Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44900
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑
dc.contributor.authorCheng-Lun Chang-Chienen
dc.contributor.author張簡政倫zh_TW
dc.date.accessioned2021-06-15T03:57:46Z-
dc.date.available2010-06-20
dc.date.copyright2010-06-20
dc.date.issued2010
dc.date.submitted2010-06-07
dc.identifier.citation1. Iijima S. Helical Microtubules of Graphitic Carbon. Nature. 1991,354:36
2. Osmen M.A., Srivastava D. Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology. 2001,12:21-24
3. Chico L., Benedict L.X., Louie S.G., et al. Quantum conductance of carbon nanotubes with defects. Phys Rev B. 1996,54:2600-2606
4. Collins P.G., Bradley V, Ishigami M., et al. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Science. 2000,287:1801-1804
5. Yakabson B.I., Brabec C.J., Bernholc. Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response. Phys. Rev. Lett. 1996,76:2511-2514
6. Peigney A., Laurent Ch., Flahaut E., et al. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon. 2001,39:507-514
7. Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Lee C., Kim S.G., Rinzler A.G., Colbert D.T., Sekseria G.E., Tom D., Fischerand. J.E., Smalley R.E. Crystalline Ropes of Metallic Carbon Nanotubes. Science. 1996,273:483-487
8. Jung M., Eun K.Y., Lee J.K., Baik Y.J., Lee K.R. Carbon nanotubes growth by HFCVD: effect of the process parameters and catalyst preparation. J. Diamond. Related Materials. 2001,10,1235-1240
9. Bonard J.M., Stora T., Salvetat J.P., et al. Purification and size-selection of carbon nanotubes. Adv. Mater. 1997,9;827-831
10. Ebbesen T.W., Ajayan P.M., Hiura H., et al. Purification of nanotubes. Nature. 1994,367:519
11. Ikazaki F., Oshima S., Uchida K., et al. Chemical purification of carbon nanotubes by use of graphite intercalation compounds. Carbon. 1994,32:1539-1542
12. Baker R.T.K. Factors Controlling the Mode by which a Catalyst Operates in the Graphite-Oxygen Reaction. Carbon. 1986,24:715-717
13. Fangy G., Levy M., Scarmozzino R., Osgood R.M., Dai Jr.H., Smalley R.E., McLane G.F. Carbon nanotube tipped atomic force microscopy for measurement of < 100 nm etch morphology on semiconductors. Appl. Phys. Lett. 1998,73:529
14. Tsang S.C., Chen Y.K., Harris P.J.F., et al. A simple chemical method of opening and filling carbon nanotubes. Nature. 1994,372:159-162
15. Dai H.J., Wang E., Lu Y., et al. Synthesis and characterization of carbide nanorods. Nature. 1995,375:769-772
16. Tans S.J., Verschueren A.R., Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature. 1998,393:49-52
17. Adrian B., Peter H., Takeshi Nakanishi, and Cees D. Logic Circuits with Carbon Nanotube Transistors. Science. 2001,294:1317-1320
18. Wagner H.D., Lourie O., Feldman Y., et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 1998,72:188
19. Ajayan P.M., Zhou O.Z. in: Dresselhaus M.S., Dresselhaus D., Ph. Avouris, ed, Carbon nanotubes, Springer, 2001.391
20. Dollin A.C., Jones K.M., Bekkeclahl T.A., Kiang C.K., Bethune D.S., Heben M.J. Storage of hydrogen in single-walled carbon nanotubes. Nature. 1997,386:377-379
21. Huang Y.C., Huang Y.Y. Biomaterials and Strategies for Nerve Regeneration. Artif. Organs.2006,30(7): 514
22. Schmalenberg K.E., Uhrich K.E. Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration. Biomaterials. 2005,26:1423-1430
23. Jianming Li, Riyi Shi. Fabrication of patterned multi-walled poly-l-lactic acid conduits for nerve regeneration. J. Neuroscience Methods. 2007,165:257
24. Hsu S.H., Lu P.S., Ni H.C., Su C.H. Fabrication and evaluation of microgrooved polymers as peripheral nerve conduits. Biomed Microdevices. 2007,9:665-674
25. Gregory E Rutkowski, Cheryl A Miller, Srdija Jeftinija, Surya K Mallapragada. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. J. Neural Eng. 2004,1:151
26. Rutishauser U. Adhesion molecules of the nervous system. Curr Opin Neurobiol. 1993,3:709-715
27. Huang Y.C., Huang Y.Y., Huang C.C., Liu H.C. Manufacture of porous polymer nerve conduits through a lyophilizing and wire-heating process. Biomed. Mater. Res. Part B:Appl. Biomater. 74B. 2005:659-664
28. Ao Q., Wang A.J., Cao W.L., et al. Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterization in vitro. J. Biomed. Mater. Res. 77A. 2006:11-18
29. Keeley R.D., Nguyen K.D., Stephanides M.J., Phdilla J., Rosen J.M. The artificial nerve graft:a comparison of blended elastomer-hydrogel with polyglycolic acid conduits. J. Reconstr. Microsurg. 1991,7:93
30. Mackinnon S.E., Dellon A.L. Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast. Reconstr. Surg. 1990,85:419
31. Chang C.J., Hsu S.H. The effects of low-intensity ultrasound on peripheral nerve regeneration in poly(DL-lactic acid-coglycolic acid) conduits seeded with Schwann cells. Ultrasound Med Biol. 2004,30:1079
32. Bini T.B., Gao S., Xu X., Wang S., Ramakrishna S., Leong K.W. Peripheral nerve regeneration by microbraided poly (L-lactide-co-glycolide) biodegradable polymer fibers. J. Biomed. Mater. Res A. 2004,68:286
33. Yoshii S., Oka M., Shima M., Taniguchi A., Akagi M. Bridging a 30-mm nerve defect using collagen filaments. J. Biomed. Mater. Res A. 2003,67:467
34. Ahmed M.R., Venkateshwarlu U., Jayakumar R. Multilayered peptide incorporated collagen tubules for peripheral nerve repair. Biomaterials. 2004,25:2585-2594
35. Chen M.H., Chen P.R., Chen M.H., Hsieh S.T., Huang J.S., Lin F.H. An in vivo study of tricalcium phosphate and glutaraldehyde crosslinking gelatin conduits in peripheral nerve repair. J. Biomed. Mater. Res B:Appl. Biomater. 2006,77:89
36. Gianluca Ciardelli, Valeria Chiono. Materials for Peripheral Nerve Regeneration. Macromolecular Bioscience. 2006,6(1):13
37. Pierucci A., De Duek, EAR; De Oliveira, ALR. Peripheral Nerve Regeneration through Biodegradable Conduits Prepared Using Solvent Evaporation. Tissue Engineering Part A. 2008,14(5):595-606
38. Muzzarelli R.A.A., Rocchetti R. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate Polymer. 1985,5:461-472
39. 林佳玟,張曉婷,吳柏昇,林睿晢。幾丁聚醣於生醫材料用與特性;2001,生醫材料專刊,48,84-91
40. J. Mcmurry. Organuc. Chemistry. 1999,385-426
41. 王三郎,生物技術,高立圖書有限公司,台北,89年
42. 王文弘,幾丁質、幾丁聚醣在紡織工業的應用專題調查,紡織綜合所,2000
43. 陳榮輝,幾丁質、幾丁聚醣的生產製造、檢測與應用,科學發展月刊,第29卷,第10期,776-787
44. Huang Y.C., Huang C.C., Huang Y.Y., Chen K.S.. Surface modification and characterization of chitosan or PLGA membrane with laminin by chemical and oxygen plasma treatment for neural regeneration. J. Biomed. Mater. Res. 2007, 82A: 842–851
45. Lovat V., Pantarotto D., Lagostena L., Cacciari B., Grandolfo M., Righi M., Spalluto G., Prato M., Ballerini L. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 2005,5(6):1107
46. Brigitte Vigolo, et al. Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes. Science. 2000,290:1331
47. Philipe P., Brigitte V., Pascale L. Films and fibers of oriented single wall nanotubes. Carbon. 2002,40:1741
48. Konstantin G. Kornev, et al. Ribbon-to-Fiber Transformation in the Process of Spinning of Carbon-Nanotube Dispersion. Physical Review Letters. 2006, 97:188303
49. Carol L., Simon E. Moulton, Gordon G. Wallace. Carbon-Nanotube Biofibers. Adv. Mater. 2007, 19:1244
50. Joselito M. Razal, Jonathan N. Coleman, Edgar Munoz, Benjamin Lund, Yury Gogotsi, Haihui Ye, Steve Collins, Alan B. Dalton, Ray H. Baughman. Arbitrarily shaped fiber assemblies from spun carbon nanotube gel fibers. Adv. Funct. Mater. 2007, 17:2918
51. Joselito M. Razal, Kerry J. Gilmore, Gordon G. Wallace. Carbon nanotube biofiber formation in a polymer-free coagulation bath. Adv. Funct. Mater. 2008, 18:61
52. Robert A. Dubin, Gerardo C. Callegari, Joachim Kohn, Alexander V. Neimark. Carbon nanotube fibers are compatible with Mammalian cells and neurons. IEEE Transactions on NanoBioscience. 2008, 7(1):11
53. Francis J.K., Matthew H.W.T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000,21:2589-2598
54. Kas H.S. et al. Chitosan:properties, preparations and application to microparticulate systems. J Microencap. 1997, 146:689-711
55. Christine E. Schmidt, Jennie Baier Leach. NEURAL TISSUE ENGINEERING Strategies:for Repair and Regeneration. Annu. Rev. Biomed. Eng. 2003. 5:293
56. Ruben Y. Kannan, Henryk J. Salacinski, Peter E. M. Butler, Alexander M. Seifalian. MINIREVIEW:Artificial nerve conduits in peripheral-nerve repair. Biotechnol. Appl. Biochem. 2005,41:193
57. Bini. T.B., Shujun Gao., Shu Wang, S. Ramakrishna. Development of fibrous biodegradable polymer conduits for guided nerve regeneration. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE. 2005,16:367
58. Bellamkonda R.V., et al. Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy. Biomaterials. 2006,27(19):3515
59. Busch S.A., Silver J. The role of extracellular matrix in CNS regeneration. Curr. Opin. Neurobiol. 2007,1:120-127
60. Alberts B. et al., 1994, Molecular Biology of the Cell,3d ed., Garland, p.991.
61. Martin G.R., Timpl R. Laminin and other basement membrane components. Ann.Rev.Cell Biol. 1987,3:857
62. Lin Y., Taylor S., Li HP., K.A. Fernando S., Qu L.W., Wang W., Gu L.R., Zhou B. and Sun Y.P.. Advances toward bioapplications of carbon nanotubes. Journal of Materials Chemistry. 2004,14:527
63. Yang W.R., Thordarson P., Simon P. Ringer, Filip Braet. Carbon nanotubes for biological and biomedical applications. Nanotechnology. 2007,18:412001
64. 沈嘉進,改質聚乙烯醇作為直接甲醇燃料電池電解質薄膜之研究,國立台灣科技大學材料科技研究所碩士學位論文,2005
65. Deligianni, D.D., N. Katasla, D. Sotiropoulou, J.Amedee, Y.F. Missirlis, ”Effect of surface roughness of the titanium alloy Ti-6A1-4V on human bone marrow cell response and on protein adsorption”, Biomaterials, 2001, 22:1241-1251.
66. Kieswetter, K., Z. Schwartz, T.W. Hummert, D.L. Conchran, J. Simpson, D.D. Dean, B.D. Boyan, ”Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells”, J. Biomed. Mater, 1996, 32:55-63.
67. Lampin, M., Warocquier-Clerout, C. Legris, M. Degrange, M.F. Sigot-Luizard, ”Correlation between substratum roughness and wettability, cell adhesion, and cell migration”, J. Biomed. Mater .Res., 1997, 36:99-108.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44900-
dc.description.abstract周邊神經受損斷裂後,神經可藉由軸突的再生而重新連接缺口兩端的神經。組織工程上,利用神經導管作為橋接斷裂神經之間的聯繫,期許能夠有效的達成神經功能修復的目的。近年來,已有多方的研究在於利用幾丁聚醣及其他高分子材料製成之神經導管,顯示具有良好的生物相容性及生物可降解性。而奈米碳管(CNT)由於其結構特性,因此具有獨特的力學與電學性質。本研究之目的,在於利用幾丁聚醣混合奈米碳管作為製成神經導管的複合材料,期許奈米碳管可提升複合材料的機械強度及導電性質,並同時具有幾丁聚醣的生物相容性及生物可降解性。
實驗上,將奈米碳管/幾丁聚醣之複合材料經自然風乾製成薄膜,並利用流體動力聚焦及共凝集法製成纖維,於SEM下均可見到由奈米碳管所構成的奈米級結構。經由材料物理性質(機械、電學性質)測試,發現奈米碳管/幾丁聚醣薄膜之機械強度與導電度均較幾丁聚醣薄膜高,顯示加入奈米碳管可提升複合材料的機械強度與導電度。經過MTT及LDH分析測試,可得知奈米碳管/幾丁聚醣複合材料並不具細胞毒性。利用氧氣電漿表面改質技術,可將表面改質成較為親水的特性,使水接觸角降低至小於10度,而此改質過後的材料能夠更有利於接枝層粘連蛋白。此外,材料經過接枝層粘連蛋白後,確實能夠提升PC12細胞對於材料的親和性,使貼附比率增加。經由免疫螢光染色及SEM下觀察結果,可發現PC12細胞能夠順利於奈米碳管/幾丁聚醣薄膜及纖維上貼附並分化;而在纖維上的PC12細胞,其軸突更能夠沿著纖維呈現有方向性的生長,顯示此纖維具備有導引神經細胞生長方向的作用。
zh_TW
dc.description.abstractAfter peripheral nerve damage, nerve regenerates by re-connecting at both ends of the nerve gap. The tissue engineering for nerve regeneration use nerve conduit as a neural link between the nerve gap that can effectively achieved rehabilitation of neurological function. In recent years, many nerve conduits have been made by chitosan and other polymers, showing good biocompatibility and biodegradability. Due to the structure of carbon nanotube(CNT), it has unique mechanical and electrical properties. The purpose of this study is to use chitosan and carbon nanotubes mixture as composite material to manufacture a nerve conduit, wish that CNT can enhance the mechanical strength and electrical conductivity of the composite, and also have the biocompatibility and bioresolvability of chitosan.

In the experiment, the CNT/chitosan thin film can be fabricate by natural dried, and the fiber can be made by using of hydrodynamic focusing and coaggulation method. Both of them can be seen the nano-scale structure formed by carbon nanotubes from the SEM image. By the physical properties (mechanical and electrical properties) tests, it was found that the mechanical strength and electrical conductivity of CNT/chitosan films were higher than chitosan films, showing that adding CNT can enhance the mechanical strength and electrical conductivity of the composite. The MTT and LDH tests showed CNT/chitosan composite materials do not exhibit cell toxicity. By using oxygen plasma surface modification technology, surface can be modified for more hydrophilic such that water contact angle was reduced to less than 10 degrees, a significant improvement for laminin graft. Furthermore, after the laminin graft, the composite showed enhancement of the affinity of PC12 cells to the material, evidence by the increase of adhesion ratio. The immunofluorescence staining and SEM images results showed PC12 cells can successfully adhere and differentiate on the CNT/chitosan films and fibers; and the PC12 axons are more extended by following the fibers with a directional growth, indicating that these fibers can guide nerve cells to have a role in the growth direction.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:57:46Z (GMT). No. of bitstreams: 1
ntu-99-R96548047-1.pdf: 3721964 bytes, checksum: 87c4a445204aecc7bc09e50fad494938 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents謝誌.......I
摘要.....II
Abstract.....III
目錄.....V
圖表目錄.....VII
第一章 序論 1
1.1 神經系統與傷害 1
1.1-1 生理解剖結構 1
1.1-2 周邊神經系統傷害 3
1.2 神經導管 4
1.3 幾丁質/幾丁聚醣 5
1.3-1 幾丁質/幾丁聚醣的來源簡介 5
1.3-2 幾丁質/幾丁聚醣的結構 6
1.3-3 幾丁質/幾丁聚醣的應用價值 7
1.4 奈米碳管 9
1.4-1 奈米碳管的發展歷史 9
1.4-2 奈米碳管的結構型態 11
1.4-3 奈米碳管的特性 12
1.4-4 奈米碳管的純化製備 14
1.4-5 奈米碳管的應用價值 16
1.5 流體動力聚焦 20
1.6 細胞外基質 21
1.6-1 層粘連蛋白的性質 22
1.7 電漿表面處理的理論基礎 23
1.8 交流阻抗電化學分析 23
1.9 PC12與3T3細胞株 26
1.9-1 PC12細胞株 26
1.9-2 3T3細胞株 26
第二章 研究動機與目的 27
第三章 實驗材料與方法 30
3.1 實驗藥品 30
3.2 重要實驗儀器 32
3.3 實驗溶液配製 33
3.4 實驗步驟 36
3.4-1 奈米碳管的純化製備 36
3.4-2 幾丁聚醣、奈米碳管/幾丁聚醣薄膜的製備 38
3.4-3 奈米碳管/幾丁聚醣纖維的製備 38
3.4-4 材料物理性質測試 39
A. 機械性質 39
B. 電學性質 39
3.4-5 氧氣電漿表面改質 40
3.4-6 電漿表面改質影響接枝層粘連蛋白之能力 41
3.4-7 體外細胞模擬實驗 42
A. 細胞培養 42
B. 材料生物相容性測試 42
C. 接枝層粘連蛋白對細胞貼附的影響 44
D. 細胞於薄膜及纖維之生長、分化 45
3.4-8 細胞影像觀察 47
A. 免疫螢光染色 47
B. 掃描式電子顯微鏡 47
第四章 結果與討論 48
4.1 幾丁聚醣、奈米碳管/幾丁聚醣薄膜 48
4.2 奈米碳管/幾丁聚醣纖維 50
4.3 材料物理性質測試 57
4.3-1 拉伸測試 57
4.3-2 交流阻抗電化學分析測試 57
4.4 材料生物相容性測試 59
4.4 氧氣電漿表面改質 61
4.4-1 水接觸角量測 61
4.4-2 層粘連蛋白接枝分析 63
4.5 接枝層粘連蛋白對細胞貼附的影響 64
4.6 細胞於材料上之行為觀察 65
4.6-1 掃描式電子顯微鏡影像 67
4.6-2 免疫螢光染色影像 68
第五章 總結 74
第六章 參考文獻 75
dc.language.isozh-TW
dc.subject電漿表面改質zh_TW
dc.subject神經導管zh_TW
dc.subject奈米碳管zh_TW
dc.subject幾丁聚醣zh_TW
dc.subject層粘連蛋白zh_TW
dc.subjectnerve conduiten
dc.subjectplasma surface modificationen
dc.subjectlamininen
dc.subjectchitosanen
dc.subjectcarbon nanotubeen
dc.title奈米碳管/幾丁聚醣複合材料於神經組織工程之應用zh_TW
dc.titleApplication of Carbon Nanotube/Chitosan Composite on Nerve Tissue Engineeringen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾次文,劉得任,黃意真
dc.subject.keyword神經導管,奈米碳管,幾丁聚醣,層粘連蛋白,電漿表面改質,zh_TW
dc.subject.keywordnerve conduit,carbon nanotube,chitosan,laminin,plasma surface modification,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2010-06-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved