Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44953
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏慧(Min-Huey Chen)
dc.contributor.authorKaren Changen
dc.contributor.author張丰毓zh_TW
dc.date.accessioned2021-06-15T03:59:20Z-
dc.date.available2013-10-03
dc.date.copyright2011-10-03
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.citation[1] Akinc A., and Langer R.. (2002). Measuring the pH environment of DNA delivered using nonviral vectors: implications for lysosomal trafficking. Biotechnol Bioeng 78, 503-508.
[2] Akita H, Harashima H. (2008). Advances in non-viral gene delivery: using multifunctional envelope-type nano-device. Expert Opin Drug Deliv 5(8), 847-59.
[3] Andrade F, Videira M, Ferreira D, and Sarmento B. (2011). Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine 6(1), 123-141.
[4] Angelatos A.S., Radt B., and Caruso F. (2005). Light-responsive polyelectrolyte gold nanoparticle microcapsules. J Phys Chem B 109, 3071-3076.
[5] Barroso MM. (2011). Quantum dots in cell biology. J Histochem Cytochem 59(3), 237-251.
[6] Barton-Davis E.R., Shoturma D.I., Musaro A., Rosenthal N., Sweeney H.L. (1998). Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95, 15603–15607.
[7] Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K. (2011). Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63(2), 141-163.
[8] Behrens S. (2011). Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions. Nanoscale 3(3), 877-892.
[9] Berton M., Allemann E., Stein C. A., and Gurny R.. (1999). Highly loaded nanoparticulate carrier using a hydrophobic antisense oligonucleotide complex. Eur. J. Pharm. Sci. 9, 163-170.
[10] Boulaiz H., Alvarez P.J., Ramirez A., Marchal J.A., Prados J., Rodriguez-Serrano F., Peran M., Melguizo C., and Aranega A.. (2011). Nanomedicine: application areas and development prospects. Int J Mol Sci. 12(5), 3303-3321.
[11] Boussif O., Lezoualch F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., and Behr J. P.. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297-7301.
[12] Brandwijk R.J., Griffioen A.W., Thijssen V.L. (2007). Targeted gene-delivery strategies for angiostatic cancer treatment. Trends Mol Med. 13(5), 200-209.
[13] Check E. (2002). Regulators split on gene therapy as patient shows signs of cancer. Nature. 419(6907), 545-546.
[14] Check, E. (2003). Harmful potential of viral vectors fuels doubts over gene therapy. Nature 423, 573-574.
[15] Chani L., Ristori S., Salvati A., Calamai L., and Martini G. (2004). DOTAP/DOPE and DC-Chol/DOPE lipoplexes for gene therapy: zeta potential measurements and electron spin resonance spectra. Biochim Biophys Acta 1664, 70-79.
[16] Dobson, J. (2006). Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 13, 283–287.
[17] Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M., and Danielsen, M. (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84, 7413-7417.
[18] Florea B.I., Meaney C., Junginger H.E., and Borchard G.. (2002). Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS Pharm Sci 4, E12.
[19] Franzreb M, Siemann-Herzberg M, Hobley TJ, Thomas OR.. (2006). Protein purification using magnetic adsorbent particles. Appl Microbiol Biotechnol. 70(5), 505-516.
[20] Gullotti E, Yeo Y. (2009). Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6(4), 1041-1051.
[21] Hart S. L.. (2005). Lipid carriers for gene therapy. Curr. Drug Deliv. 2, 423-428.
[22] Hatakeyama H, Akita H, Harashima H. (2011). A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 63(3), 152-160.
[23] Ho D. (2009). Beyond the sparkle: the impact of nanodiamonds as biolabeling and therapeutic agents. ACS Nano 3(12), 3825-3829.
[24] Huang H.C., Chang, P.Y., Chang K., Chen, C.Y., Lin C.W., Chen, J.H., Mou, C.Y., and Chang, F.H. (2009). Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging. J Biomed Sci 16(1):86.
[25] Ikramy A. Khalil, Kentaro K., Hidetaka A., and Hideyoshi, H. (2006). Uptake Pathways and Subsequent Intracellular Trafficking in Nonviral Gene Delivery. Pharmacol Rev 58, 32–45.
[26] Kang, Y.S., Risbud, S., Rabolt, J.F., and Stroeve, P. (1996). Synthesis and characterization of nanometer-size Fe3O4 and g-Fe2O3 particles. Chem Mater 8, 2209–2211.
[27] Kawakami, S., Higuchi, Y., and Hashida, M. (2008). Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 97, 726-745.
[28] Khlebtsov N, Dykman L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40(3), 1647-1671.
[29] Kogure K, Akita H, Harashima H. (2007). Multifunctional envelope-type nano device for non-viral gene delivery: concept and application of Programmed Packaging. J Control Release 122(3), 246-251.
[30] Kogure K, Akita H, Yamada Y, Harashima H. (2008). Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv Drug Deliv Rev 60(4-5), 559-571.
[31] Kogure K, Moriguchi R, Sasaki K, Ueno M, Futaki S, Harashima H. (2004). Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method. J Control Release 98(2), 317-323.
[32] Koping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Varum KM, Artursson P. (2001). Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther. 8(14), 1108-1121.
[33] Kurata S., Tsukakoshi M., Kasuya T., and Ikawa Y.. (1986). The laser method for efficient introduction of foreign DNA into cultured cells. Exp Cell Res 162, 372-378.
[34] Lam R, Ho D.. (2009). Nanodiamonds as vehicles for systemic and localized drug delivery. Expert Opin Drug Deliv. 6(9), 883-895.
[35] Laurent S, Bridot JL, Elst LV, Muller RN. (2010). Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem 2(3), 427-449.
[36] Lehrman, S. (1999). Virus treatment questioned after gene therapy death. Nature 401, 517-518.
[37] Lin, C.Y., Chang, F.H., Chen, C.Y., Huang, C.Y., Hu, F.C., Huang, W.K., Ju, S.S., and Chen, M.H. (2011). Cell therapy for salivary gland regeneration. J Dent Res 90, 341-346
[38] Lin CY, Liu TM, Chen CY, Huang YL, Huang WK, Sun CK, Chang FH, Lin WL. (2010). Quantitative and qualitative investigation into the impact of focused ultrasound with microbubbles on the triggered release of nanoparticles from
vasculature in mouse tumors. J Control Release 146(3):291-298.
[39] Li Y, Xiao K, Luo J, Lee J, Pan S, Lam KS. (2010). A novel size-tunable nanocarrier system for targeted anticancer drug delivery. J Control Release 144(3), 314-323.
[40] Loaiza OA, Jubete E, Ochoteco E, Cabanero G, Grande H, Rodriguez J.. (2011). Gold coated ferric oxide nanoparticles based disposable magnetic genosensors for the detection of DNA hybridization processes. Biosens Bioelectron. 26(5), 2194-2200.
[41] Lonez C, Vandenbranden M, Ruysschaert JM.. (2008). Cationic liposomal lipids: from gene carriers to cell signaling. Prog Lipid Res. 47(5), 340-347.
[42] Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S. (2011). Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111(2), 253-280.
[43] Mallipeddi R, Rohan LC. (2010). Progress in antiretroviral drug delivery using nanotechnology. Int J Nanomedicine 5, 533-547.
[44] Matthews KE, Mills GB, Horsfall W, Hack N, Skorecki K, Keating A. (1993). Bead transfection: rapid and efficient gene transfer into marrow stromal and other adherent mammalian cells. Exp Hematol 21(5), 697-702.
[45] McGuinness LP, Yan Y, Stacey A, Simpson DA, Hall LT, Maclaurin D, Prawer S, Mulvaney P., Wrachtrup J., Caruso F, Scholten RE, Hollenberg LC. (2011). Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol 6(6), 358-363.
[46] McPherron A.C., Lawler A.M., and Lee S.J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83–90.
[47] Merdan T., Kopecek J., and Kissel T.. (2002). Prospects for catonic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54, 715-758.
[48] Miller D. L., Pislaru S. V., and Greenleaf J. E.. (2002). Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat. Cell. Mol. Genet 27,115-134.
[49] Mir L.M., Moller P.H., Andre F., and Gehl J.. (2005). Electric pulse-mediated gene delivery to various animal tissues. Adv Genet 54, 83-114.
[50] Mody V.V., Siwale R., Singh A., Mody H.R.. (2011). Introduction to metallic nanoparticles. J. Pharm. Bioallied. Sci., 2, 282–289.
[51] Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA. (2003). AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet. 34(3), 297-302.
[52] Nam H.Y., Park J.H., Kim K., Kwon I.C., Jeong S.Y.. (2009). Lipid-based emulsion system as non-viral gene carriers. Arch Pharm Res. 32(5), 639-646.
[53] Namiki Y, Namiki T, Yoshida H, Ishii Y, Tsubota A, Koido S, Nariai K, Mitsunaga M, Yanagisawa S, Kashiwagi H, Mabashi Y, Yumoto Y, Hoshina S, Fujise K, Tada N. (2009). A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotechnol. 4(9), 598-606.
[54] Neumann E., Schaefer-Ridder M., Wang Y., and Hofschneider P. H.. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1, 841-845.
[55] Nobuto H, Sugita T, Kubo T, Shimose S, Yasunaga Y, Murakami T, Ochi M.. (2004). Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer. 109(4), 627-635.
[56] Pankhurst Q.A., Connoly J., and Jones S.K. (2003). Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 36, 167.
[57] Pedroso de Lima M. C., Simoes S., Pires P., Faneca H., and Duzgunes N.. (2001). Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv. Drug Deliv. Rev. 47, 277-294.
[58] Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M, Banerjee R, Bahadur D, Plank C.. (2010). Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release. 142(1), 108-121.
[59] Qi L, Gao X. (2008). Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2(7), 1403-1410.
[60] R Juliano RL, Alam R, Dixit V, Kang HM. (2009). Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(3), 324-335.
[61] Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID. (2011). Biocompatible quantum dots for biological applications. Chem Biol 18(1), 10-24.
[62] Rudge S., Peterson C., Vessely C., Koda J., Stevens S., and Catterall L. (2001). Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC). J. Control Release 74, 335–340.
[63] Russ, V., and Wagner, E. (2007). Cell and Tissue Targeting of Nucleic Acids for Cancer Gene Therapy. Pharm Res 24, 1047-1057.
[64] Safarik I, Safarikova M.. (1999). Use of magnetic techniques for the isolation of cells. J Chromatogr B Biomed Sci Appl. 722(1-2), 33-53.
[65] Sandhu K. K., McIntosh C. M., Simard J. M., Smith S. W., and Rotello V. M.. (2002). Gold Nanoparticle-Mediated Transfection of Mammalian Cells 1035. Bioconjug. Chem. 13, 3-6.
[66] Satarkar NS, Hilt JZ.. (2008). Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release. 130(3), 246-251.
[67] Schlicher R. K., Radhakrishna H., Tolentino T. P., Apkarian R. P., Zarnitsyn V., and Prausnitz M. R.. (2006). Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med. Biol. 32, 915-924.
[68] Shimizu H, Hori Y, Kaname S, Yamada K, Nishiyama N, Matsumoto S, Miyata K, Oba M, Yamada A, Kataoka K, Fujita T. (2010). siRNA-based therapy ameliorates glomerulonephritis. J Am Soc Nephrol 21(4), 622-633.
[69] Smedtde S. C., Demeester J., and Hennink W. E.. (2000). Cationic polymer based gene delivery systems. Pharm. Res. 17, 113-126.
[70] Song L, Li H, Sunar U, Chen J, Corbin I, Yodh AG, Zheng G. (2007). Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment. Int J Nanomedicine 2(4), 767-774.
[71] Tiera M. J., Winnik F. O., and Fernandes J. C.. (2006). Synthetic and natural polycations for gene therapy: state of the art and new perspectives. Curr. Gene Ther. 6, 59-71.
[72] Vinogradov S. V., Bronich T. K. and Kabanov A.V. (2002). Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54, 135-147.
[73] Weisman S, Hirsch-Lerner D, Barenholz Y, Talmon Y. (2004). Nanostructure of cationic lipid-oligonucleotide complexes. Biophys J. 87(1), 609-614.
[74] Wells D. J.. (2004). Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11, 1363-1369.
[75] Yang J.P., and Huang L. (1997). Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther 4, 950-960.
[76] Zhang L., Gu F.X., Chan J.M., Wang A.Z., Langer R.S., and Farokhzad O.C. (2008). Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther. 83, 761–769.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44953-
dc.description.abstractGene delivery has been an indispensable tool in biomedical researches. With the development of molecular biology, different materials and methods for gene delivery have long been developed and continued to be modified. We can overexpress or inhibit particular genes by delivering plasmids, antisense oligonucleotides or RNA interference (RNAi) to analyze specific gene functions. There have been two major systems for gene delivery used currently: the viral vector system and the non-viral vector system. Since the instability of viral vectors and the requirements of clinical applications, most studies still use the non-viral vectors for gene delivery.
The purpose of this study is to develop non-viral cholesterol-based nanocarriers as transfection reagent for delivering nucleic acids into cells efficiently and not affecting normal cell viability. Such platform is going to benefit the genetic manipulation of primary cells and even stem cells. A novel cationic cholesterol, 3-β-[N-(2-guanidinoethyl)carbamoyl]-cholesterol (GEC-Chol), was mixed with cholesterol to form the GEC-Chol/ Chol lipoplexes (GCC) and then incorporated with hydrophobic superparamagnetic iron oxide (SPIO) nanoparticles to form as GCC-Fe3O4 nanocarriers. The GCC-Fe3O4 nanocarriers were transfected together with fluorescent-labeled oligonucleotides (ODN) into mouse CT-26 colon cancer cells in order to evaluate the transfection efficiency and cytotoxicity by fluorescent microscopy and further confirmed with confocal microscopy as well as flow cytometry analysis. Other cell types such as the rat acinar cells, and human embryonic stem cells were also used as primary cell and stem cell models.
The results indicated that GCC-Fe3O4 nanocarriers have high physical stability with size less than 135 nm. These GCC-Fe3O4 nanocarriers also showed great transfection efficiency as well as low cytotoxicity in both serum-reducing condition and normal serum-containing medium. We also compared GCC-Fe3O4 nanocarriers with common commercialized transfection vectors and found the GCC-Fe3O4 nanocarriers had better transfection efficiency under serum condition. GCC-Fe3O4 nanocarriers not only worked well on cancer cell line, but also good for primary acinar cells and even embryonic stem cells for further tissue remodeling. Moreover, the magnetic nanoparticles may also have the potential to work as contrast agent for tracking engineered cells in vivo and can be manipulated by magnetic force. This novel developed GCC-Fe3O4 nanocarriers had the capability for high efficiency of gene delivery and molecular imaging simultaneously, and provide a better choice for future clinical applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:59:20Z (GMT). No. of bitstreams: 1
ntu-100-R98450006-1.pdf: 2034561 bytes, checksum: 6177b95c11cc516a3e13f92b35ae368a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝......................................................i
中文摘要.................................................ii
ABSTRACT................................................iii
CONTENTS..................................................v
LIST OF FIGURES.........................................vii
LIST OF TABLES.........................................viii
ABBREVIATION.............................................ix
Chapter 1 Introduction....................................1
1.1 Nanotechnology........................................1
1.2 Iron oxide nanoparticles..............................2
1.3 Nanocarriers for biomedical applications..............3
1.4 Gene delivery.........................................4
1.4.1 Gene delivery by physical techniques................5
1.4.2 The non-viral chemical-based gene delivery system...6
1.4.3 Viral vectors.......................................8
1.5 Motivation and specific aims 9
1.6 Experimental Design Flowchart 10
Chapter 2 Materials and Methods 11
2.1 Materials 11
2.1.1 Chemical reagentsChemical reagents 11
2.1.2 Lipid ingredients. 11
2.1.3 Nanoparticles 12
2.1.4 Oligodeoxynucleotides 12
2.1.5 Culture cells 12
2.1.6 Experimental instruments. 12
2.2 Methods 13
2.2.1 preparation of GCC-Fe3O4 nanocarriers. 13
2.2.2 Measurement of the size and zeta potential of nanocarriers. 13
2.2.3 Cell cultures. 14
2.2.4 Deliver the GCC-Fe3O4-ODN into cells. 14
2.2.5 Analysis of the transfection efficiency and cytotoxicity. 15
2.2.6 Quantification of the transfection efficiency. 16
2.2.7 Statistical analysis. 16
Chapter 3 Results 17
3.1 Particle size and zeta potential of the lipoplexes 17
3.2 Morphology and conformation of the lipoplexes 17
3.3 Transfection efficiency of the GCC-Fe3O4 nanocarriers 18
3.4 Distribution of oligonucleotides within the CT-26 cells 19
3.5 Cytotoxicity of the GCC-Fe3O4 nanocarriers 19
3.6 Functional delivery with antisense oligodeoxynucleotides 20
3.7 Comparison of transfection efficiency with common commercialized transfection reagents 20
3.8 Delivery on primary cells and stem cells 22
Chapter 4 Discussion 23
Chapter 5 Figures and Tables 25
REFERENCE 36
dc.language.isoen
dc.subject超順磁氧化鐵奈米粒子zh_TW
dc.subject幹細胞zh_TW
dc.subject基因遞送zh_TW
dc.subject正價脂質奈米載體zh_TW
dc.subjectSPIOen
dc.subjectCationic lipid nanocarriersen
dc.subjectStem cellsen
dc.subjectGene deliveryen
dc.title利用正價膽固醇為基底的奈米載體進行短鏈核苷酸遞送之效率探討zh_TW
dc.titleThe Efficiency of Cationic Cholesterol-Based Nanoparticles for Oligonucleotides Deliveryen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫啟光(Chi-Kuang Sun),楊台鴻(Tai-Horng Young)
dc.subject.keyword正價脂質奈米載體,超順磁氧化鐵奈米粒子,基因遞送,幹細胞,zh_TW
dc.subject.keywordCationic lipid nanocarriers,SPIO,Gene delivery,Stem cells,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2011-08-18
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved