Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44923
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳
dc.contributor.authorYi Chouen
dc.contributor.author周頤zh_TW
dc.date.accessioned2021-06-15T03:58:26Z-
dc.date.available2013-06-01
dc.date.copyright2010-06-01
dc.date.issued2010
dc.date.submitted2010-05-19
dc.identifier.citation[1] M. C. Daniel, D. Astruc*, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” 2004, Chem. Rev., 104, 293-346
[2] W. L. Barnes*, A. Dereux, T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” 2003, Nature, 424, 824-830
[3] G. V. Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, S. N. Bhatia*, “SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating,” 2009, Adv. Mater., 21, 1–6
[4] R. Gordon, D. Sinton, K. L. Kavanagh, A. G. Brolo*, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” 2008, Accounts of Chemical Research, 41, 8, 1049-1057
[5] H. L. Chen*, S. Y. Chuang, W. H. Lee, S. S. Kuo, W. F. Su, S. L. Kua, Y. F. Chou, “Extraordinary transmittance in threedimensional crater, pyramid, and hole-array structures prepared through reversal imprinting of metal films,” 2009, Optics Express, 17, 3, 1636-1645
[6] R. L. Chern*, C. C. Chang, C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” 2006, Physical Review E, 73, 036605
[7] R. L. Chern*, X. X. Liu, C. C. Chang, “Particle plasmons of metal nanospheres: Application of multiple scattering approach,” 2007, Physical Review E, 76, 016609
[8] T. Deckert-Gaudig, V. Deckert*, “Ultraflat Transparent Gold Nanoplates: Ideal Substrates for Tip-Enhanced Raman Scattering Experiments,” 2009, Small, 5, 4, 432–436
[9] A. Dmitriev*, T. Pakizeh, M. Kall, D. S. Sutherland, “Gold–Silica–Gold Nanosandwiches: Tunable Bimodal Plasmonic Resonators,” 2007, Small, 3, 2, 294 – 299
[10] T. W. Ebbesen*, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” 1998, Nature, 391, 667–669
[11] A. Degiron, H. J. Lezec, W. L. Barnes, T. W. Ebbesen*, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” 2002, Applied Physics Letters, 81, 23, 4327-4329
[12] P. K. Jain, W. Huang, M. A. El-Sayed*, “On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation,” 2007, Nano Letters, 7, 7, 2080-2088
[13] C. F. Chen, S. D. Tzeng, H. Y. Chen, K. J. Lin, S. Gwo*, “Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling,” 2008, J. Am. Chem. Soc., 130, 824-826
[14] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas*, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” 2005, Nano Letters, 5, 8, 1569-1574
[15] A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D. S. Sutherland, F. Hook*, “Localized Surface Plasmon Resonance Sensing of Lipid-Membrane- Mediated Biorecognition Events,” 2005, J. Am. Chem. Soc., 127, 5043-5048
[16] J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Kall*, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” 2004, Nano Letters, 4, 6, 1003-1007
[17] D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, Z. H. Kim*, “Real-Space Mapping of the Strongly Coupled Plasmons of Nanoparticle Dimers,” 2009, Nano Letters, 9, 10, 3619-3625
[18] M. K. Hossain, T. Shimada, M. Kitajima*, K. Imura, H. Okamoto, “Near-Field Raman Imaging and Electromagnetic Field Confinement in the Self-Assembled Monolayer Array of Gold Nanoparticles,” 2008, Langmuir, 24, 9241-9244
[19] D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, J. R. Krenn*, “Organic plasmon-emitting diode,” 2008, Nature Photonics, 2, 684-687
[20] C. Langhammer*, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” 2007, The Journal of Chemical Physics, 126, 194702
[21] J. C. Yang, J. Ji, J. M. Hogle*, D. N. Larson*, “Metallic Nanohole Arrays on Fluoropolymer Substrates as Small Label-Free Real-Time Bioprobes,” 2008, Nano Letters, 8, 9, 2718-2724
[22] M. W. Tsai, T. H. Chuang, H. Y. Chang, S. C. Lee*, “Dispersion of surface plasmon polaritons on silver film with rectangular hole arrays in a square lattice,” 2006, Applied Physics Letters, 89, 093102
[23] X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie*, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” 2008, Nature Biotechnology, 26, 1, 83-90
[24] H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander*, H. Xu*, “Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems,” 2008, Nano Letters, 8, 8, 2497-2502
[25] T.H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, P. Nordlander*, “Optical Properties of a Nanosized Hole in a Thin Metallic Film,” 2008, ACS NANO, 2, 1, 25–32
[26] J. H. Song, T. Atay, S. Shi, H. Urabe, A. V. Nurmikko*, “Large Enhancement of Fluorescence Efficiency from CdSe/ZnS Quantum Dots Induced by Resonant Coupling to Spatially Controlled Surface Plasmons,” 2005, Nano Letters, 5, 8 1557-1561
[27] H. Gao, J. Henzie, T. W. Odom*, “Direct Evidence for Surface Plasmon-Mediated Enhanced Light Transmission through Metallic Nanohole Arrays,” 2006, Nano Letters, 6, 9, 2104-2108
[28] N. C. Lindquist, A. Lesuffleur, H. Im, S. H. Oh*, “Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation,” 2009, Lab on a Chip, 9, 3, 7, 361– 484
[29] L. Lu, A. Kobayashi, K. Tawa, Y. Ozaki*, “Silver Nanoplates with Special Shapes: Controlled Synthesis and Their Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Properties,” 2006, Chem. Mater., 18, 4894-4901
[30] M.K. Hossain, Y. Kitahama, G.G. Huang, T. Kaneko, Y. Ozaki*, “SPR and SERS characteristics of gold nanoaggregates with different morphologies,” 2008, Appl. Phys. B, 93, 165–170
[31] J. J. Chiu, B. J. Kim, E. J. Kramer*, D. J. Pine*, “Control of Nanoparticle Location in Block Copolymers,” 2005, J. Am. Chem. Soc., 127, 5036-5037
[32] J. J. Chiu, B. J. Kim, G. R. Yi, J. Bang, E. J. Kramer, D. J. Pine*, “Distribution of Nanoparticles in Lamellar Domains of Block Copolymers,” Macromolecules, 2007, 40, 3361-3365
[33] J. D. Driskell, R. J. Lipert, M. D. Porter*, “Labeled Gold Nanoparticles Immobilized at Smooth Metallic Substrates: Systematic Investigation of Surface Plasmon Resonance and Surface-Enhanced Raman Scattering,” 2006, J. Phys. Chem. B, 110, 17444-17451
[34] R. H. Ritchie*, “Plasma Losses by Fast Electrons in Thin Films,” 1957, Physical Review, 106, 5
[35] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer*, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” 2004, Nature Materials, 3, 601-605
[36] F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, D. Sinton*, “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays,” 2008, Applied Physics Letters, 92, 253103

[37] M. C. Wu, C. M. Chuang, H. H. Lo, K. C. Cheng, Y. F. Chen*, W. F. Su*, “Surface plasmon resonance enhanced photoluminescence from Au coated periodic arrays of CdSe quantum dots and polymer composite thin film,” 2008, Thin Solid Films, 517, 863–866
[38] C. M. Chuang, M. C. Wu, W. F. Su*, K. C. Cheng, Y. F. Chen*, “High intensity fluorescence of photoactivated silver oxide from composite thin film with periodic array structure,” 2006, Applied Physics Letters, 89, 061912
[39] M. C. Wu, Y. Chou, C. M. Chuang, C. P. Hsu, J. F. Lin, Y. F. Chen, W. F. Su*, “High-Sensitivity Raman Scattering Substrate Based on Au/La0.7Sr0.3MnO3 Periodic Arrays,” 2009, Applied Material and Interfaces, 1, 11, 2484–2490
[40] Z. Q. Tian*, B. Ren, D. Y. Wu, “Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures,” 2002, J. Phys. Chem. B, 106, 37, 9463-9483
[41] H. Ko, S. Singamaneni, V. V. Tsukruk*, “Nanostructured Surfaces and Assemblies as SERS Media,” 2008, Small, 4, 10, 1576–1599
[42] H. Ko, V. V. Tsukruk*, “Nanoparticle-Decorated Nanocanals for Surface-Enhanced Raman Scattering,” 2008, Small, 4, 11, 1980–1984
[43] A. J. Haes, R. P. Van Duyne*, “A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles,” 2002, J. Am. Chem. Soc., 124, 10596-10604
[44] G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz*, R. P. Van Duyne*, “Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography,” 2007, Nano Letters, 7, 7 1947-1952
[45] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne*, “Biosensing with plasmonic nanosensors,” 2008, Nature Materials, 7, 442-453
[46] J. C. Weeber*, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” 2001, Physical Review B, 64, 045411
[47] A. Wei*, B. Kim, B. Sadtler, S. L. Tripp, “Tunable Surface-Enhanced Raman Scattering from Large Gold Nanoparticle Arrays,” 2001, Chem. Phys. Chem., 12, 743-745
[48] R.W. Wood*, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” 1902, Philos. Mag., 4, 396–402
[49] Y. Xiong, J. Chen, B. Wiley, Y. Xia*, Y. Yin, Z. Y. Li, “Size-Dependence of Surface Plasmon Resonance and Oxidation for Pd Nanocubes Synthesized via a Seed Etching Process,” 2005, Nano Letters, 5, 7, 1237-1242
[50] B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, Y. Xia*, “Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis,” 2006, J. Phys. Chem. B, 110, 15666-15675
[51] P. Johansson, H. Xu*, M. Kall, “Surface-enhanced Raman scattering and fluorescence near metal nanoparticles,” 2005, Physical Review B, 72, 035427
[52] H. Wei, U. Hakanson, Z. Yang, F. Hook*, H. Xu*, “Individual Nanometer Hole–Particle Pairs for Surface-Enhanced Raman Scattering,” 2008, Small, 4, 9, 1296–1300
[53] K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang*, C. C. Yang*, Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” 2008, Applied Physics Letters, 93, 231111
[54] Q. Yu*, P. Guan, D. Qin, G. Golden, P. M. Wallace, “Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays,” 2008, Nano Letters, 8, 7, 1923-1928
[55] H. M. Fan, X. F. Fan, Z. H. Ni, Z. X. Shen, Y. P. Feng, B. S. Zou*, “Orientation-Dependent Raman Spectroscopy of Single Wurtzite CdS Nanowires,” 2008, J. Phys. Chem. C, 112, 1865-1870
[56] 邱國斌, 蔡定平, “金屬表面電漿簡介,” 2006, 物理雙月刊, 28, 2, 472-485
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44923-
dc.description.abstract隨著半導體科技不斷進步,電子元件尺寸縮小化為技術之重點與趨勢,而傳統製程在進入奈米領域後面對了更多挑戰。在尋找解決方法的過程中,電子束微影術由於其高解析度以及無光罩直寫之優勢,而成為世人注目之焦點。為此,必須進行高解析度、熱穩定性佳、價格低廉、多功能之電子束光阻之研究開發。本研究建構了具有週期性結構之聚三己基噻吩與聚甲基丙烯酸甲酯(P3HT:PMMA)混摻材料P3HT:PMMA 為一種新穎之可發光型電子束光阻,其具有良好之熱穩定性,應用在電子束微影術中具有良好之解析度以及應用性。並使用熱蒸鍍來製備覆蓋於P3HT:PMMA 表面之金薄膜。並利用結構之設計來調控表面電漿共振效應,進而增強P3HT:PMMA/Au 混摻材料之光學性質。本研究進行比較顯微薄膜量測系統之消光光譜量測,以及共焦距顯微鏡之平面定位掃描兩種光學量測之異同,進而探討表面電漿共振效應之性質。而由不同結構之消光曲線,得到結構之間距離越近,共振效應越強之結果。此外,利用拉曼散射光譜平面定位掃瞄,可判別週期性結構與無結構區域之間的差異性,因表面電漿效應影響使得產生的拉曼散射光譜增強約500 倍左右。另外,本研究改變旋鍍時之旋轉速度以改變P3HT:PMMA 光阻之膜厚,而
探討表面電漿共振效應中,介電物質之厚度對光學性質之影響。結果為發現厚度增加,其消光光譜峰值產生紅移現象。除此之外,本研究提供FDTD 理論計算之結果,驗證與實驗量測之結果互相匹配。
zh_TW
dc.description.abstractTraditional semiconductor fabrication processes have faced enormous challenging when the electronic devices become nanoscaled. Because of the high resolution and mask-free fabrication, E-beam lithography has become one of the most
popular in next generation fabrications. Therefore, the research of high resolution, thermal stable, low cost and muti-function e-beam resist are necessary. This research have fabricated poly-(3- hexylthiophene), polymethylmethacrylate (P3HT:PMMA) hybrid film with periodic structure which is a photoluminence e-beam resist with good thermal stability and high resolution. After thermal evaporate a gold film to cover the surface, we can modulating the surface plasmon resonance of periodic structure to enhance the optical properties of P3HT:PMMA/Au hybrid materials.
We compared the difference between extinction measurement and confocal mapping to discuss the properties of surface plasmon resonance. The resonance effect is increased with increasing hole diameter. The difference between patterned and non-patterned area could identified easily by Raman mapping images, moreover, the intensity of Raman spectra of patterned P3HT:PMMA/Au film has been increased about 500 times compared with P3HT:PMMA film.
In addition, we alter the spin speed of spin coater to modulate the thickness of P3HT:PMMA and discuss the influence on optical properties. The peak of extinction
spectra is red shifted with increasing the thickness of P3HT:PMMA. Our experimental data are consistent with theoretical FDTD calculation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:58:26Z (GMT). No. of bitstreams: 1
ntu-99-R96527047-1.pdf: 12831237 bytes, checksum: 7810018382088e80119a5e1c3107e8bc (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要 1
Abstract 2
目錄 3
圖目錄 5
表目錄 10
第一章 文獻回顧 11
1.1 前言 11
1.2 表面電漿的基本原理 12
1.2.1 金屬材料與電磁波的基本原理 12
1.2.2 金屬表面電漿共振的性質與機制 14
1.2.3 局部表面電漿共振的性質與機制 17
1.3表面電漿共振效應之研究 19
1.3.1 近場光學顯微鏡對表面電漿之研究 19
1.3.2 表面電漿增強光學性質之研究 21
1.3.3 表面電漿增強拉曼散射之研究 23
1.4表面電漿增強發光型電子束光阻光學性質之研究 26
1.5 研究動機 29
第二章 實驗流程和步驟 30
2.1 實驗藥品 30
2.2 實驗儀器 31
2.3 可發光型電子束光阻性質 32
2.3.1 發光材料-P3HT 32
2.3.2 電子束光阻-PMMA 33
2.4 P3HT:PMMA/Au混摻薄膜的製備 33
2.4.1 P3HT:PMMA光阻的溶液配製 33
2.4.2 清洗矽晶片基板 34
2.4.3 旋鍍P3HT:PMMA光阻塗層 34
2.4.4 電子束微影術的曝光及顯影 34
2.4.5 熱蒸鍍金屬薄膜 35
2.5 P3HT:PMMA/Au混摻薄膜的光學量測 35
2.5.1 顯微測量膜厚系統 36
2.5.2共焦距顯微鏡 38
2.5.3 拉曼散射光譜儀 39
第三章 結果與討論 42
3.1 可發光型電子束光阻P3HT:PMMA之基本性質量測 42
3.2 P3HT:PMMA/Au混摻薄膜之性質量測 48
3.3 P3HT:PMMA/Au光學量測之討論 49
3.4 介電材料厚度對性質之影響 58
3.4.1 P3HT:PMMA薄膜厚度對解析度之影響 58
3.4.2 P3HT:PMMA薄膜厚度對光學性質之影響 61
3.5 模擬數據之討論 72
第四章 結論 76
第五章 建議 77
參考文獻 78
dc.language.isozh-TW
dc.subject聚甲基丙烯酸甲酯zh_TW
dc.subject表面電漿共振zh_TW
dc.subject拉曼散射光譜zh_TW
dc.subject電子束微影術zh_TW
dc.subject聚三己基噻zh_TW
dc.subject吩zh_TW
dc.subjectSurface plasmon resonanceen
dc.subjectpolymethylmethacrylateen
dc.subjectpoly-(3- hexylthiophene)en
dc.subjectE-beam lithographyen
dc.subjectRaman scattering spectrumen
dc.title調控金奈米週期性結構之表面電漿共振效應以增強聚三己基噻吩與聚甲基丙烯酸甲酯混摻材料光學性質之研究zh_TW
dc.titleModulating Surface Plasmon Resonance of Periodic Gold Structure to Enhance Optical Properties of P3HT:PMMA Thin Filmen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee薛承輝,蔡豐羽,李佳翰
dc.subject.keyword表面電漿共振,拉曼散射光譜,電子束微影術,聚三己基噻,吩,聚甲基丙烯酸甲酯,zh_TW
dc.subject.keywordSurface plasmon resonance,Raman scattering spectrum,E-beam lithography,poly-(3- hexylthiophene),polymethylmethacrylate,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2010-05-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
12.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved