Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44868
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor夏俊雄(Chun-Hiung Hsia)
dc.contributor.authorChe-Wei Wuen
dc.contributor.author吳哲瑋zh_TW
dc.date.accessioned2021-06-15T03:56:54Z-
dc.date.available2015-06-20
dc.date.copyright2010-06-20
dc.date.issued2010
dc.date.submitted2010-06-18
dc.identifier.citation[1]J. Evans and N. Shenk, Solutions to axon equations, Biophys. J. 10 (1970), 1090-1101
[2]E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw Hill Book Company, Inc., New York, 1955.
[3]J. Evans, Nerve Axon Equations: I linear approximations, Indiana Univ. Math. J. 21 (1972), 877-886
[4]J. Evans, Nerve Axon Equations: II stability at rest, Indiana Univ. Math. J. 22 (1972), 75-90
[5]M. W. Green and B. D. Sleeman, On Fitzhugh's nerve axon equations, Biology. J. 1 (1974) 152-163
[6]B. D. Sleeman, FitzHugh's nerve axon equations, Biology J. 2 (1975) 341-349
[7]R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961), 445-466.
[8]R. FitzHugh, Mathematical models of excitation and propagation on nerve, Chapter 1, pages 1-85 of Biological Engineering, H. P. Schwan Ed., McGraw Hill Book Company, Inc., New York, 1969.
[9]R. FitzHugh and H. A. Antosiewicz, Automatic computation of nerve excitation, detailed corrections and additions, J. Soc. Ind. Appl. Math. 7 (1959), 447-458
[10]J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50 (1962), 2061-2070.
[11]J. Z. Hearon, Application of results from linear kinetics to the Hodgkin-Huxley equations}, Biophys. J. 4 (1964), 69-75
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44868-
dc.description.abstract這篇論文統整了四篇文章,分別是參考文獻中的第三、四、五、六篇。
在第一章節中,我們統整FitzHugh所提出一般方程解的指數穩定性。對解做小擾動後,原本方程的指數穩定性可以由對應的線性化方程所決定。
在第二章節中,我們探討線性化方程和傅立葉轉換方程靜止指數穩定性的關係,其中這個矩陣[c d;e A]的特徵值和靜止指數穩定性有相關連。
在第三章節中,放了FitzHugh方程指數穩定性的證明及其傳動波波速的上、
下界。
zh_TW
dc.description.abstractIn this article, we survey the exponential stability of the nerve axon equations form Evans [3, 4], Sleeman [6], and Green and Sleeman [5].
In Section 1, we survey the stability of solution to the general system given by FitzHugh. Under small perturbations of a solution , the system can be characterized by the stability properties of the corresponding linearized system.
In Section 2, we explore the relation of the stability of the linearized system and the Fourier transform system. One can achieve a characterization of the stability at rest in terms of properties of the matrix [c d;e A].
The proof of the exponential stability of FitzHugh's system and the characterization of the wave speed of the travelling wave solutions are put in Section 3.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:56:54Z (GMT). No. of bitstreams: 1
ntu-99-R97221003-1.pdf: 414754 bytes, checksum: 1daa8c11cfd65e9d247ac1423075493d (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要.......................................ii
Abstract...................................iii
1 Linear Approximations 1
1.1 Introduction.........................1
1.2 Definitions..........................2
1.3 Main Result..........................2
1.4 Proof of the Theorem.................3
2 Stability at Rest 8
2.1 Introduction.........................8
2.2 Main Result..........................8
2.3 Proof of the Theorem.................9
3 FitzHugh’s Nerve Axon Equations 20
3.1 Introduction........................20
3.2 Exponential Stability at Rest.......21
3.3 A Lower Bound for the Wave Speed c..23
3.4 An Upper Bound for the Wave Speed c.24
References................................27
dc.language.isoen
dc.subject指數穩定性zh_TW
dc.subjectexponential stabilityen
dc.title神經軸突方程的指數穩定性zh_TW
dc.titleThe Exponential Stability of the Nerve Axon Equationsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommitteeHongqiu Chen(Hongqiu Chen),Jerry Bona(Jerry Bona)
dc.subject.keyword指數穩定性,zh_TW
dc.subject.keywordexponential stability,en
dc.relation.page28
dc.rights.note有償授權
dc.date.accepted2010-06-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
405.03 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved