Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44852
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王惠鈞(Andrew H.-J. Wang)
dc.contributor.authorWei-Lin Huangen
dc.contributor.author黃威霖zh_TW
dc.date.accessioned2021-06-15T03:56:29Z-
dc.date.available2010-06-30
dc.date.copyright2010-06-30
dc.date.issued2010
dc.date.submitted2010-06-21
dc.identifier.citation1. Messer, M., Enzymatic cyclization of L-glutamine and L-glutaminyl peptides. Nature, 1963. 197: p. 1299.
2. Wintjens, R., et al., Crystal structure of papaya glutaminyl cyclase, an archetype for plant and bacterial glutaminyl cyclases. J Mol Biol, 2006. 357(2): p. 457-70.
3. Bateman, R.C., Jr., A spectrophotometric assay for glutaminyl-peptide cyclizing enzymes. J Neurosci Methods, 1989. 30(1): p. 23-8.
4. Pohl, T., et al., Primary structure and functional expression of a glutaminyl cyclase. Proc Natl Acad Sci U S A, 1991. 88(22): p. 10059-63.
5. Bockers, T.M., M.R. Kreutz, and T. Pohl, Glutaminyl-cyclase expression in the bovine/porcine hypothalamus and pituitary. J Neuroendocrinol, 1995. 7(6): p. 445-53.
6. Wetsel, W.C., et al., Expression of candidate pro-GnRH processing enzymes in rat hypothalamus and an immortalized hypothalamic neuronal cell line. Neuroendocrinology, 1995. 62(2): p. 166-77.
7. Sykes, P.A., et al., Evidence for tissue-specific forms of glutaminyl cyclase. FEBS Lett, 1999. 455(1-2): p. 159-61.
8. Fischer, W.H. and J. Spiess, Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc Natl Acad Sci U S A, 1987. 84(11): p. 3628-32.
9. Busby, W.H., Jr., et al., An enzyme(s) that converts glutaminyl-peptides into pyroglutamyl-peptides. Presence in pituitary, brain, adrenal medulla, and lymphocytes. J Biol Chem, 1987. 262(18): p. 8532-6.
10. Huang, K.F., et al., Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Proc Natl Acad Sci U S A, 2005. 102(37): p. 13117-22.
11. Huang, K.F., et al., A conserved hydrogen-bond network in the catalytic centre of animal glutaminyl cyclases is critical for catalysis. Biochem J, 2008. 411(1): p. 181-90.
12. Schilling, S., et al., Substrate specificity of glutaminyl cyclases from plants and animals. Biol Chem, 2003. 384(12): p. 1583-92.
13. Smith, A.M. and S.A. Watson, Gastrin and gastrin receptor activation: an early event in the adenoma-carcinoma sequence. Gut, 2000. 47(6): p. 820-4.
14. Pankov, R. and K.M. Yamada, Fibronectin at a glance. J Cell Sci, 2002. 115(Pt 20): p. 3861-3.
15. Nillni, E.A. and K.A. Sevarino, The biology of pro-thyrotropin-releasing hormone-derived peptides. Endocr Rev, 1999. 20(5): p. 599-648.
16. Nillni, E.A., Neuroregulation of ProTRH biosynthesis and processing. Endocrine, 1999. 10(3): p. 185-99.
17. Morty, R.E., et al., Pyroglutamyl peptidase type I from Trypanosoma brucei: a new virulence factor from African trypanosomes that de-blocks regulatory peptides in the plasma of infected hosts. Biochem J, 2006. 394(Pt 3): p. 635-45.
18. Kitabgi, P., et al., Biosynthesis, maturation, release, and degradation of neurotensin and neuromedin N. Ann N Y Acad Sci, 1992. 668: p. 30-42.
19. Garcia-Pardo, A., E. Pearlstein, and B. Frangione, Primary structure of human plasma fibronectin. The 29,000-dalton NH2-terminal domain. J Biol Chem, 1983. 258(20): p. 12670-4.
20. Schilling, S., C. Wasternack, and H.U. Demuth, Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution. Biol Chem, 2008.
21. Goren, H.J., L.G. Bauce, and W. Vale, Forces and structural limitations of binding of thyrotrophin-releasing factor to the thyrotrophin-releasing receptor: the pyroglutamic acid moiety. Mol Pharmacol, 1977. 13(4): p. 606-14.
22. Lee, J.E. and R.T. Raines, Contribution of active-site residues to the function of onconase, a ribonuclease with antitumoral activity. Biochemistry, 2003. 42(39): p. 11443-50.
23. Welker, E., et al., Oxidative folding and N-terminal cyclization of onconase. Biochemistry, 2007. 46(18): p. 5485-93.
24. Linthorst, H.J., et al., Analysis of gene families encoding acidic and basic beta-1,3-glucanases of tobacco. Proc Natl Acad Sci U S A, 1990. 87(22): p. 8756-60.
25. Lucas, J., et al., Amino acid sequence of the ;pathogenesis-related' leaf protein p14 from viroid-infected tomato reveals a new type of structurally unfamiliar proteins. EMBO J, 1985. 4(11): p. 2745-2749.
26. Melchers, L.S., et al., A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J, 1994. 5(4): p. 469-80.
27. Uknes, S., et al., Acquired resistance in Arabidopsis. Plant Cell, 1992. 4(6): p. 645-56.
28. El Moussaoui, A., et al., Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell Mol Life Sci, 2001. 58(4): p. 556-70.
29. Azarkan, M., et al., Detection of three wound-induced proteins in papaya latex. Phytochemistry, 2004. 65(5): p. 525-34.
30. Vale, W., et al., Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 1981. 213(4514): p. 1394-7.
31. Song, I., C.Z. Chuang, and R.C. Bateman, Jr., Molecular cloning, sequence analysis and expression of human pituitary glutaminyl cyclase. J Mol Endocrinol, 1994. 13(1): p. 77-86.
32. Batliwalla, F.M., et al., Peripheral blood gene expression profiling in rheumatoid arthritis. Genes Immun, 2005. 6(5): p. 388-97.
33. Cynis, H., et al., Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim Biophys Acta, 2006. 1764(10): p. 1618-25.
34. Ezura, Y., et al., Association of multiple nucleotide variations in the pituitary glutaminyl cyclase gene (QPCT) with low radial BMD in adult women. J Bone Miner Res, 2004. 19(8): p. 1296-301.
35. Gillis, J.S., Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy. J Transl Med, 2006. 4: p. 27.
36. Huang, Q.Y. and A.W. Kung, The association of common polymorphisms in the QPCT gene with bone mineral density in the Chinese population. J Hum Genet, 2007. 52(9): p. 757-62.
37. Muthusamy, V., et al., Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res, 2006. 66(23): p. 11187-93.
38. Schilling, S., et al., Inhibition of glutaminyl cyclase prevents pGlu-Abeta formation after intracortical/hippocampal microinjection in vivo/in situ. J Neurochem, 2008. 106(3): p. 1225-36.
39. Schilling, S., et al., Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. FEBS Lett, 2004. 563(1-3): p. 191-6.
40. Schilling, S., et al., Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer's disease-like pathology. Nat Med, 2008. 14(10): p. 1106-11.
41. Oberg, K.A., et al., Papaya glutamine cyclase, a plant enzyme highly resistant to proteolysis, adopts an all-beta conformation. Eur J Biochem, 1998. 258(1): p. 214-22.
42. Zerhouni, S., et al., Purification and characterization of papaya glutamine cyclotransferase, a plant enzyme highly resistant to chemical, acid and thermal denaturation. Biochim Biophys Acta, 1998. 1387(1-2): p. 275-90.
43. Schilling, S., et al., Identification of human glutaminyl cyclase as a metalloenzyme. Potent inhibition by imidazole derivatives and heterocyclic chelators. J Biol Chem, 2003. 278(50): p. 49773-9.
44. Bateman, R.C., Jr., et al., Evidence for essential histidines in human pituitary glutaminyl cyclase. Biochemistry, 2001. 40(37): p. 11246-50.
45. Guevara, T., et al., Papaya glutamine cyclotransferase shows a singular five-fold beta-propeller architecture that suggests a novel reaction mechanism. Biol Chem, 2006. 387(10-11): p. 1479-86.
46. Messer, M. and M. Ottesen, Isolation and Properties of Glutamine Cyclotransferase of Dried Papaya Latex. Biochim Biophys Acta, 1964. 92: p. 409-11.
47. Consalvo, A.P., et al., A rapid fluorometric assay for N-terminal glutaminyl cyclase activity using high-performance liquid chromatography. Anal Biochem, 1988. 175(1): p. 131-8.
48. Schilling, S., et al., Continuous spectrometric assays for glutaminyl cyclase activity. Anal Biochem, 2002. 303(1): p. 49-56.
49. Huang, K.F., Y.L. Liu, and A.H. Wang, Cloning, expression, characterization, and crystallization of a glutaminyl cyclase from human bone marrow: a single zinc metalloenzyme. Protein Expr Purif, 2005. 43(1): p. 65-72.
50. Dahl, S.W., et al., Carica papaya glutamine cyclotransferase belongs to a novel plant enzyme subfamily: cloning and characterization of the recombinant enzyme. Protein Expr Purif, 2000. 20(1): p. 27-36.
51. Otwinowski, Z. and W. Minor, Processing of X-ray Differection Data Collected in Oscillation Mode. Macromolecular Crystallography, Part A, ed. Vol. 276. 1997, Academic, New York: Sweet, R. M. 307-326.
52. Brunger, A.T., et al., Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr, 1998. 54(Pt 5): p. 905-21.
53. Jones, T.A., et al., Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A, 1991. 47 ( Pt 2): p. 110-9.
54. McRee, D.E., XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. J Struct Biol, 1999. 125(2-3): p. 156-65.
55. Murshudov, G.N., A.A. Vagin, and E.J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr, 1997. 53(Pt 3): p. 240-55.
56. Engh, R.A. and R. Huber, Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr A, 1991. 47: p. 392-400.
57. Laskowski, R.A., D.S. Moss, and J.M. Thornton, Main-chain bond lengths and bond angles in protein structures. J Mol Biol, 1993. 231(4): p. 1049-67.
58. Huang, K.F., et al., The 1.35 A structure of cadmium-substituted TM-3, a snake-venom metalloproteinase from Taiwan habu: elucidation of a TNFalpha-converting enzyme-like active-site structure with a distorted octahedral geometry of cadmium. Acta Crystallogr D Biol Crystallogr, 2002. 58(Pt 7): p. 1118-28.
59. Harding, M.M., The geometry of metal-ligand interactions relevant to proteins. Acta Crystallogr D Biol Crystallogr, 1999. 55(Pt 8): p. 1432-43.
60. Schilling, S., et al., Isolation, catalytic properties, and competitive inhibitors of the zinc-dependent murine glutaminyl cyclase. Biochemistry, 2005. 44(40): p. 13415-24.
61. Schilling, S., et al., Isolation and characterization of glutaminyl cyclases from Drosophila: evidence for enzyme forms with different subcellular localization. Biochemistry, 2007. 46(38): p. 10921-30.
62. Schilling, S., et al., Isolation and characterization of the glutaminyl cyclases from Solanum tuberosum and Arabidopsis thaliana: implications for physiological functions. Biol Chem, 2007. 388(2): p. 145-53.
63. Brocklehurst, K. and J.P. Malthouse, Mechanism of the reaction of papain with substrate-derived diazomethyl ketones. Implications for the difference in site specificity of halomethyl ketones for serine proteinases and cysteine proteinases and for stereoelectronic requirements in the papain catalytic mechanism. Biochem J, 1978. 175(2): p. 761-4.
64. Menard, R., et al., Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry, 1991. 30(37): p. 8924-8.
65. Menard, R., et al., Modification of the Electrostatic Environment Is Tolerated in the Oxyanion Hole of the cysteine protease papain. Biochemistry, 1994. 34: p. 464-471.
66. Hsu, M.F., et al., Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem, 2005. 280(35): p. 31257-66.
67. Chen, G.J. and J.B. Russell, Transport of glutamine by Streptococcus bovis and conversion of glutamine to pyroglutamic acid and ammonia. J Bacteriol, 1989. 171(6): p. 2981-5.
68. Cook, G.M. and J.B. Russell, The glutamine cyclotransferase reaction of Streptococcus bovis: a novel mechanism of deriving energy from non-oxidative and non-reductive deamination. FEMS Microbiol Lett, 1993. 111(2-3): p. 263-8.
69. McCracken, A.W. and C.U. Mauney, Identification of Corynebacterium diphtheriae by immunofluorescence during a diphtheria epidemic. J Clin Pathol, 1971. 24(7): p. 641-4.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44852-
dc.description.abstract麩酸胺環化酵素(EC 2.3.2.5)負責催化許多蛋白質及胜肽的氨端焦麩氨酸的形成,這個反應亦為許多生物活性分子成熟的重要步驟。在許多動植物中,具有麩酸胺環化酵素功能的蛋白質都已被確認,惟獨在細菌之中尚未發現;因此本篇論文中,我們研究從植物致病菌—十字花科蔬菜黑腐病菌( Xc )之中得到的第一種細菌麩酸胺環化酵素。這個酵素的晶體結構也已解出並將解析度改進到 1.44-A 。此酵素結構顯示其為一個五葉螺旋槳型式,並與已發表的木瓜麩酸胺環化酵素擁有類似架構,但與其相比仍有些序列缺失以及構型上的改變。
相對於木瓜麩酸胺環化酵素的結構,Xc 麩酸胺環化酵素的活性區位擁有較寬的疏水性口袋,但此活性區位的可及性卻被一個角色可能類似於口蓋的突出環形結構所調節。酵素活性分析顯示, Xc 麩酸胺環化酵素僅有木瓜麩酸胺環化酵素 3 % 活性;重疊兩個結構的比較結果發現,在木瓜麩酸胺環化酵素上的一個活性區域胺基酸-骨胺酰酸,在 Xc 麩酸胺環化酵素中被置換成了第 45 號骨胺酸,然而,細菌麩酸胺環化酵素的序列之中這個位置大多都是骨胺酰酸。這個點突變讓 Xc 麩酸胺環化酵素的活性增進了將近十倍之多,但將此胺基酸點突變成丙氨酸卻造成酵素活性的下降。這個改變也顯示了此胺基酸在催化機制上扮演重要的角色。更進一步的點突變研究也如同前人研究所假設的一樣,支持了第 89 號骨胺酸的催化角色,也更進一步的確認在受質結合位附近的一些保守胺基酸的重要性。
相對於木瓜麩酸胺環化酵素極高的穩定性,儘管 Xc 麩酸胺環化酵素與其擁有相類似的架構,仍然表現了對於鹽酸胍、極端酸鹼值以及熱失活的弱抵抗力。基於對此兩結構的比較,Xc 麩酸胺環化酵素的低穩定性可能緣自於β-螺旋槳型結構中缺少一個雙硫鍵鍵結,以及一些氫鍵的差異。這些結果增進了我們對第一型麩酸胺環化酵素的催化機制以及其異乎尋常之穩定性的了解,對此類酵素未來的應用助益良多。
zh_TW
dc.description.abstractGlutaminyl cyclases (QCs) (EC 2.3.2.5) catalyze the formation of pyroglutamate (pGlu) at the N-terminus of many proteins and peptides, a critical step for the maturation of these bioactive molecules. Proteins having QC activity have been identified in animals and plants, but not in bacteria. In this research, we report the first bacterial QC from the plant pathogen Xanthomonas campestris (Xc). The crystal structure of the enzyme was solved and refined to 1.44-A resolution. The structure shows a five-bladed beta-propeller and exhibits a similar scaffold to the published structure of papaya QC (pQC), but with some sequence deletions and conformational changes.
In contrast to the pQC structure, the active site of XcQC has a wider substrate binding pocket, but its accessibility is modulated by a protruding loop acting as a flap. Enzyme activity analyses showed that the wild type XcQC possesses only 3% QC activity of pQC. Superposition of those two structures revealed that an active-site glutamine residue in pQC is substituted by a glutamate (Glu45) in XcQC, although the position 45 is mostly a glutamine in bacterial QC sequences. The E45Q mutation increased the QC activity by an order of magnitude, but the mutation E45A led to a drop in the enzyme activity, indicating the critical catalytic role of this residue.
Further mutagenesis studies support the catalytic role of Glu89 as proposed previously and confirm the importance of several conserved amino acids around the substrate-binding pocket. XcQC was shown to be weakly resistant to guanidine hydrochloride, extreme pH, and heat denaturations, in contrast to the extremely high stability of pQC, despite their similar scaffold. On the basis of structure comparison, the low stability of XcQC may be attributed to the absence of a disulfide linkage and some hydrogen bonds in the closure of beta-propeller structure. These results significantly improve our understanding of the catalytic mechanism and extreme stability of type I QCs, which will be useful in the further applications of QC enzymes.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:56:29Z (GMT). No. of bitstreams: 1
ntu-99-R97b46006-1.pdf: 10493948 bytes, checksum: 9b52a930fae42c2ecf6e857b5d8f9df5 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsList of Figures………………………………………………………………...…….. i
List of Tables…………………………………………….………….…………...….iii
中文摘要……………………………………………………………………….…....iv
Abstract…………...…………………………………..……….……………….…... v
Introduction………………………………………………………………………….1
Material and Methods…….………………………………………………………... 7
2.1 Protein expression and purification…...............................................................8
2.11 Xanthomonas campestris glutaminyl cyclase (XcQC)…….……......…...8
2.12 The mutants of XcQC……....……………………….…..…………...…..9
2.13 Cloning of an engineered XcQC………………………………………...9
2.2 Crystallization and X-ray data collection..........................................................9
2.3 Structure determination and refinement……………………………………..10
2.4 Molecular modeling and substrate binding simulation.……………………...11
2.5 Enzyme activity assay…………………………….…....…...............…….….11
2.6 Enzyme kinetic assay .….……….……….……….……….…………...….…12
2.7 Enzyme characters evaluation at different conditions………….……………13
2.71 Enzyme activities under various pH and temperature……………….....13
2.72 Enzyme folding with chemical denaturant…………….…………...…..13
2.8 Atomic absorption analysis…………….…………………………….………13
Result...……………………………………………………………….……….….…14
3.1 Protein expression and purification……………………………………….…15
3.2 Structure determination……………………………………………………...15
3.3 Overall structure.………….…….……….……….……….……….………...16
3.4 A metal ion-binding site……………………………………………………...17
3.5 Comparison with the pQC structure…………………………………………18
3.6 The active site structure……………………………………………………...20
3.7 Enzyme activity assay and kinetic assay…………………………………….20
3.8 Modeling and the catalytic mechanism of type I QCs……………………….22
3.9 Tests for resistance to chemical, acid, and thermal denaturation………….…22
Discussion…………...................................................................................................24
References…………………………………………………………………………...30
Figures……………………………………………………………………………….36
Tables………………………………………………………………………………..61
Poster………………………………………………………………………………..68
dc.language.isoen
dc.subject十字花科蔬菜黑腐病菌zh_TW
dc.subject麩酸胺環化酵素zh_TW
dc.subjectX光晶體結構zh_TW
dc.subject催化機制zh_TW
dc.subjectXanthomonas campestrisen
dc.subjectglutaminyl cyclaseen
dc.subjectX-ray crystal structureen
dc.subjectcatalytic mechanismen
dc.title第一個細菌麩酸胺環化酵素---十字花科蔬菜黑腐病菌麩酸胺環化酵素的表現、X光結構、催化機制、以及穩定性之研究zh_TW
dc.titleExpression, X-ray structure, catalytic mechanism, and stability of Xanthomonas campestris glutaminyl cyclase: the first bacterial glutaminyl cyclaseen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭傳鐙(Chwan-Deng Hsiao),馬徹(Alex Che-Ma),張崇毅(Chung-I Chang)
dc.subject.keyword十字花科蔬菜黑腐病菌,麩酸胺環化酵素,X光晶體結構,催化機制,zh_TW
dc.subject.keywordXanthomonas campestris,glutaminyl cyclase,X-ray crystal structure,catalytic mechanism,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2010-06-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
10.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved