Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44922
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉
dc.contributor.authorYu-Fong Huangen
dc.contributor.author黃于峯zh_TW
dc.date.accessioned2021-06-15T03:58:25Z-
dc.date.available2010-06-01
dc.date.copyright2010-06-01
dc.date.issued2010
dc.date.submitted2010-05-20
dc.identifier.citationAntal, M.J., Allen, S.G., Schulman, D., Xu, X.D., and Divilio, R.J., “Biomass gasification in supercritical water,” Ind. Eng. Chem. Res., 39, 4040-4053 (2000).
Afridi, H.I., Kazi, T.G., Jamali, M.K., Kazi, G.H., Arain, M.B., Jalbani, N., and Shar, G.Q., “Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods,” Spectr. Lett., 39, 203-214 (2006).
Banyasz, J.L., Li, S., Lyons-Hart, J.L., and Shafer, K.H., “Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution,” J. Anal. Appl. Pyrol., 57, 223-248 (2001).
Bilali, L., Benchanaa, M., El harfi, K., Mokhlisse, A., and Outzourhit, A., “A detailed study of the microwave pyrolysis of the Moroccan (Youssoufia) rock phosphate,” J. Anal. Appl. Pyrolysis, 73, 1-15 (2005).
Bradbury, A.G.W., Sakai, Y., and Shafizadeh, F., “A kinetic model for pyrolysis of cellulose,” J. Appl. Polym. Sci., 23, 3271-3280 (1979).
Baxter, L.L., “The release of iron during coal combustion,” Sandia report SAND95-8234PUC-1409, Sandia National Laboratories, Livermore, CA 94551, (1995).
Bridgeman, T.G., Darvell, L.I., Jones, J.M., Williams, P.T., Fahmi, R., Bridgwater, A.V., Barraclough, T., Shield, I., Yates, N., Thain, S.C., and Donnison, I.S., “Influence of particle size on the analytical and chemical properties of two energy crops,” Fuel, 86, 60-72 (2007).
Bridgwater, A.V., “The technical and economic feasibility of biomass gasification for power generation,” Fuel, 74, 631-653 (1995).
Bridgwater, A.V., Meier, D., and Radlein, D., “An overview of fast pyrolysis of biomass,” Org. Geochem., 30, 1479-1493 (1999).
Bridgwater, A.V., “Renewable fuels and chemicals by thermal processing of biomass,” Chem. Eng. J., 91, 87-102 (2003).
Bridgwater, A.V., “Biomass fast pyrolysis,” Therm. Sci., 8, 21-49 (2004).
Bridgwater, T., “Biomass for energy,” J. Sci. Food Agric., 86, 1755-1768 (2006).
Chang, C.Y., Shie, J.L., Lin, J.P., Wu, C.H., Lee, D.J., and Chang, C.F., “Major products obtained from the pyrolysis of oil sludge,” Energy Fuels, 14, 1176-1183 (2000).
Chen, C.L., Lo, S.L., Kuan, W.H., and Hsieh, C.H., “Stabilization of copper-contaminated sludge using the microwave sintering,” J. Hazard. Mater., 168, 857-861 (2009).
Chen, C.M., Chen, M., Leu, F.C., Hsu, S.Y., Wang, S.C., Shi, S.C., and Chen, C.F., “Purification of multi-walled carbon nanotubes by microwave digestion method,” Diam. Relat. Mat., 13, 1182-1186 (2004).
Chen, G., Andries, J., Spliethoff, H., and Leung, D.Y.C., “Experimental investigation of biomass waste (rice straw, cotton stalk, and pine sawdust) pyrolysis characteristics,” Energy Sources, 25, 331–337 (2003).
de la Hoz, A., Diaz-Ortiz, A., and Moreno, A., “Microwaves in organic synthesis. Thermal and non-thermal microwave effects,” Chem. Soc. Rev., 34, 164-178 (2005).
Demirbas, A. and Arin, G., “An overview of biomass pyrolysis,” Energy Sources, 24, 471-482 (2002).
Demirbas, A., “Pyrolysis of ground beech wood in irregular heating rate conditions,” J. Anal. Appl. Pyrolysis, 73, 39-43 (2005).
Devi, L., Ptasinski, K.J., Janssen, F.J.J.G., “A review of the primary measures for tar elimination in biomass gasification processes,” Biomass Bioenergy, 24, 125-140 (2003).
Di Blasi, C., “Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels,” J. Anal. Appl. Pyrolysis, 47, 43-64 (1998).
Diamantopoulou, P. and Voudouris, K., “Optimization of water resources management using SWOT analysis: the case of Zakynthos Island, Ionian Sea, Greece,” Environ. Geol., 54, 197-211 (2008).
Dominguez, A., Menendez, J.A., Inguanzo, M., Bernad, P.L., and Pis, J.J., “Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges,” J. Chromatogr. A, 1012, 193-206 (2003).
Dominguez, A., Menendez, J.A., Inguanzo, M., and Pis, J.J., “Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge,” Fuel Process. Technol., 86, 1007-1020 (2005).
Dominguez, A., Menendez, J.A., Inguanzo, M., and Pis, J.J., “Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating,” Bioresour. Technol., 97, 1185-1193 (2006).
Dominguez, A., Menendez, J.A., Fernandez, Y., and Pis, J.J, “Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls,” Energy Fuels, 21, 373-378 (2007).
El Harfi, K., Mokhlisse, A., Chanaa, M.B., and Outzourhit, A., “Pyrolysis of the moroccan (tarfaya) oil shales under microwave irradiation,” Fuel, 79, 733-742 (2000).
Esteve-Turrillas, F.A., Aman, C.S., Pastor, A., and de la Guardia, A., “Microwave-assisted extraction of pyrethroid insecticides from soil,” Anal. Chim. Acta, 522, 73-78 (2004).
Florin, N.H. and Harris, A.T., “Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents,” Chem. Eng. Sci., 63, 287-316 (2008).
Garcia-Perez, M., Chaala, A., Pakdel, H., Kretschmer, D., and Roy, C., “Vacuum pyrolysis of softwood and hardwood biomass - Comparison between product yields and bio-oil properties,” J. Anal. Appl. Pyrol., 78, 104-116 (2007).
Guo, J. and Lua, A.C., “Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation,” Carbon, 38, 1985-1993 (2000).
Harrison, D.P., “Sorption-enhanced hydrogen production: a review,” Ind. Eng. Chem. Res., 47, 6486-6501 (2008).
Haykiri-Acma, H., “The role of particle size in the non-isothermal pyrolysis of hazelnut shell,” J. Anal. Appl. Pyrol., 75, 211-216 (2006).
Hsieh, C.H., Lo, S.L., Hu, C.Y., Shih, K., Kuan, W.H., and Chen, C.L., “Thermal detoxification of hazardous metal sludge by applied electromagnetic energy,” Chemosphere, 71, 1693-1700 (2008).
Hu, G. and Huang, H., “Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent,” Biomass Bioenergy, 33, 899-906 (2009).
Imperial College Centre for Energy Policy and Technology, Assessment of technological options to address climate change. A Report to the Prime Minister’s Strategy Unit (2002).
International Agency for Research on Cancer, IARC Monographs - Classifications, website: http://www.iarc.fr/en/about/index.php
Jakab, E., Varhegyi, G., and Faix, O., “Thermal decomposition of polypropylene in the presence of wood-derived materials,” J. Anal. Appl. Pyrolysis, 56, 273-285 (2000).
Jenkins, B.M., Baxter, L.L., Miles Jr., T.R., and Miles, T.R., “Combustion properties of biomass,” Fuel Process. Technol., 54, 17-46 (1998).
Jones, D.A., Lelyveld, T.P., Mavrofidis, S.D., Kingman S.W., and Miles N.J., “Microwave heating applications in environmental engineering - a review,” Resour. Conserv. Recycl., 34, 75-90 (2002).
Kappe, C.O., “Controlled microwave heating in modern organic synthesis,” Angew. Chem.-Int. Edit., 43, 6250-6284 (2004).
Koppatz, S., Pfeifer, C., Rauch, R,, Hofbauer, H., Marquard-Moellenstedt, T., and Specht, M., “H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input,” Fuel Process. Technol., 90, 914-921 (2009).
Kudo, J. and Yoshida, E., “On the decomposition process of wood constituents in the course of carbonization. I.: The decomposition of carbohydrate and lignin in MIZUNARA (Quercus crispla BLUME),” J. Jap. Wood Res. Soc., 3, 125-127 (1957).
Laurendeau, N.M., “Heterogeneous kinetics of coal char gasification and combustion,” Prog. Energy Combust. Sci., 4, 221-270 (1978).
Lee, S., Yoo, S.K., Lee, J., and Park, J.W., “Hydrogen-rich fuel gas production from refuse plastic fuel pyrolysis and steam gasification,” J. Mater. Cycles Waste Manag., 11, 191-196 (2009).
Lei, H.W., Ren, S.J., and Julson, J., “The effects of reaction temperature and time and particle size of corn stover on microwave pyrolysis,” Energy Fuels, 23, 3254-3261 (2009).
Li, X., Matuschek, G., Herrera, M., Wang, H., and Kettrup, A., “A study on combustion of Chinese coals by TA/MS,” J. Anal. Appl. Pyrolysis, 67, 393-406 (2003).
Liu, Z.G., Zhang, F.S., and Wu, J.Z., “Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment,” Fuel, 89, 510-514 (2010).
Lucchesi, M.E., Chemat, F., and Smadja, J., “Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation,” J. Chromatogr. A, 1043, 323-327 (2004).
Ludlow-Palafox, C. and Chase, H.A., “Microwave-induced pyrolysis of plastic wastes,” Ind. Eng. Chem. Res. , 40, 4749-4756 (2001).
McCarthy, J. and Islam, A., Lignin chemistry, technology, and utilization: a brief history, in Lignin: Historical, Biological and Materials Perspectives, Glasser, W.G., Northey, R.A., and Schultz, T.P., Eds., ACS Symposium Series 742, American Chemical Society, Washington, DC, pp 2-100 (2000).
McKendry, P., “Energy production from biomass (part 2): conversion technologies,” Bioresour. Technol., 83, 47-54 (2002).
Menendez, J.A., Inguanzo, M., and Pis, J.J., “Microwave-induced pyrolysis of sewage sludge,” Water Res., 36, 3261-3264 (2002).
Menendez, J.A., Dominguez, A., Inguanzo, M., and Pis, J.J. “Microwave pyrolysis of sewage sludge: analysis of the gas fraction,” J. Anal. Appl. Pyrolysis, 71, 657-667 (2004).
Miles, T.R., Miles, Jr., T.R., Baxter, L.L., Bryers, R.W., Jenkins, B.M., Oden, L.L., “Alkali deposits found in biomass power plants: a preliminary investigation of their extent and nature,” National Renewable Energy Laboratory, Golden, CO, (1995).
Miller, M.G., “Environmental Metabolomics: A SWOT analysis (strengths, weaknesses, opportunities, and threats),” J. Proteome Res., 6, 540-545 (2007).
Mingos, D.M.P. and Baghurst D.R., “Applications of microwave dielectric heating effects to synthetic problems in chemistry,” Chem. Soc. Rev., 20, 1-47 (1991).
Miura, M., Kaga, H., Yoshida, T., and Ando, K., “Microwave pyrolysis of cellulosic materials for the production of anhydrosugars,” J. Wood Sci., 47, 502-506 (2001).
Miura, M., Kaga, H., Sakurai, A., Kakuchi, T., and Takahashi, K., “Rapid pyrolysis of wood block by microwave heating,” J. Anal. Appl. Pyrolysis, 71, 187-199 (2004).
Mohan, D., Pittman, C.U., and Steele, P.H., “Pyrolysis of wood/biomass for bio-oil: a critical review,” Energy Fuels, 20, 848-889 (2006).
Monsef-Mirzai, P., Ravindran, M., McWhinnie, W.R., and Burchill, P., “Rapid microwave pyrolysis of coal - methodology and examination of the residual and volatile phases,” Fuel, 74, 20-27 (1995).
Murwanashyaka, J.N., Pakdel, H., and Roy, C., “Step-wise and one-step vacuum pyrolysis of birch-derived biomass to monitor the evolution of phenols,” J. Anal. Appl. Pyrol., 60, 219-231 (2001).
Nobrega, J.A., Nascentes, C.C., Labuto Araujo, G.C., Araujo Nogueira, A.R., and Pirola, C., “High-throughput microwave-assisted digestion and extraction procedures for agricultural materials,” Commun. Soil Sci. Plant Anal., 38, 2333-2345 (2007).
Osaki, T. and Moria, T., “Kinetics of the reverse-Boudouard reaction over supported nickel catalysts,” React. Kinet. Catal. Lett., 89, 333-339 (2006).
Osepchuk, J.M., “A history of microwave heating applications,” IEEE Trans. Microw. Theory Tech., 32, 1200-1224 (1984).
Pfeifer, C., Puchner, B., and Hofbauer, H., “In-situ CO2-absorption in a dual fluidized bed biomass steam gasifier to produce a hydrogen rich syngas,” Int. J. Chem. React. Eng., 5, (2007).
Quek, A. and Balasubramanian, R., “Low-energy and chemical-free activation of pyrolytic tire char and its adsorption characteristics,” J. Air Waste Manage. Assoc., 59, 747-756 (2009).
Reynolds, J.G. and Burnham, A.K., “Pyrolysis decomposition kinetics of cellulose-based materials by constant heating rate micropyrolysis,” Energy Fuels, 11, 88-97 (1997).
Rowell, R.M., The Chemistry of Solid Wood, American Chemical Society, Washington, DC (1984).
Shie, J.L., Tsou, F.J., Lin, K.L., and Chang, C.Y., “Bioenergy and products from thermal pyrolysis of rice straw using plasma torch,” Bioresour. Technol., 101, 761-768 (2010).
Shin, E.J., Lauve, A., Carey, M., Bukovsky, E., Ranville, J.F., Evans, R.J., and Herring, A.M., “The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains,” Biomass Bioenergy, 32, 267-276 (2008).
Soltes, E.J. and Elder, T.J., Pyrolysis, in Organic Chemicals from Biomass, Goldstein, I.S., Ed., CRC Press, Boca Raton, FL, pp 63-95 (1981).
Srivastava, P.K., Kulshreshtha, K., Mohanty, C.S., Pushpangadan, P., and Singh, A., “Stakeholder-based SWOT analysis for successful municipal solid waste management in Lucknow, India,” Waste Manage., 25, 531-537 (2005).
Sutton, D., Kelleher, B., Ross, J.R.H., “Review of literature on catalysts for biomass gasification,” Fuel Process. Technol., 73, 155-173 (2001).
Tang, W.K. and Neill, W.K., “Effect of flame retardants on pyrolysis + combustion of alpha-cellulose,” J. Polym. Sci., Part C: Polym. Symp., 6, 65-81 (1964).
Terrados, J., Almonacid, G., and Hontoria, L., “Regional energy planning through SWOT analysis and strategic planning tools. Impact on renewables development,” Renew. Sust. Energ. Rev., 11, 1275-1287 (2007).
Tian, Y.J., Hu, Z., Yang, Y., Wang, X.Z., Chen, X., Xu, H., Wu, Q., Ji, W.J., and Chen, Y., “In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor,” J. Am. Chem. Soc., 126, 1180-1183 (2004).
Tian, Z.Q., Jiang, S.P., Liang, Y.M., and Shen, P.K., “Synthesis and characterization of platinum catalysts on muldwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications,” J. Phys. Chem. B, 110, 5343-5350 (2006).
Thostenson, E.T. and Chou, T.W., “Microwave processing: fundamentals and applications,” Compos. Pt. A-Appl. Sci. Manuf., 30, 1055-1071 (1999).
Thuery, J., Microwave: industrial, scientific and medical applications, Artech House Inc., Norwood, MA (1992).
Tijmensen, M.J.A., Faaij, A.P.C., Hamelinck, C.N., and van Hardeveld, M.R.M., “Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification,” Biomass Bioenergy, 23, 129-152 (2002).
Tsai, W.T., Mi, H.H., Chang, Y.M., Yang, S.Y., and Chang, J.H., “Polycyclic aromatic hydrocarbons (PAHs) in bio-crudes from induction-heating pyrolysis of biomass wastes,” Bioresour. Technol., 98, 1133-1137 (2007).
Tu, W.K., Shie, J.L., Chang, C.Y., Chang, C.F., Lin, C.F., Yang, S.Y., Kuo, J.T., Shaw, D.G., You, Y.D., and Lee, D.J., “Products and bioenergy from the pyrolysis of rice straw via radio frequency plasma and its kinetics,” Bioresour. Technol., 100, 2052-2061 (2009).
US DOE and EPA, Carbon dioxide emissions from the generation of electric power in the United States (2000).
Varhegyi, G., Jakab, E., and Antal M.J., “Is the Broido-Shafizadeh model for cellulose pyrolysis true,” Energy Fuels, 8, 1345-1352 (1994).
Venkatesh, M.S. and Raghavan, G.S.V., “An overview of microwave processing and dielectric properties of agri-food materials,” Biosyst. Eng., 88, 1-18 (2004).
Wang, J. and Xi, Y.S., “Drying characteristics and drying quality of carrot using a two-stage microwave process,” J. Food Eng., 68, 505-511 (2005).
Wang, Y.D., Huang, Y., and Roskilly, A.P., “Trigeneration integrated with absorption enhanced reforming of lignite and biomass,” Fuel, 88, 2004-2010 (2009).
Weihrich, H., “The TOWS matrix—A tool for situational analysis,” Long Range Plann., 15, 54-66 (1982).
Xu, Y.Y., Zhang, M., Mujumdar, A.S., Zhou, L.Q., and Sun, J.C., “Studies on hot air and microwave vacuum drying of wild cabbage,” Dry. Technol., 22, 2201-2209 (2004).
Yagmur, E., Ozmak, M., and Aktas, Z., “A novel method for production of activated carbon from waste tea by chemical activation with microwave energy,” Fuel, 87, 3278-3285 (2008).
Yoshida, T., Oshima, Y., and Matsumura, Y., “Gasification of biomass model compounds and real biomass in supercritical water,” Biomass Bioenergy, 26, 71-78 (2004).
Yusa, V., Pardo, O., Pastor, A., and de la Guardia, M., “Optimization of a microwave-assisted extraction large-volume injection and gas chromatography-ion trap mass spectrometry procedure for the determination of polybrominated diphenyl ethers, polybrominated biphenyls and polychlorinated naphthalenes in sediments,” Anal. Chim. Acta, 557, 304-313 (2006).
「再生能源發展條例」(2009)。
國立臺灣大學理學院貴重儀器中心網頁資料:http://hic.ch.ntu.edu.tw/~ta/#儀器設備(2008)。
經濟部能源局,「能源政策白皮書」,臺北(2005)。
經濟部能源局,「九十七年各類發電單位成本表(燃料別)」,臺北(2009)。
經濟部能源局,「經濟部能源局九十七年年報」,臺北(2009)。
經濟部能源局網頁資料:http://www.moeaboe.gov.tw(2010)。
臺灣電力公司網頁資料:http://www.taipower.com.tw(2010)。
陳國清,「廢輪胎在氮氣中熱裂解主要產物分析」,國立臺灣大學環境工程學研究所碩士論文(1996)。
陳嘉明,「生物質木材膠合劑」,國立編譯館,臺北(2000)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44922-
dc.description.abstract本研究係應用單向(聚焦)式的微波照射方式,誘使生質廢棄物進行熱裂解反應,以獲致具有高熱值或經濟價值的產物。在本研究中主要是以稻稈作為研究對象,並輔以其他常見生質廢棄物之實驗結果進行比較。微波功率的增加可提升熱裂解反應之升溫速率及最高溫度,進而有更高的原物料減量比。因此藉由微波功率的增加,縮短微波照射時間是可預期的。此外,原物料的顆粒大小亦會影響反應效果,推論是較小的原物料增加了容積密度及顆粒間接觸面積,因此提升原物料內部的熱傳效果,使得整體的熱裂解反應能更為快速。
產物分析結果方面,藉由固相產物(焦炭)的比表面積分析及界達電位分析結果,可預估固相產物具有應用在水處理及廢水處理中陽離子吸附去除之價值。銅吸附實驗結果顯示,即使是在pH 5的酸性條件下,固相產物對於銅離子的吸附去除率仍可達到90 %以上。氣相產物(燃料氣)之主要成份為H2、CO2、CO、CH4,其H2含量(50.67 vol.%)高於傳統熱裂解法的25 vol.%,顯示出微波誘發裂解生質能源技術具有可生產富氫燃料氣之潛力。依據氣相產物定量分析結果進行化學計量分析,可歸納出一近乎平衡的化學反應式。液相產物(焦油)中主要乃包括有三種類別的化合物:(1) 長鏈的飽和脂肪族化合物;(2) 極性化合物,如酚及其衍生物;(3) 低環數的多環芳香族化合物。由於液相產物中多環芳香族化合物的含量不高,且多為低環數者,故應有較低的毒性。氣相、固相、液相產物之重量百分比各為54.31 wt.%、28.07 wt.%、17.62 wt.%,故超過一半的稻稈樣品經由微波誘發裂解後可轉化為氣相產物,此部分亦優於傳統熱裂解方法。
本研究並針對稻稈、稻殼、玉米葉、咖啡殼、竹葉、甘蔗渣與甘蔗皮七種生質廢棄物,以及半纖維素、纖維素、木質素進行熱分析-質譜實驗。研究結果顯示氣相產物的主要生成乃發生於生質廢棄物重量損失最快之時,惟獨H2在較高溫(667∼749 °C)時亦會出現一明顯的生成情形。各生質廢棄物的H2半定量分析結果,其中以稻殼及玉米葉的產量較少,而以咖啡殼為最多。本研究將生質廢棄物的熱裂解視為擬一級反應,並應用Arrhenius方程式進行化學動力分析。各生質廢棄物的活化能及頻率因子差異頗大,並呈現出反比的趨勢,可能主要歸因於其成份比例的差異。一般生質廢棄物皆含有纖維素、半纖維素及其他物質,由於其含量比例的不同,使得有這般差異。然而此差異情形在反應速率常數並沒有出現,各生質廢棄物的差異最多僅在一個級數以內,進而造成頻率因子與有效碰撞機率二者之間呈現出此消彼長的情形。
微波誘發裂解稻稈的氣相產物可在300 W的微波功率下有效生成,且最大反應溫度可在10 min的反應時間內達到。在此條件下所得到的氣相產物總熱值約佔所需輸入能量的29.34 %,若加上固相及液相產物的熱值則可增加為57 %左右。因此,在微波誘發裂解反應中,大約有43 %的輸入能量應主要是使用於微波的產生,少部份則可能為實驗過程中因反射的微波功率所造成之額外能量消耗。微波誘發裂解之技術可行性係藉由SWOT分析進行評估。其可行性首重於內部本身的技術成熟度、效能、產物的質與量等因素,以及外部環境的政策、經濟、能源等因子。微波誘發裂解技術之推廣應從掌握並強化技術的產能、效能開始以提高競爭力,並尋求、開發適用的市場以增加技術能見度與市場比重。依據目前國內外之能源環境與政策走向,再生能源之需求理應會持續增加。然而技術種類眾多,強化微波誘發裂解技術之優勢並減低劣勢相信是使其脫穎而出的不二法門。
zh_TW
dc.description.abstractThis study utilized the microwave irradiation of single (focused) mode to induce the pyrolysis of biomass waste. Thus products with high heating values or economic worth can be obtained. In this study, rice straw was chosen to be the primary researching target. Some other common biomass waste was also researched for the purpose of results comparison. The increase of microwave power helped to promote the heating rate and maximal temperature of pyrolysis, so higher mass reduction ratio of feedstock can be achieved. Thus by applying higher microwave power, it is expectable that the irradiation time of microwave can be shortened. Besides, particle size of feedstock affected the reaction performance as well. This might imply that the smaller feedstock had the higher bulk density and the more contact area between particles. Therefore, the heat transfer inside the feedstock was enhanced, and the entire pyrolysis reaction turned to be more rapid.
By the results of specific surface area analysis and zeta potential analysis, it is expectable that the solid product (char) can be applied in the cation adsorption in the water and wastewater treatment. The result of copper adsorption experiment shows that, even under the acidic condition (pH 5), the adsorption removal rate of copper can be over 90%. The primary components of gas product (fuel gas) were hydrogen, carbon dioxide, carbon monoxide, and methane. The hydrogen content (50.67 vol.%) of the gas product was higher than of traditional pyrolysis (25 vol.%). Thus the technology of microwave-induced pyrolysis shall have the high potential to produce hydrogen-rich fuel gas. According to the result of quantitative analysis of gas product, stoichiometric analysis was also executed to conclude to a nearly balanced chemical equation. There were mainly three categories of compounds in the liquid product (tar): (1) long-chained aliphatic compounds; (2) polar compounds (e.g., phenol and its derivatives); (3) low-ringed polycyclic aromatic hydrocarbons (PAHs). The liquid product shall be low poisonous due to the low content of PAHs and their low ring numbers. The gravimetric percentages of gas, solid, and liquid product were 54.31 wt.%, 28.07 wt.%, and 17.62 wt.%, respectively. Over half of rice straw sample can be converted into gas product. This result is also better than the traditional manner of pyrolysis.
This study also researched relevant characteristics of rice straw, rice husks, corn leaves, coffee hulls, bamboo leaves, sugarcane bagasse, sugarcane peel, hemicellulose, cellulose, and lignin by means of thermal analysis-mass spectrometry (TA-MS) experiments. The result showed that the primary production of gas product occurred during the highest mass-loss rate of biomass waste. However, there was also an obvious production of hydrogen at higher temperatures (667-749 °C). From the semi-quantitative analysis of hydrogen content, both rice husks and bamboo leaves had lower hydrogen production, and coffee hulls had the most. The pyrolysis of biomass waste was assumed to be pseudo first-order reaction, and the Arrhenius equation was applied to the analysis of chemical kinetics. The activation energy and frequency factor of biomass waste differed a lot from each other, and showed an inverse proportion. This might be due to the difference among the contents of biomass waste. Besides, the reaction rate constants of biomass waste did not differ much, which was about one order at the most. This might be the reason why there was an inverse relationship between the frequency factor and the effective collision probability.
The gas product of microwave-induced pyrolysis of rice straw can be effectively generated under microwave power of 300 W, and the maximal reaction temperature can be reached in 10 minutes. Under this condition, the total heating value of the gas product was about 29.34 % of input energy needed. This percentage can be increased to about 57 % when adding heating values of the solid and liquid product. Therefore, in the microwave-induced pyrolysis, there was about 43 % of input energy that might be used for microwaves generation or extra energy consumption due to reflectional microwave power.
The technology feasibility of microwave-induced pyrolysis was assessed by SWOT analysis. The result shows that inner factors of technology maturity, performance, quality and quantity of products, and outer factors such as government policy, economy and energy, are most important for the feasibility. The promotion of microwave-induced pyrolysis should start with enhancement of technology productivity and performance to raise its competitiveness, and try to expand suitable market to increase its visibility and market proportion. According to the international and domestic energy situation and policy direction so far, the demand of renewable energy shall keep increasing. However, there are so many technologies relevant to renewable energy. It is believed that to maximize advantages and to minimize disadvantages of microwave-induced pyrolysis are best policies to make it more favorable.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:58:25Z (GMT). No. of bitstreams: 1
ntu-99-D94541001-1.pdf: 3354455 bytes, checksum: d20a517d0adef94a200e8c44921f4fd6 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
中文摘要 iii
英文摘要 v
目 錄 ix
表目錄 xii
圖目錄 xiv
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容 3
第二章 文獻回顧 5
2.1 生質的來源及組成 5
2.1.1 生質的來源 5
2.1.2 生質的組成 5
2.1.3 纖維素 10
2.1.4 半纖維素 10
2.1.5 木質素 11
2.2 熱處理技術 12
2.2.1 燃燒技術 12
2.2.2 氣化技術 14
2.2.3 液化技術 14
2.3 熱裂解技術 15
2.3.1 熱裂解反應 15
2.3.2 熱裂解在生質之應用 16
2.4 微波加熱反應 19
2.5 微波誘發裂解 23
第三章 材料與方法 29
3.1 整體研究架構 29
3.2 研究設備 29
3.3 實驗流程 34
3.4 生質成份分析 38
3.4.1 基本性質分析 38
3.4.2 熱分析-質譜實驗 38
3.5 反應產物分析 39
3.5.1 固相產物分析 39
3.5.2 氣相產物分析 40
3.5.3 液相產物分析 41
第四章 結果與討論 45
4.1 稻稈之基本性質 45
4.2 稻稈之熱分析 46
4.2.1 稻稈之熱重量分析 46
4.2.2 稻稈之熱分析-質譜實驗 48
4.3 微波功率對於反應溫度之影響 50
4.3.1 不同微波功率之升溫情形 50
4.3.2 微波功率與反應溫度之關係 54
4.4 微波功率對於稻稈減量之影響 56
4.5 稻稈顆粒大小對於反應之影響 57
4.6 固相產物之特性分析 59
4.6.1 熱值分析結果 59
4.6.2 元素分析結果 60
4.6.3 礦物質分析結果 61
4.6.4 比表面積分析結果 62
4.6.5 界達電位分析結果 63
4.6.6 銅吸附分析結果 64
4.7 氣相產物之特性分析 68
4.7.1 氣相產物之定量分析結果 68
4.7.2 氣相產物之質量平衡 71
4.7.3 氣相產物之能量評估 72
4.7.4 氣相產物之化學計量分析 73
4.7.5 氣相化學反應 74
4.8 液相產物之成份分析 77
4.9 三相產物之相對比例 81
4.10 生質廢棄物之熱分析-質譜實驗 82
4.11 生質熱裂解之化學動力分析 90
4.12 能源效益評估 95
4.13 操作問題分析 101
4.14 技術可行性評估 103
第五章 結論與建議 106
5.1 結論 106
5.2 建議 109
參考文獻 110
附錄A GC/TCD檢量線
附錄B 熱分析-質譜實驗結果
附錄C TA-MS離子電流積分結果
附錄D 熱重量分析及化學動力分析結果
dc.language.isozh-TW
dc.title微波誘發裂解生質廢棄物之研究zh_TW
dc.titleMicrowave-Induced Pyrolysis of Biomass Wasteen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee張慶源,馬鴻文,官文惠,闕蓓德,謝哲隆
dc.subject.keyword微波誘發裂解,生質廢棄物,焦炭,焦油,燃料氣,氫氣,zh_TW
dc.subject.keywordmicrowave-induced pyrolysis,biomass waste,char,tar,fuel gas,hydrogen,en
dc.relation.page166
dc.rights.note有償授權
dc.date.accepted2010-05-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved