Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44879
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor金洛仁(Laurent Zimmerli)
dc.contributor.authorMao-Chuain Chenen
dc.contributor.author陳懋銓zh_TW
dc.date.accessioned2021-06-15T03:57:11Z-
dc.date.available2010-06-28
dc.date.copyright2010-06-28
dc.date.issued2010
dc.date.submitted2010-06-14
dc.identifier.citationReferences
Baskin, T.I., and Wilson, J.E. (1997). Inhibitors of protein kinases and phosphatases alter root morphology and disorganize cortical microtubules. Plant Physiol 113, 439–502.
Beyer, E.M. (1979) Effect of silver ion, carbon dioxide, and oxygen on ethylene
action and metabolism. Plant Physiol 63, 169-173.
Blancaflor, E., and Masson, P.H. (2003). Plant gravitropism. Unraveling the ups and
downs of a complex process. Plant Physiol 133, 1677–1690.
Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., and Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39-44.
Bonner, C.A., Williams, D.S., Aldrich, H.C., and Jensen, R.A. (1996).
Antagonism by L-glutamine of toxicity and growth inhibition caused by other amino acids in cell cultures of Nicotiana sylvestris. Science 113, 43–58.
Bonner, C.A., and Jensen, R.A. (1997). Recognition of specific patterns of
amino acid inhibition of growth in higher plants, uncomplicated by
glutamine-reversible ‘general amino acid inhibition’. Science 130, 133–143.
Buer, C. S., Wasteneys, G. O., and Masle, J. (2003). Ethylene modulates root-wave responses in Arabidopsis. Plant Physiol 132, 1085-1096.
Buer, C.S., Sukumar, P., and Muday, G.K. (2006). Ethylene induced flavonoid synthesis modulates root gravitropism. Plant Physiol 140, 1384-1396.
Dharmasiri, S., Swarup, R., Mockaitis, K., Dharmasiri, N., Singh, S.K., Kowalchyk, M., Marchant, A., Mills, S., Sandberg, G., Bennett, M.J., and Estelle, M. (2006). AXR4 Is required for localization of the auxin influx facilitator AUX1. Science 312, 1218-1220.
DiDonato, R.J., Arbuckle, E., Buker, S., Sheets, J., Tobar, J., Totong, R., Grisafi, P., Fink, G.R., and Celenza, J.L. (2004). Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation. Plant J 37, 340–353.
Ellis, C., and Turner, J. (2002). A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215, 549–556.
Evans, M. (2003). Touch sensitivity in plants: Be aware or beware. Trends Plant Science 8, 312–314.
Foy, C.D. (1984). Adaptation of plants to mineral stress in problem soils. Ciba Found Symp 102, 20-39.
Friml, J., Benkova, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jürgens, G., and Palme, K. (2002). AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Plant Cell 108, 661-673.
Hashimoto, T. (2002). Molecular genetic analysis of left–right handedness in plants. Science 357, 799–808.
Hauser, M.T., and Bauer, E. (2000). Histochemical analysis of root meristem activity in Arabidopsis thaliana using a cyclin:GUS (b-glucuronidase) marker line. Plant Soil 226, 1–10.
Hobbie, L., and Estelle, M. (1995). The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation.
Plant J 7, 211-220.
Jakab, G., Ton, J., Flors, V., Zimmerli, L., Me´ traux, J.P., and Mauch-Mani, B.
(2005). Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139, 264–174.
King, F.H. (1883). The influence of gravitation, moisture, and light upon the direction of growth in the root and stem of plants. Science 2, 5-6.
Lee, J.S., Hasenstein, K.H., Mulkey, T.J., Yang, R.L., and Evans, M.L. (1990). Effects of abscisic acid and xanthoxin on elongation and gravitropism in primary roots of Zea mays. Science 68, 17-26.
Leyser, H. M., Lincoln, C. A., Timpte, C., Lammer, D., Turner, J., and Estelle, M. (1993). Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364, 161-164.
Lloyd, C., and Chan, J. (2002). Helical microtubule arrays and spiral growth. Plant Cell 14, 2319–2324.
Luschnig, C., gaxiola, R.A., Grisafi, P., and Fink, G.R. (1998). EIR1, a root-specific protein involved in auxin transport, is required for gravitropismin
Arabidopsis thaliana. Gene and Development 12, 2175-2187.
Marchant, A., Kargul, J., May, S.T., Muller, P., Delbarre, A., Perrot C., and Bennett, M.J. (1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18, 2066–2073.
Migliaccio, F., and Piconese, S. (2001). Spiralisations and tropisms in Arabidopsis roots. Trends Plant Science 6, 561–565.
Mochizuki, S., Harada, A., Inada, S., Sugimoto-Shirasu, K., Stacey, N., Wada, T., Ishiguro, S., Okada, K., and Sakai, T. (2005). The Arabidopsis wavy growth 2 protein modulates root bending in response to environmental stimuli. Plant Cell 17, 537–547.
Morejohn, L.C. (1991). The molecular pharmacology of plant tubulin and microtubules. The Cytoskeletal Basis of Plant Growth and Form, 29-43.
Morita, M. T., and Tasaka, M. (2004). Gravity sensing and signaling. Plant Biol 7, 712-718.
Muday, G.K., and Rahman, A. (2007). Auxin transport and the integration of gravitropic growth. In Plant Tropisms: eds Gilroy, S and Masson, P, Blackwell Publishing, 47-78.
Negi, S., Ivanchenko, M.G., and Muday, G.K. (2008). Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55, 175-187.
Okada, K., and Shimura, Y. (1990). Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250, 274–276.
Pitts, R., Cernac, A., and Estelle, M. (1998). Auxin and ethylene promote root hair elongation in. Arabidopsis. Plant J 16, 553-560.
Potters, G., Pasternak, T.P., Guisez, Y., Palme, K.J., and Jansen, M.A. (2007). Stress-induced morphogenic responses: growing out of trouble ? Science 12, 98–105.
Potters, G., Pasternak, T.P., Guisez, Y., and Jansen, M.A. (2009). Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant, Cell and Environment 32, 158–169.
Prime-A-Plant Group: Conrath, U., Beckers, G.J., Flors, V., et al. (2006). Priming: getting ready for battle. Molecular Plant–Microbe Interactions 19, 1062–1071.
Rashotte, A.M., Brady, S.R., Reed, R.C., Ante, S.J., and Muday, G.K. (2000). Basipetal auxin transport is required for gravitropism in roots of arabidopsis thaliana. Plant Physiol 122, 481-490.
Rutherford, R., and Masson, P.H. (1996). Arabidopsis thaliana sku mutant
seedlings show exaggerated surface-dependent alteration in root growth vector. Plant Physiol 111, 987–998.
Scheres, B., Benfey, P., and Dolan, L. (2002). Root development. Plant Biol 9, 1–18.
Shibaoka, H. (1994). Plant hormone–induced changes in the orientation of cortical microtubules: Alterations in the cross-linking between microtubules and the plasma membrane. Plant Physiol 45, 527–544.
Simmons, C., Soil, D., and Migliaccio, F. (1996). Circumnutation and gravitropism cause root waving in Arabidopsis thaliana. J Exp Bot 46, 143-150.

Susumu, M., Harada, A., Inada, S., Sugimoto-Shirasu, K., Stacey, N., Wada, T., Ishiguro, S., Okada, K., and Sakai, T. (2005). The Arabidopsis WAVY GROWTH 2 Protein modulates root bending in response to environmental stimuli. Plant Cell 17, 537-547.
Swarup, R., Kargul, J., Marchant, A., Zadik, D., Rahman, A., Mills, R., Yemm, A., May, S., Williams, L., Millner, P., Tsurumi, S., Moore, I., Napier, R., D. Kerr, I., and Bennett, M. (2004). Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16, 3069–3083.
Swarup, R., Perry, P., Hagenbeek, D., Straeten, D., Beemster, G., Sandberg, G., Bhalerao, R., Ljung, K., and Bennett, M. (2007). Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19, 2186–2196.
Tanaka, H., Dhonukshe, P., Brewer, P.B., and Friml, J. (2006). Spatiotemporal asymmetric auxin distribution: A means to coordinate plant development. Cell Mol Life Science 63, 2738–2754.
Thompson, M., and Holbrook, N. (2004). Root-Gel interactions and the root waving behavior of Arabidopsis. Plant Physiol 135, 1–16.
Ton, J., and Mauch-Mani, B. (2004). Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA dependent priming for callose. The Plant J 38, 119–130.
Walch-Liu, P., Lai-Hua, L., Remans, T., Tester, M., and G. Forde, M. (2006). Evidence that L-Glutamate can act as an exogenous signal to modulate root
growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47, 1045–1057.
Wu, C.C., Singh, P., Chen, M.C., and Zimmerli, L. (2010). L-glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis. J Exp Bot 61, 995-1002.
Zhu, C., Gan, L., Shen, Z., and Xia, K. (2006). Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. J Exp Bot 10, 1-10.
Zimmerli, L., Jakab, C., Metraux, J.P., and Mauch-Mani B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proceedings of the National Academy of Sciences, USA 97, 12920–12925.
Zimmerli, L., Me´ traux, J.P., and Mauch-Mani, B. (2001). beta-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol 126, 517–523.
Zimmerli, L., Hou, BH., Tsai, C.H., Jakab, G., Mauch-Mani, B., and Somerville, S. (2008). The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J 53, 144–156.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44879-
dc.description.abstract植物演化出許多防禦機制來順應環境上會遭遇的困境,例如面對病菌第一時間會先有一個快速的免疫機制來保護植物。本篇論文研究一種人工合成胺基酸β-aminobutyric acid (BABA),可藉由priming的機制來對抗生物或非生物性的入侵,例如生物性抵抗病菌的入侵、非生物性的抗乾旱以及抗鹽等。本文以BABA對植物的根所造成的影響為主要研究對象,因為根系統(root system)無論在適應逆境、支撐架構、和吸收養分都扮演很重要的角色。我們發現,當阿拉伯芥吸收到BABA,主根會被抑制、側根密度會增多、並且根毛也是會變多和變長的情況,這些現象,似乎跟植物的賀爾蒙,生長素和乙烯有關。我們認為,BABA可藉由調控這兩個賀爾蒙來影響根的生長,使側根和根毛因此增多,同時我們也發現兩個生長素變種株對BABA的敏感度也異於平常,之後我們會更進一步的研究與分析此一現象。
此外,我們發現BABA對根生長的方向也有影響。之前的研究指出,重力、水分與營養、向性、光、環境障礙等都會影響根生長的方向。我們發現BABA似乎與propyzamide有同樣的功能,都可以改變根的細胞骨架中的微管,進而改變根生長的方向。此外,我們也發現,ibuprofen,一種茉莉酮酸酯(jasmonate)抑制劑,似乎也是跟BABA藉由相同的方式改變根的生長方向,因此當根吸收到BABA和ibuprofen,在交互作用下而減少了BABA對根的抑制。
zh_TW
dc.description.abstractPlants have developed numerous, complex defense mechanisms to escape infection by pathogens. The non-protein amino acid β-aminobutyric acid (BABA) is known as a plant resistance inducer against abiotic and biotic stresses. Its enhanced plant capacity to mobilize defense responses, this phenomenon is called “priming”. Priming has been notably studied in Arabidopsis thaliana against drought and salt stresses and various pathogens. However, little is known about the effects of BABA on plant development. To clarify this, we analyzed the mode of action of BABA on root development and observed that BABA inhibits primary root growth and increases lateral root density. Roots of higher plants, to adapt to their environment and gain maximum advantage for growth, change their growth direction in response to various environmental stimuli, such as gravity, light, moisture, nutrients, temperature and obstacles. To study BABA effects on root adaptation to their environment, we analyzed how BABA changes root response to environmental stimuli. BABA was found to alter the direction of root growth. In addition, this work shows for the first time that ibuprofen, a jasmonic acid inhibitor, also alters root growth direction.
Auxin and ethylene play an important role in primary root development; lateral root formation and root hair elongation. Our results suggest that BABA regulates root hairs development, but not lateral roots formation, through interactions with auxin and ethylene. Taken together, our data show that BABA does not only increase plant resistance to stress, but also affect plant development and plasticity.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:57:11Z (GMT). No. of bitstreams: 1
ntu-99-R96b42015-1.pdf: 2079002 bytes, checksum: a929c1048442ab0d7a76259809309121 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents碩士論文口試委員審定書
誌謝
中文摘要
Abstract
List of figures
List of table
Abbreviations
Introduction……………………………………………………………………………..1
Material and Methods……………………………………………………………….....4
1. Root growth assay………………………………………………………………4
2. Amino acid treatment…………………………………………………………..4
3. Root samples and microscopy………………………………………………….5
4. GUS expression analysis and root imaging…………………………………...5
5. RNA extraction and CDNA biosynthesis……………………………………...6
6. Real-time PCR………………………………………………………………….6
Results…………………………………………………………………………………...8
1. BABA-mediated effects on root development………………………………...8
2. Effect of alterations of auxin transport and signaling on Arabidopsis sensitivity to BABA……………………………………………………………10
3. Effect of BABA on Arabidopsis root branching and root hairs development
………………………………………………………………………………….14
4. Cytological studies of the effect of BABA on the primary root tip………...16
5. Alteration of root growth direction by BABA…………………………........18
6. Effects of propyzamide and BABA on the morphology of root and their ability to recover from growth inhibition………...........................................22
7. Effects of ibuprofen and NPA on root growth direction and BABA-mediated inhibition…………………………………………………...24
Discussion……………………………………………………………………………...27
1. To investigate the mechanism of BABA-mediated inhibition on primary root……………………………………………………………………………..27
2. A possible role for auxin in the response to BABA…………………………28
3. BABA increases lateral root density and root hair length………………….29
4. BABA-mediated effects are reduced by L-glutamine………………………30
5. BABA inhibits the mitotic activity in the root apical meristem……………31
6. BABA-mediated effects on root growth direction…………………………..31
7. Microtubule Organization with BABA……………………………………...32
Conclusions and future perspectives…………………………………………………34
Table……………………………………………………………………………………35
Appendix……………………………………………………………………………….36
Reference………………………………………………………………………………41
dc.language.isozh-TW
dc.title3-氨基異丁酸對阿拉伯芥的根發育之影響zh_TW
dc.titleβ-aminobutyric acid-mediated effects on root growth morphologyen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林讚標(Tsan-Piao Lin),鄭石通
dc.subject.keyword3-氨基異丁酸,阿拉伯芥的根,zh_TW
dc.subject.keywordβ-aminobutyric acid,root growth morphology,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2010-06-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:植物科學研究所

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
2.03 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved