Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44823
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor羅漢強(Hann-Chung Lo)
dc.contributor.authorShu-Ping Tengen
dc.contributor.author鄧淑萍zh_TW
dc.date.accessioned2021-06-15T03:55:46Z-
dc.date.available2010-06-30
dc.date.copyright2010-06-30
dc.date.issued2010
dc.date.submitted2010-06-23
dc.identifier.citation江介倫,2005,衛星遙測影像之環境資訊萃取,國立台灣大學生物環境系統工程學系博士論文,133頁。
江介倫、鄭克聲,2004,指標克利金空間推估應用於衛星遙測影像分類,航測及遙測學刊9(2):43-58。
江良印,1998,紋理特徵應用於遙測影像判識之理論研究,國立台灣大學生物環境系統工程學系碩士論文,70頁。
林師模、陳苑欽,2006,多變量分析:管理上的應用,雙葉書廊,141頁。
唐文標,2002,統計學淺談,http://episte.math.ntu.edu.tw/articles/mm/mm_03_3_07/page7.html 2005/10/6。
常健行,1995,應用衛星影像於土地變遷偵測方法之研究,國立中央大學土木工程研究所碩士論文,69頁。
許丕政,1998,應用統計檢定法於衛星影像變遷偵測之研究,國立中央大學土木工程研究所碩士論文,76頁。
陳永寬、鄧淑萍、詹進發,2004,應用衛星遙測影像監測臺北都會區近郊環境林分佈與變遷,第四屆海峽兩岸測繪發展研討會論文集,pp:141-150。
陳添水,2002,遙測應用於大肚溪口地區環境變遷分析,特有生物研究4(1):61-74。
陳朝圳,1999,南仁山森林生態系植生綠度之季節性變化,中華林學季刊,32(1):53-66。
焦國模,1997,植生指標在林木測定上應用之研究,航遙測與地理資訊系統於森林資源經營上之應用研討會論文集,pp:1-16。
黃宗仁,2001,利用統計方法進行地形資料的融合及變遷偵測,國立台灣大學土木工程學研究所碩士論文。
黃信誠,2000,空間統計簡介,自然科學簡訊12(3):101-104。
葉小蓁,1994,高等統計學,台大法學院圖書文具部,427頁。
劉建慧, 2002, NDVI與SAVI受土壤影響之研究, 航測與遙測學刊, 7(1):77-86。
鄭克聲,2001,地理統計之理論基礎和應用回顧,中國農業化學會:地理統計在農業和環境科學之應用研討會論文集。pp:1-12。
鄭克聲、葉惠中、郭育全,2000,空間統計應用於衛星影像校正與變遷偵測之研究─以921大地震台大實驗林變遷偵測為例,第十九屆測量學術及應用研討會論文集。pp: 820-830。
鄧淑萍、蘇元風、羅漢強、陳永寬、鄭克聲,2010,福衛二號影像之大氣輻射校正-輻射控制區的應用,農業工程學報,Vol. 56(4): (2010.4.1已接受)。
蕭國鑫,1996,海岸變遷偵測的利器-遙測技術,工業技術研究院能源資源研究所厚生講座第017期。
鍾建文,2006,階段式遙測影像應用於土地利用變遷偵測之研究,國立台灣大學生物環境系統工程學系碩士論文,108頁。
魏榮慶,1996,淺談統計,數學傳播,20(2):31-36。
Beisl, U., and Woodhouse, N., 2004, Correction of atmospheric and bidirectional effects in multispectral ADS40 images for mapping purposes, pp:1-5. http://www.isprs.org/istanbul2004/comm7/papers/1.pdf, 2005/11/28.
Borak, J. S., Lambin, E. F., and Strahler, A. H., 2000, The use of temporal metrics for land cover chang detection at coarse spatial scales. Internation Journal of Remote Sensing, 21:1415-1432.
Burgan, R.E., and Hartford, R.A., 1993, Monitoring vegetation greenness with satellite data. USDA Forest Service Intermountain Research Station General Technical Report. INT-297.
Cakir, H. I., Khorram, S., and Nelson, S. A.C., 2006, Correspondence analysis for detecting land cover change, Remote sensing of environment, 102:306-317.
Chavez, Jr. P. S., 1988, An imporved dark-object subtraction technique for atmospheric scattering correction of multispectral data, Remote Sensing of Environment, 24:459-479.
Cheng, K. S., 2005, A Lecture notes on “Remote Sensing”, http://www.rslabntu.net/Remote_Sensing/RS3_Atmospheric_Propagation_W5.ppt#276,3,投影片 3, and RS4_At_Sensor_Radiance_W7.ppt#338,34,Total solar radiance reaching the sensor, 2005/8/30.
Cheng, K. S., Wei, C., and Chang, S. C., 2004, Locating landslides using multi-temporal satellite images, Advances in space research 33(3):296-301.
Cheng, K. S., Yeh, H. C., and Tsai, C. H., 2000, An anisotropic spatial modeling approach for remote sensing image rectification, Remote Sensing of Environment 73(1):46-54.
Cheng, K.S., and Lei, T.C., 2001, Reservoir trophic state evaluation using Landsat TM images. Journal of American Water Resources 37(5): 1321-1334.
Cohen, J., 1960, A coefficient of agreement for nominal scales, Educational and Psychological Measurement, 20(1):37–46.
Colwell, J. E., 1974, Vegetation canopy reflectance. Remote Sensing of Environment, 3:175–183.
Congalton, R. G., Oderwald, R. G., and Mead, R. A., 1983, Assessing Landsate classification accuracy using discrete multivariate analysis statistical techniques, Photogrammetic Engineering and Remote Sensing, 49:1671-1678.
Coppin, P. R., and Bauer, M. E., 1996, Digital change detection in forest ecosystems with remote sensing imagery. Remote Sensing Reviews, 13: 207-234.
Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., and Lambin, E., 2004, Digital change detection methods in ecosystem monitoring: a review. International Jounal Remote Sensing, 25(9):1565-1596.
Daniel, J. H., and Steven, A. S., 2001, Change detection techniques for monitoring forest clearing and regrowth in a tropical moist forest, pp: 1-23. http://www.ghcc.msfc.nasa.gov/, 2004/12/18.
David F., 2000, Vegetation index definitions, Cress project, UMCP geography, pp.1-4.
Deer, P. J., 1995a, Digital chang detection techniques: civilian and military applications. International Symposium on Spectral Sensing Research 1995 Report (Greenbelt, MD: Goddard Space Flight Center), http://ltpwww.gsfc.nasa.gov/ISSSR-95/digitalc.htm.
Deer, P., 1995b, Digital change detection techniques in remote sensing, Technical Report, DSTO-TR-0169, Department of Defence, Australia, pp.52.
Eklundh, L., and Singh, A., 1993, A comparative analysis of standardized and unstandardized principal component analysis in remote sensing. International Journal of Remote Sensing, 14:1359-1370.
ERDAS field guide seventh edition, 2003, Leica Geosystems GIS & Mapping, LLC. pp. 171-176.
Foody, G. M., 1992, On the compensation for chance agreement in image classification accuracy assessment, Photogrammetric engineering & Remotr sensing, Vol. 58, No. 10, pp. 1459-1460.
Fung, T., and Ledrew, E., 1987, The application of principal component analysis to change detection. Photogrammetric Engineering and Remote Sensing, 53:1649-1658.
Gautam, R. S., Singh, D., and Mittal, A., 2007, Application of principal component analysis and information fusion technique to detect hotspots in NOAA/AVHRR images of Jharia coalfield, India, Journal of Applied Remote Sensing, Vol. 1, 013523 (2007); doi:10.1117/1.2771256.
Green, K., Kempka, D., and Lackey, L., 1994, Using remote sensing to detect and monitor land-cover and land-use change. Photogrammetric Engineering and Remote Sensing, 60:331-337.
Guirguis, S. K., Hassan, H. M., Eloraey, M. E., and Hussan, M. M. A., 1996, Technical note multitemporal change of Lake Brullus Egypt from 1983 to 1991. International Journal of Remote Sensing, 17:2915-2921.
Hadjimitsis, D.G., Clayton, C. R. I., and Retalis, A., 2009, The use of selected pseudo-invariant targets for the application of atmospheric correction in multi-temporal studies using satellite remotely sensed imagery. International Journal of Applied Earth Observation and Geoinformation 11: 192–200.
Herva´s, J., Barredo, J. I., Rosin, P. L., Pasuto, A., Mantovani, F., and Silvano, S., 2003, Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphology 54:63–75.
Hu, Y., De Jong, S.M., and Sluiter, R., 2004, A Modeling-based threshold approach to derive change/ no change information over vegetation area, Proc. 12th Int. Conf. on Geoinformatics Geospatial Information Research: Bridging the Pacific and Atlantic University of Gävle, Sweden, pp:647-654.
Huete, A. R., 1988, A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25: 295–309.
Huete, A. R., 1989, Soil influences in remotely-sensed vegetation canopy spectra, Chapter 4. In: G. Asrar (ed.), Theory and Applications of Optical Remote Sensing. John Wiley & Sons, N.Y., pp. 107-141.
Ingebritsen, S. E., and Lyon, R. J. P., 1985, Principal components analysis of multitemporal image pairs: International Journal of Remote Sensing, 6:687-696.
Jakubauskas, M. E., 1996, Thematic mapper characterization of lodgepole pine seral stages in Yellowstone National Park, USA. Remote Sensingg of Environment, 56:118-132.
Jan, P. L., Peter, H. V., and Steven, J. S., 2005, Statistical methods for analysing the spatial dimension of changes in land use and farming systems. LUCC Report Series No. 7. The International Livestock Research Institute, Nairobi, Kenya & LUCC Focus 3 Office, Wageningen University, the Nettherlands. Page80.
Kaufman, Y.J., and Sendra, C., 1988, Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing 9(8): 1357-1381.
Leeuwen, v. W.J.D., and Huete, A. R., 1996, Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices, Remote Sensing Environment, 55:123-138.
Li, X., and Yeh, A. G. O., 1998, Principal component analysis of stacked multitemporal images for the monitoring of rapid urban expansion in the Pearl River Delta. International Journal of Remote Sensing, 19:1501-1518.
Lu, D., Mausel, P., Brondizio, E., and Moran, E., 2004, Change detection techniques, International Journal of Remote Sensing, 25(12):2365-2407.
Lyon, J. G., Yuan, D., Lunetta, R. S., and Elvidge, C. D., 1998, A change detection experiment using vegetation indices, Photogrammetric Engineering & Remote Sensing, 64(2):143-150.
Macleod, R. D., and Congalton, R. G., 1998, A quantitative comparison of change detection algorithms for monitoring eelgrass from remotely sensed data. Photogrammetric Engineering and Remote Sensing, 64:207-216.
Michener, W. K., and Houhoulis, P. F., 1997, Detection of vegetation associated with extensive flooding in a forested ecosystem. Photogrammetric and Remote Sensing, 63: 1363-1374.
Morisette, J. T., and Khorram, S., 1998, Exact binomial confidence interval for proportions, Photogrammetric engineering & Remote sensing. pp:281-283.
Nelson R. F., 1983, Detecting forest canopy change due to insect activity using Landsat MSS, Photogrammetric Engineering and Remote Sensing, 49(9):1303-1314.
Nichol, J., and Wong, M. S., 2005, Satellite remote sensing for detailed landslide inventories using change detection and image fusion, International Journal of Remote Sensing, 26(9):1913-1926.
Prakash, A., and Gupta, R. P., 1998, Land-use mapping and change detection in a coal mining area - a case study in the Jharia coalfield, India. International Journal of Remote Sensing, 19:391-410.
Radke, R. J., Andra S., Al-Kofahi, O., and Roysam, B., 2005, Image change detection algorithms: a systematic survey, IEEE Transactions on Image Processing, 14(3): 294-307.
Read, J. M., and Lam, N. S. N., 2002, Spatial methods for characterizing land cover and detecting land cover changes for the tropics. International Journal of Remotw Sensing, 23:2457-2474.
Rees, W.G., 2005, Physical Principles of Remote Sensing. Cambridge University Press.
Richter, R., 1996, A spatially adaptive fast atmospheric correction algorithm. International Journal of Remote Sensing 17: 1201-1214.
Ridd, M. K., and Liu, J., 1998, A comparison of four algorithms for change detection in an urban environment, Remote Sensing of the Environment, 63(2): 95-100.
Rosin P. L., and Ioannidis, E., 2003, Evaluation of global image thresholding for change detection, Pattern Recognition Letters, 24(14):2345–2356.
Rosin P. L., 2002, Thresholding for change detection, Computer Vision and Image Understanding, 86(2):79–95.
Schott, J.R., 1997, Remote Sensing – The Image Chain Approach. Oxford University Press.
Silapaswan, C. S., Vwebyla, D. L., and Mcguire, A. D., 2001, Land cover change on the Seward Peninsula: the use of remote sensing to evaluate the potential influences of climate warming on historical vegetation dynamics. Canadian Journal of Remote Sensing, 27:542-554.
Singh, A., 1989, Digital change detection techniques using remotely-sensed data, International Journal of Remote sensing, 10(6):989-1003.
Singh, A., and Harrison, A., 1985, Standardized Principal components. International Journal of Remote Sensing, 6:883-896.
Sirinyildiz, T., 2004, Change detection analysis by using IKONOS imagery, http://www.isprs.org/istanbul2004/comm7/papers/240.pdf, 2005/11/12.
Slater, P.N., 1980, Remote Sensing – Optics and Optical Systems. Addison-Wesley Publishing Co.
Sohl, T. L., 1999, Change analysis in the United Arab Emirates: an investigation of techniques, Photogrammetric Engineering and Remote Sensing, 65(4):475-484.
Teng, S. P., Cheng, K. S., Lo, H. C., and Chen, Y. K., 2006, Application of statistics to detection of green resources changes at Yangmingshan area using remote sensing imagery, 2006 Spatial Accuracy - 7th International symposium on Spatial Accuracy Assessment in Matural Resources and Environmental Sciences. Edited by Caetano, M., and Painho, M., pp. 881-888.
Teng, S.P., Chen, Y.K., Cheng, K.S., and Lo, H.C., 2008, Hypothesis-test-based landcover change detection using multi-temporal satellite images–A comparative study. Advances in Space Research 41: 1744-1754.
TNTmips, 2001, Introduction to remote sensing of environment, pp.1-32.
TNTmips Tutorials, 2001, Raster and Image operations--Rectifying images page10.
Viedma, O., and MELIA, J., 1999, Monitoring temporal changes in the spatial patterns of a Mediterranean shrubland using Landsat TM images, Diversity and Distributions, 5:275–293.
Volker W., 2004, Object-based classification of remote sensing data for change detection, ISPRS Journal of Photogrammetry & Remote Sensing, 58:225-238.
Zitová B., and Flusser, J., 2003, Image registration methods: a survey, Image and Vision Computing, 21:977–1000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44823-
dc.description.abstract遙測影像及技術已廣泛應用於土地利用分類和變遷偵測等環境監測。然而,過去隱含於這些變遷偵測中的不確定性卻未被完整提出。本研究提出二個以假設檢定為基礎的變遷偵測方法,雙變數聯合機率分配法及條件機率分配法,藉由訂定的顯著水準來處理變遷偵測的不確定性,二種方法皆要求一組以土地利用類別為基礎的未變遷像元資料做為假設檢定的基礎。
本研究以中台灣的德基集水區為例,所提出的研究方法在變遷偵測的整體正確率方面明顯優於其他二種普遍應用的分類後比較法及影像差值法。條件機率分配法考慮到前、後期影像光譜值間的相關性,以及在前期影像為已知、固定的情況下,考慮後期影像光譜值的變動範圍;同時,本研究也證明以土地利用類別為基礎的變遷偵測,對於精確的土地利用變遷偵測至關重要。
因此,從假設檢定的觀點來看,處理變遷偵測的不確定性,針對變遷偵測設定不同的顯著水準如1%、5%及10%,則偵測誤判為變遷的機率很低,可做為設定緊急處理區域的優先順序,應用於天然災害防災、救災管理時,提供緊急應變處理之參考。
zh_TW
dc.description.abstractRemote sensing images and technologies have been widely applied to environmental monitoring, in particular landuse/landcover classification and change detection. However, the uncertainties involved in such applications have not been fully addressed. In this paper two hypothesis-test-based change detection methods, namely the bivariate joint distribution method and the conditional distribution method, are proposed to tackle the uncertainties in change detection by making decisions based on the desired level of significance. Both methods require a data set of class-dependent no-change pixels to form the basis for class-dependent hypothesis test. Using an exemplar study area in central Taiwan, performance of the proposed methods are shown to be significantly superior to two other commonly applied methods (the post-classification comparison and the image differencing methods) in terms of the overall change detection accuracies. The conditional distribution method takes into consideration the correlation between digital numbers of the pre- and post-images and the effect of the known pre-image digital number on the range of the post-image digital number, and therefore yields the highest change detection accuracy. It is also demonstrated that the class-dependent change detection is crucial for accurate landuse/landcover change detection. Therefore, from a hypothesis test point of view, dealing with the uncertainty of change detection, change detection settings for different significant level such as 1%, 5% and 10%, then the probability of false positives is very low, can be used for making decision on disaster management.en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:55:46Z (GMT). No. of bitstreams: 1
ntu-99-D90625004-1.pdf: 5658654 bytes, checksum: 7025c24d7a71f71fc8c6f51c991b1975 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書........................................i
誌 謝.................................................ii
中文摘要...............................................iv
Abstract................................................v
目 錄.................................................vii
圖目錄.................................................ix
表目錄.................................................xi
第一章 緒論............................................1
1.1 前言............................................1
1.2 前人研究........................................1
1.2.1 天然災害與地表覆蓋變遷....................2
1.2.2 衛星遙測影像應用於地表覆蓋變遷偵測........3
1.2.3 遙測影像前處理............................4
1.2.4 變遷偵測方法..............................5
1.3 研究動機與目的.................................14
1.3.1 研究動機.................................14
1.3.2 研究目的.................................14
1.4 研究內容與架構.................................15
第二章 理論介紹.......................................20
2.1 遙測基本原理...................................20
2.2 衛星遙測影像前處理.............................21
2.2.1 幾何校正.................................21
2.2.2 輻射校正.................................27
2.3 變遷偵測法.....................................31
2.3.1 分類後比較法.............................31
2.3.2 影像差值法...............................32
2.3.3 植生指標法...............................34
2.3.4 主成份分析法.............................34
2.3.5 單變數常態分配法.........................35
2.3.6 雙變數常態聯合機率分配法.................36
2.3.7 雙變數常態條件機率分配法.................37
2.4 假設檢定統計推論...............................38
2.4.1 假設檢定.................................38
2.4.2 設定顯著水準及區間推估...................39
2.4.3 評估正確率...............................40
第三章 研究材料與方法.................................50
3.1 研究材料.......................................50
3.1.1 單張航照正射影像.........................50
3.1.2 SPOT衛星影像............................51
3.1.3 研究區域.................................52
3.2 研究方法.......................................52
3.2.1 衛星遙測影像前處理.......................53
3.2.2 分類後比較法.............................55
3.2.3 以NDVI、SAVI、PCA變數配適不同變遷偵測方法55
3.2.4 假設檢定統計推論.........................56
3.2.5 驗證及檢核變遷偵測結果及正確率...........57
第四章 結果與討論.....................................63
4.1 衛星遙測影像前處理.............................63
4.1.1 幾何校正.................................63
4.1.2 輻射校正.................................64
4.2 分類後比較法...................................65
4.2.1土地利用預分類............................65
4.2.2分類後比較法..............................65
4.3 變遷偵測變數─NDVI、SAVI、PCA..................65
4.3.1 常態化差異植生指標(NDVI).................65
4.3.2 土壤校正植生指標(SAVI)...................65
4.3.3 主成份分析(PCA)..........................65
4.4 以NDVI、SAVI、PCA變數配適不同變遷偵測方法......66
4.4.1 影像差值法...............................66
4.4.2 雙變數聯合機率分配法.....................67
4.4.3 條件機率分配法...........................67
4.5 假設檢定統計推論...............................68
4.5.1 假設檢定.................................68
4.6 變遷偵測結果之驗證與檢核.......................68
4.6.1 驗證變遷偵測結果.........................68
4.6.2 變遷偵測驗證像元之混淆表與正確率.........68
4.6.3 航照正射影像檢核變遷偵測結果.............70
4.7 討論...........................................71
4.7.1 評估變遷偵測正確率.......................72
4.7.2 以假設檢定為基礎的變遷偵測方法...........73
4.7.3 比較雙變數聯合機率分配法及條件機率分配法.74
4.7.4 綜合討論.................................75
第五章 結論..........................................114
參考文獻..............................................116
dc.language.isozh-TW
dc.subject影像差值法zh_TW
dc.subject土地利用變遷偵測zh_TW
dc.subject假設檢定zh_TW
dc.subject遙感探測zh_TW
dc.subjectHypothesis testen
dc.subjectImage differencingen
dc.subjectRemote sensingen
dc.subjectLanduse/landcover change detectionen
dc.title假設檢定及衛星遙測影像應用於地表覆蓋變遷偵測之研究zh_TW
dc.titleA Hypothesis Test Approach for Land-cover Change Detection Using Satellite Remote Sensing Imageryen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.coadvisor鄭克聲(Ke-Sheng Cheng)
dc.contributor.oralexamcommittee陳永寬(Yeong-Kuan Chen),陳朝圳(Chaur-Tzuhn Chen),鄭祈全(Chi-Chuan Cheng),鍾玉龍(Yuh-Lurng Chung),詹進發(Jihn-Fa Jan)
dc.subject.keyword土地利用變遷偵測,假設檢定,遙感探測,影像差值法,zh_TW
dc.subject.keywordLanduse/landcover change detection,Hypothesis test,Remote sensing,Image differencing,en
dc.relation.page122
dc.rights.note有償授權
dc.date.accepted2010-06-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
Appears in Collections:森林環境暨資源學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
5.53 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved