, 743. 33.Tanaka, D.; Takeda, T.; Chiba, T.; Watanabe, S.; Kido, J. Chemistry Letters, 2007, 36, 262. 34.Xiao, L.; Su, S.–J.; Agata, Y.; Lan, H.; Kido, J. Adv. Mater. 2009, 21, 1271. 35.Huang, W. S.; Liu, J. T.; Chien, C. H.; Tao, Y. T.; Sun, S. S.; Wen, Y. S. Chem. Mater. 2004, 16, 2480. 36.Yang, H.-B.; Das, N.; Huang, F.; Hawkridge, A. M.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2006, 128, 10014. (b) Yang, H.-B.; Hawkridge, A. M.; Huang, S. D.; Das, N.; Bunge, S. D.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 2120. (c) Yang, H.-B.; Ghosh, K.; Northrop, B. H.; Zheng, Y.-R.; Lyndon, M. M.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 14187. (d) Northrop, B. H.; Glöckner, A.; Stang, P. J. J. Org. Chem. 2008, 73, 1787. 37.(a) Suzuki, K.; Kawano, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 10652. (b) Murase, T.; Sato, S.; Fujita, M. Angew. Chem., Int. Ed. 2007, 46, 5133. (c) Jiang, H.; Lin, W. J. Am. Chem. Soc. 2006, 128, 11286. (d) Jiang, H.; Lin, W. J. Am. Chem. Soc. 2003, 125, 8084 38.Stang, P. J.; Olenyuk, B. Acc. Chem. Res. 1997, 30, 502. 39.(a) Mena-Osteritz, E.; Bäuerle, P. Adv. Mater. 2006, 18, 447. (b) Schmaltz, B.; Rouhanipour, A.; Räder, H. J.; Pisula, W.; Müllen, K. Angew. Chem., Int. Ed. 2009, 48, 720. (c) Simon, S. C.; Schmaltz, B.; Rouhanipour, A.; Räder, H. J. Müllen, K. Adv. Mater. 2009, 21, 83. 40.Han, Y.-F.; Jia, W.-G.; Lin, Y.-J.; Jin, G.-X. Angew. Chem., Int. Ed. 2009, 48, 6234. 41.Zhao, L.; Northrop, B. H.; Zheng, Y.-R.; Yang, H.-B.; Lee, H. J.; Lee, Y. M.; Park, J. Y.; Chi, K.-W.; Stang, P. J. J. Org. Chem. 2008, 73, 6580. (b) Chi, K.-W.; Addicott, C.; Arif, A. M.; Stang, P. J. J. Am. Chem. Soc. 2004, 126, 16569. (c) Chi, K.-W.; Addicott, C.; Moon, M.-E.; Lee, H. J.; Yoon, S. C.; Stang, P. J. J. Org. Chem. 2006, 71, 6662. 42.Kong, P.-C.; Rochon, F. D. Can. J. Chem. 1978, 56, 441. 43.Hoppe, H.; Sariciftci, N. S. J. Mater. Res. 2004, 19, 1924. 44.Sun, S.-S.; Sariciftci, N. S. Organic Photovoltaics, Mechanisms, Materials, and Devices; CRC Press/Taylor & Francis Group, 2005. 45.Tang, C. W. Appl. Phys. Lett. 1986, 48, 2. 46.Winder, C.; Sariciftci, N. S. J. Mater. Chem. 2004, 14, 1077. 47.(a) Peumans, P.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 126. (b) Peumans, P.; Yakimov, A.; Forrest, S. R. J. Appl. Phys. 2003, 93, 3693. (c) Xue, J.; Uchida, S.; Rand, B. P.; Forrest, S. R. Appl. Phys. Lett. 2004, 84, 3013. (d) Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. (e) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. 48.(a) Placencia, D.; Wang, W.; Shallcross. R. C.; Nebesny, K. W.; Brumbach, M.; Armstrong, N. R. Adv. Funct. Mater. 2009, 19, 1913. (b) Sun, Q.; Park, K.; Dai, L. J. Phys. Chem. C 2009, 113, 7892. 49.Sullivan, P.; Jones, T. S. Organic Electronics, 2008, 9, 656. 50.Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science, 1992, 258, 1474. 51.Wong, H. M.; Wang, P.; Abrusci, A.; Svensson, M.; Andersson, M. R.; Greenham, N. C. J. Phys. Chem. C 2007, 111, 5244. 52.Roquet, S.; Cravino, A.; Leriche, P.; Alévêque, O.; Frère, P.; Roncali, J. J. Am. Chem. Soc. 2006, 128, 3459. 53.(a) Hiramoto, M.; Fujiwara, H.; Yokoyama, M. Appl. Phys. Lett. 1991, 58, 1062. (b) Hiramoto, M.; Fujiwara, H.; Yokoyama, M. J. Appl. Phys. 1992, 72, 3781. 54.(a) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science, 1995, 270, 1789. (b) Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R, H,; Moratti, S. C.; Hommes, A. B. Nature, 1995, 376, 498. 55.(a) Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. (b) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. 56.Winzenberg, K. N.; Kemppinen, P. Kemppinen. G.; Bown, M. ; Collis, G. E.; Forsyth, C. M.; Hegedus, K.; Singh, Th. B.; Watkins, S. E. Chem. Commun. 2009, 21, 5701. 57.Silvestri, F.; Irwin, M. D.; Beverina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 17640. 58.Kronenberg, N. M.; Deppisch, M.; Würthner, F.; Lademann, H. W. A.; Deing, K.; Meerholz, K. Chem. Commun. 2008, 20, 6489. 59.Walker, B.; Tamayo, A. B.; Dang, X.-D.; Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T.-Q. Adv. Funct. Mater. 2009, 19, 3063. 60.Grätzel, M. Inorg. Chem. 2005, 44, 6841. 61.(a) Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J. H.; Fantacci, S.; De Angelis, F.; Di Censo, D.; Nazeeruddin, Md. K.; Grätzel, M. J. Am. Chem. Soc. 2006, 128, 16701. (b) Nazeeruddin, Md. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382 (C) Nazeeruddin, Md. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613. 62.Campbell, W. M.; Jolley, K. W.; Wagner, P.; Wagner, K.; Walsh, P. J.; Gordon, K. C.; Schmidt-Mende, L.; Nazeeruddin, Md. K.; Wang, Q.; Grätzel, M.; Officer, D. L. J. Phys. Chem. C 2007, 111, 11760. 63.Sayama, K.; Hara, K.; Mori, N.; Satsuki, M.; Suga, S.; Tsukagoshi, S.; Abe, Y.; Sugihara, H.; Arakawa, H. Chem. Commun. 2000, 1173. 64.Wang, Z.S.; Cui, Y.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 19, 1138. 65.Mishra, A.; Fischer, M. K. R.; Bäuerle, P.; Angew. Chem. Int. Ed. 2009, 48, 2474. 66.Birks, J. B. Photophysics of Aromatic Molecules. Wiley-Interscience, New York, 1970. 67.Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Müllen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946. 68.(a) Wu, C.-C.; Lin, Y.-T.; Wong, K.-T.; Chen, R.-T.; Chien, Y.-Y. Adv. Mater. 2004, 16, 61. (b) D’Andrade, B. W.; Forrest, S. R. Adv. Mater. 2004, 16, 1585. (c) Gao, Z. Q.; Li, Z. H.; Xia, P. F.; Wong, M. S.; Cheah, K. W.; Chen, C. H. Adv. Funct. Mater. 2007, 17, 3194. 69.(a) Guntner, R.; Farrell, T.; Scherf, U.; Miteva, T.; Yasuda, A.; Nelles, G. J. Mater. Chem. 2004, 14, 2622. (b) Becker, K.; Lupton, J. M.; Feldmann, J.; Nehls, B. S.; Galbrecht, F.; Gao, D.; Scherf, U. Adv. Funct. Mater. 2006, 16, 364. 70.(a) Meng, H.; Zheng, J.; Lovinger, A. J.; Wang, B.-C.; Van Patten, P. G.; Bao, Z. Chem Mater. 2003, 15, 1778. (b) Shin, T. J.; Yang, H.; Ling, M.-M.; Locklin, J.; Yang, L.; Lee, B.; Roberts, M. E.; Mallik, A. B.; Bao, Z. Chem Mater. 2007, 19, 5882. 71.Chao, T.-C.; Lin, Y.-T.; Yang, C.-Y.; Hung, T.-S.; Chou, H.-C.; Wu, C.-C.; Wong, K.-T. Adv. Mater. 2005, 17, 992. (b) Kauffman, J. M.; Kelley, C. J.; Ghiorghis, A.; Neister, E.; Armstrong, L.; Prause, P. R. Laser Chem. 1987, 7, 343. 72.(a) Van der Pol, C.; Bryce, M. R.; Wielopolski, M.; Atienze-Castellanos, C.; Guldi, D. M.; Filippone, S.; Martin, N. J. Org. Chem. 2007, 72, 6662. (b) Carrasco-Orozco, M.; Tsoi, W. C.; O’Neill, M.; Aldred, M. P.; Vlachos, P.; Kelly, S. M. Adv. Mater. 2006, 18, 1754. (c) Tsoi, W. C.; O’Neill, M.; Aldred, M. P.; Kitney, S. P.; Vlachos, P.; Kelly, S. M. Chem. Mater. 2007, 19, 5475. 73.Belfield, K. D.; Bondar, M. V.; Hernandez, F. E.; Masunov, A. E.; Mikhailov, I. A.: Morales, A. R.; Przhonska, O. V.; Yao, S. J. Phys. Chem. C 2009, 113, 4706. 74.Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Ed. 2009, 48 2474. 75.Fachetti, A.; Yoon, M.-H.; Marks, T. J. Adv. Mater. 2005, 17, 1705. (b) Thomas K. R. J.; Lin, J. T.; Tao, Y.-T.; Ko, C.-W. J. Am. Chem. Soc. 2001, 123, 9404. 76.Belfield, K. D.; Schafer, K. J.; Mouard, W.; Reinhardt, B. A. J. Org. Chem. 2000, 65, 4475. 77.Baheti, A.; Tyagi, P.; Thomas, K. R. J.; Hsu, Y.-C.; Lin, J. T. J. Phys. Chem. C 2009, 113, 8541. 78.Ipaktschi, J.; Hosseinzadeh, R.; Schlaf, P.; Dreiseidler, E. Helvetica Chimica Acta, 1998, 81, 1821. 79.Velusamy, M.; Shen, J.-Y.; Lin, J. T.; Lin, Y.-C.; Hsieh, C.-C.; Lai, C.-H.; Ho, M.-L.; Chen, Y.-C.; Chou, P.-T.; Hsiao, J.-K. Adv. Funct. Mater. 2009, 19, 2388. 80.Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2003, 68, 2861. 81.Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. J. Nat. Canc. Inst. 1998, 90, 889. (b) MacDonald, I. J.; Dougherty, T. J. J. Porphyrins Phthalocyanines, 2001, 5, 105. 82.Ogawa, K.; Kobuke, Y. Curr. Med. Chem. - Anti-Cancer Agents, 2008, 8, 269. 83.Ochsner, M. Drug Res. 1997, 47, 1185. 84.Electrooptics Handbook; Waynant, R. W.; Ediger, M. N.; Eds.; McGraw-Hill: New York, 1993; Chapter 24. 85.Göppert-Mayer, M. Annalen der Physik, 1931, 9, 273. 86.Helmchen, F.; Denk, W. Nature Methods, 2005, 2, 932. 87.Bhawalkar, J. D.; He, G. S.; Prasad, P. N. Rep. Prog. Phys. 1996, 59, 1041. 88.Goyan, R. L.; Cramb, D. T. Photochem. Photobiol. 2000, 72, 821. 89.(a) Ogawa, K.; Ohashi, A.; Kobuke, Y.; Kamada, K.; Ohta, K. J. Am. Chem. Soc. 2003, 125, 13356. (b) Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.; Karotki, A.; Rebane, A.; Taylor, P. N.; Anderson, H. L. J. Am. Chem. Soc. 2004, 126, 15352. (c) Ikeda, C.; Yoon, Z. S.; Park, M.; Inoue, H.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2005, 127, 534. (d) Hisaki, I.; Hiroto, S.; Kim, K. S.; Noh, S. B.; Kim, D.; Shinokubo, H.; Osuka, A. Angew. Chem. Int. Ed. 2007, 46, 5125. 90.Kim, H. M.; Cho, B. R. Chem. Commun. 2009, 153. 91.Andreoni, A.; Cubeddu, R.; Silvestri, S.; Laporta, P.; Svelto, O. Chem. Phys. Lett. 1982, 88, 37. 92.Marchesini, R.; Melloni, E.; Pezzoni, G.; Savi, G.; Zunino, F.; Docchio, D.; Fava, G. Lasers Surg. Med. 1986, 6, 323. 93.Lenz, P. Photochem. Photobiol. 1995, 62, 333. 94.(a) Dichtel, W. R.; Serin, J. M.; Edder, C.; Fréchet, J. M. J.; Matuszewski, M.; Tan, L.-S.; Ohulchanskyy, T. Y.; Prasad, P. N. J. Am. Chem. Soc. 2004, 126, 5380. (b) Oar, M. A.; Dichtel, W. R.; Serin, J. M.; Fréchet, J. M. J.; Rogers, J. E.; Slagle, J. E.; Fleitz, P. A.; Tan, L.-S.; Ohulchanskyy, T. Y.; Prasad, P. N. Chem. Mater. 2006, 18, 3682. 95.Kanemitsu, Y.; Kohno, E.; Hirano, T.; Ogura, S.; Okura, I. J. Med. Chem. 2006, 49, 2276. 96.Beverina, L.; Crippa, M.; Landenna, M.; Ruffo, R.; Salice, P.; Silvestri, F.; Versari, S.; Villa, A.; Ciaffoni, L.; Collini, E.; Ferrante, C.; Bradamante, S.; Mari, C. M.; Bozio, R.; Pagani,G. A. J. Am. Chem. Soc. 2008, 130, 1894. 97.Belfield, K. D.; Schafer, K. J.; Liu, Y.; Liu, J.; Ren, X.; Van Stryland, E. W. J. Phys. Org. Chem. 2000, 13, 837. 98.Belfield, K. D.; Bondar, M. V.; Hernandez, F. E.; Masunov, A. E.; Mikhailov, I. A.; Morales, A. R.; Przhonska, O. V.; Yao, S. J. Phys. Chem. C 2009, 113, 4706. 99.Redmond, R. W.; Braslavsky, S. E. Chem. Phys. Lett. 1988, 148, 523. (b) Gorman, A. A.; Hamblett, I.; Rodgers, M. A. J. J. Photochem. 1984, 25, 115. 100.Ishi-I, T.; Taguri, Y.; Kato, S.-I.; Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Mataka, S. J. Mater. Chem. 2007, 17, 3341. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44965 | - |
dc.description.abstract | 本論文主要分兩部分,第一部分: 利用具有高電洞傳輸性質的咔唑為核心,利用合成方式於其3、6位置上,取代具有電子傳輸性質的基團,包括: 苯並咪唑 (benzimidazole)、吡啶 (pyridine)、噁二唑 (oxadiazole) 以及芳香硼的一系列衍生物。藉由結合電洞與電子傳輸性質的基團,發展出具有雙極性 (Bipolar) 或雙偶極性 (Ambipolar) 的主體材料,依其物理性質來搭配客體磷光材料使用。其中CMesB可作為主體材層搭配藍色磷光材料Firpic (ηext = 12 %, ηp = 19 lm/W) 與綠光磷光材料Ir(ppy)2acac (ηext = 16 %, ηp = 34 lm/W);COxaPh之三重激發態能階較低只適合搭配綠光磷光材料Ir(ppy)2acac (ηext = 18 %, ηp = 76 lm/W) 與紅光磷光材料OS2 (ηext = 21 %, ηp = 36 lm/W);CBzIm目前則與藍光磷光材料NFirpic (16 %, ηp = 29 lm/W) 摻混效果最佳;而CPhBzIm則是一個相當特別的材料,除了可以直接作為深藍光螢光發光層使用 (ηext = 3 %, CIE = 0.16, 0.05),搭配黃綠光磷光材料Ir(pbi)2acac 效率也相當高 (ηext = 19.2 %, ηp = 62 lm/W, CIE = 0.42;0.56),更能製作單一摻混之白光元件 (ηext = 7 %, CIE = 0.31, 0.33);另外的結構異構物CNBzIm則分別搭配藍光Firpic (13 %, ηp = 31 lm/W)、綠光Ir(ppy)2acac (18 %, ηp = 59 lm/W)、紅光OS2 (ηext = 19 %, ηp = 27 lm/W) 以及共摻混成的白光元件都有不錯的效率 (ηext = 16 %, ηp = 37 lm/W);CAymPy與CSymPy因分子性質相近,作為主體材料製成的元件,分別搭配綠光磷光材料Ir(ppy)2acac (CAymPy, ηext = 12 %, ηp = 47 lm/W;CSymPy, ηext = 11 %, ηp = 42 lm/W) 與紅光磷光材料Ir(mpq)2acac (CAymPy, ηext = 11 %, ηp = 12 lm/W;CSymPy, ηext = 8 %, ηp = 9 lm/W) 可得到相似的元件效率。總結來說,我們設計與合成之雙極性主體材料應用於有機發光二極體確實具有相當好的結果。
第二部分: 以芴基為核心之π-共軛系統上,利用鈀金屬催化方式於其3、6位置上,引入具有給體 (Donor) 效果的芳香胺,再利用縮合反應於芴之9號位置帶入多種具有受體 (Acceptor) 性質的拉電子基團。此新型的給體-受體分子,具有發展有機薄膜太陽能與雙光子吸收之光動力療法等應用性。其中LCC-1作為p-type 材料與C60共蒸鍍而成的單層異質接面太陽能電池,於標準太陽光下效率約1 %,IPCE最大值為35 % (498 nm)。另外雙光子吸收之光動力療法上的應用,則在初步測試以化合物17有最高的雙光子吸收係數 (1636 GM),以及和參考品H2TPP比較後最佳之單重態氧的生成效率 (>100 %)。 | zh_TW |
dc.description.abstract | This thesis is composed of two major parts. For the first part, we have successfully synthesized a series of bipolar hosts by introducing two electron-withdrawing moieties onto the 3 and 6 positions of N-phenyl carbazole. The introduced electron-withdrawing blocks are dimesityl boron, phenylbenzimidazole, pyridine, and oxadiazole. The new molecules obtained by different structure combinations have led to different film-forming property, comparable electron and hole mobilities, tunable triplet energies and energy levels which govern their various applications as host materials in phosphorescent organic light-emitting devices (PhOLEDs) with good to excellent external quantum efficiencies (EQE). Among those, CMesB can serve as host material for doping with Firpic (ηext = 12 %, ηp = 19 lm/W) and Ir(ppy)2acac (ηext = 16 %, ηp = 34 lm/W) to realize efficient blue and green PhOLEDs, respectively. High performance PhOLEDs have been achieved with COxaPh as host material doping with green emmitters Ir(ppy)2acac (ηext = 18 %, ηp = 76 lm/W) and red emmiter OS2 (ηext = 21 %, ηp = 36 lm/W). CBzIm can dope with NFirpic) to get a blue PhOLED with EQE up to 16 % and ηp = 29 lm/W. Due to its high photoluminescence, CPhBzIm was not only used to fabricate non-doped deep blue-emitting devices with promising performance (ηext = 3 %, CIE = 0.16; 0.05), but also served as host material doped with Ir(pbi)2acac to realize green PhOLED (ηext = 19.2 %, CIE = 0.42; 0.56). Furthermore, we have demonstrated a simple single-doped way to realize two-color based WOLEDs (ηext = 7 %, CIE = 0.31, 0.33) by using the dual roles of CPhBzIm. CNBzIm served as a universal host host material for Firpic (13 %, ηp = 31 lm/W), Ir(ppy)2acac (18 %, ηp = 59 lm/W), OS2 (ηext = 19 %, ηp = 27 lm/W), and WOLEDs (ηext = 16 %, ηp = 37 lm/W). CAymPy and CSymPy have similar physical properties which were applied as host materials gave devices with Ir(ppy)2acac as emitter (CAymPy, ηext = 12 %, ηp = 47 lm/W, CSymPy, ηext = 11 %, ηp = 42 lm/W) and Ir(mpq)2acac as emitter (CAymPy, ηext = 11 %, ηp = 12 lm/W;CSymPy, ηext = 8 %, ηp = 9 lm/W).
The second part, we have successfully synthesized a series of novel bipolar molecules with various donors and acceptors which were bridged with a fluorene conjugation. The donors, mainly diaryl amino groups, were introduced onto the C3 and C6 of the fluorenone core employing Hartwig’s palladium-catalyzed C-N bond coupling reaction of 3,6-dibromofluorenone and diarylamines. After then, cyanoacetic acid, dicyano , and diethyl malonate were introduced as the acceptor parts onto the 9-position of the fluorenone by Knoevenagel condensation. Those bipolar materials have shown to have potential applications of organic thin-film solar cell and photodynamic therapy. The photovoltaic bulk heterojunction solar cells with p-type LCC-1 as the dye in combining with C60 as the electron acceptor have been fabricated by thermal evaporation. These devices have reached power conversion efficiencies of ~1 % and IPCE at 498 nm up to 35 % under simulated AM 1.5 solar irradiation at 100 mWcm-2. In addition, compounds 17 was found to exhibit larger two-photon absorption (TPA) cross section value of 1636 GM as measured by the two photon induced fluorescence. More strikingly, the best single-photon singlet oxygen generation quantum yield (>100 %) as compared to that of the standard tetraphenylporphyrin (H2TPP) was observed, which indicates the highly potential application in photodynamic therapy is possible in the dye can be designed to interact with cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:59:46Z (GMT). No. of bitstreams: 1 ntu-99-D95223001-1.pdf: 6524399 bytes, checksum: 71d6ba8e3417eab2f08d1057f5d7b169 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄 i
圖目錄 vi 表目錄 xiii 中文摘要 xv 英文摘要 xviii 分子結構圖 xxi 第一章 有機發光二極體 前言 1 1.1 有機電致發光之多層結構元件及原理 2 1.2 電荷傳輸材料 3 1.3 發光層材料 4 1.4 主體 (Host) 材料及能量轉移機制 5 1.5 以咔唑 (carbazole) 基團為主體材料之發展 6 1.6 雙極性主體材料之發展 10 第二章 咔唑為主體之雙極性分子的設計、合成與性質分析 前言 14 2.1 咔唑為主體之分子的設計、合成 15 2.1.1 CMesB之分子設計 15 2.1.2 CMesB合成結果 15 2.1.3 COxaPh分子設計 16 2.1.4 COxaPh合成結果 16 2.1.5 CBzIm、CPhBzIm與CNBzIm之分子設計 17 2.1.6 CBzIm、CPhBzIm與CNBzIm之合成結果 19 2.1.7 CAsymPy、CSymPy之分子設計 20 2.1.8 CAsymPy、CSymPy之合成結果 21 2.2 CBzIm、CMesB與CSymPy的晶體數據 23 2.3 咔唑為主體之分子性質分析 25 2.3.1 溶液態光物理性質 25 2.3.2 電化學性質 31 2.3.3 薄膜光物理性質 38 2.3.4 熱性質分析 40 2.4 OLED材料之應用與結果 41 2.4.1 CMesB為主體材料的元件表現 42 2.4.2 COxaPh為主體材料的元件表現 44 2.4.3 CBzIm為主體材料的元件表現 45 2.4.4 CPhBzIm為主體材料的元件表現 47 2.4.5 CPhBzIm為發光層的元件表現 49 2.4.6 CPhBzIm為單層WOLED的元件表現 51 2.4.7 CNBzIm為主體材料的元件表現 53 2.4.8 CNBzIm的WOLED元件表現 54 2.4.9 CmInF、CSymPy、CAsymPy為主體材料的元件表現 56 2.5 超分子主體材料應用 59 2.5.1 Pt-ring的分子設計與合成結果 60 2.5.2 Pre-ring、Pt-ring的晶體數據 61 2.6 結論 64 第三章 有機太陽能電池 前言 65 3.1 有機太陽能電池簡介 66 3.2 有機太陽能電池分類與發展簡介 66 3.3 芴為主體之有機染料之設計與合成 73 3.4 芴基為主體之給體-受體分子的研究動機與分子設計 74 3.4.1 LCC-1與LCC-2之分子設計 75 3.4.2 LCC-1與LCC-2之合成結果 75 3.4.3 LCC-3之分子設計 76 3.4.4 LCC-3之合成結果 77 3.5 染料LCC-1、LCC-2與LCC-3之分子性質分析 78 3.5.1光物理性質 78 3.5.2 電化學性質 81 3.5.3 熱性質分析 85 3.6 材料之應用與結果 86 3.6.1 LCC-1於太陽能電池的元件表現 86 3.7 結論 88 第四章 雙光子吸收分子與光動力療法 前言 89 4.1 雙光子吸收 (TPA) 之光動力療法 (PDT) 90 4.2 雙光子吸收之光動力療法的發展 92 4.3 芴為主體之有機光敏素之設計與合成 94 4.4 芴為主體之雙光子吸收的材料的設計、合成 96 4.4.1 PS-1與PS-2之分子設計 96 4.4.2 PS-1與PS-2之合成結果 97 4.4.3 PS-3與PS-4之分子設計 98 4.4.4 PS-3與PS-4之合成結果 98 4.5光敏素PS-1~PS-4與芴酮12之分子性質分析 99 4.5.1 PS-1之光物理與電化學性質 99 4.5.2 PS-2之光物理與電化學性質 101 4.5.3 PS-3之光物理與電化學性質 102 4.5.4 PS-4之光物理與電化學性質 103 4.5.5 芴酮17之光物理與電化學性質 104 4.6 光敏素PS-1、PS-2與芴酮12之單光子激發生成單重態氧 105 4.7 結論107 第五章 實驗部分 5.1 測試儀器 108 5.2 實驗步驟與數據 109 參考文獻 132 附錄 Ⅰ 化合物之TGA、DSC熱性質圖譜 141 附錄 Ⅱ 化合物之H1、C13 NMR光譜圖譜 149 附錄 Ⅲ 化合物單晶之鍵長、鍵角數據圖 174 | |
dc.language.iso | zh-TW | |
dc.title | 以咔唑及芴為核心之給體-受體分子的合成、性質與應用 | zh_TW |
dc.title | Synthesis, Properties, and Applications of Carbazole and Fluorene Based Donor-Acceptor Materials | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 洪文誼,何美霖,林皓武,趙登志 | |
dc.subject.keyword | 咔,唑,芴,有機發光二極體,有機太陽能電池,雙光子吸收, | zh_TW |
dc.subject.keyword | Carbazole,Fluorene,organic light emitting diode,organic solar cell,two photon absorption, | en |
dc.relation.page | 202 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-03-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 6.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。