請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44808完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳安宇(An-Yeu (Andy) | |
| dc.contributor.author | Chia-Tsun Wu | en |
| dc.contributor.author | 吳嘉村 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:55:24Z | - |
| dc.date.available | 2011-07-12 | |
| dc.date.copyright | 2010-07-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-24 | |
| dc.identifier.citation | [1] Sungjoon Kim; Kyeongho Lee, Yongsam Moon, Deog-Kyoon Jeong; Yunho Choi, Hyung Kyu Lim,., 'A 960-Mb/s/pin interface for Skew-tolerant Bus using Low Jitter PLL,' IEEE Journal of Solid-State Circuits, vol. 32, pp. 691-700, 1997.
[2] Pao-Lung Chen, Ching-Che Chung, and Chen-Yi Lee, “A Portable Digitally Controlled Oscillator using Novel Varactors,” IEEE Transactions on Circuit and Systems II, Vol. 52, No. 5, pp. 233-237, May 2005. [3] Kuo-Hsing Cheng, Wei-Bin Yang; Cheng-Ming Ying, 'A Dual-Slope Phase Frequency Detector And Charge Pump Architecture To Achieve Fast Locking Of Phase-Locked Loop,' IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, pp. 892-896, 2003. [4] Chia-Tsun Wu, Wei Wang, I-Chyn Wey, and An-Yeu (Andy) Wu, “A Frequency Estimation Algorithm For ADPLL Designs With Two-Cycle Lock-In Time,” IEEE International Symposium on Circuits and Systems, pp. 21-24, May 2006. [5] T.-Y. Hsu, C.-C. Wang, and Chen-Yi Lee, “Design And Analysis Of Portable High-Speed Clock Generator,” IEEE Transactions on Circuit and Systems II, vol. 48, pp. 367-375, Apr. 2001. [6] Chia-Tsun Wu, Wei Wang, I-Chyn Wey, and An-Yeu (Andy) Wu, “A Scalable DCO Design For Portable ADPLL Designs,” IEEE International Symposium on Circuits and Systems, vol. 6, pp. 5449-5452, May 2005. [7] C.Chung and C. Lee, “An All-Digital Phase-Locked Loop For High-Speed Clock Generation,” IEEE International Symposium on Circuits and Systems, vol. 3, pp.26-29, May 2002. [8] T. Hsu, B. Shieh and C. Lee, “An All-Digital Phase-Locked Loop (ADPLL)-Based Clock Recovery Circuit,” IEEE Journal of Solid-State Circuits, vol. 34, pp.1063-1073, Aug 1999. [9] T. Olsson and P. Nilsson, “A Digitally Controlled PLL For Soc Applications,” IEEE Journal of Solid-State Circuits, vol. 39, pp.751-760, May 2004. [10] Po-Hui Yang and Jinn-Shyan Wang, “Low-Voltage Pulsewidth Control Loops for SOC Applications,” IEEE Journal of Solid-State Circuits, vol.39, pp. 1348–1351, Oct 2002. [11] Fenghao and Christer Svensson, “High Speed Multistage Cmos Clock Buffers With Pulse Wieth Control Loop,” IEEE International Symposium on Circuits and Systems, vol. 2, pp.541-544, May 1999. [12] Sung-Rung Han and Shen-Iuan Liu, “A 500-MHz-1.25-GHz Fast-Locking Pulsewidth Control Loop With Presettable Duty Cycle,” IEEE Journal of Solid-State Circuits, vol. 39, pp.463-468, March 2004. [13] Zhinian Shu; Ka Lok Lee; Leung, B.H., “2.4-Ghz Ring-Oscillator-Based CMOS Frequency Synthesizer With A Fractional Divider Dual-PLL Architecture,” IEEE Journal of Solid-State Circuits, vol. 39, pp.452-462, March 2004. [14] J. Jong and C. Lee, “A Novel Structure For Portable Digitally Controlled Oscillator,” IEEE International Symposium on Circuits and Systems, vol.1, pp.272 – 275, May 2001 [15] J. Chiang and K. Chen, “A 3.3 V All Digital Phase-Locked Loop With Small DCO Hardware And Fast Phase Lock,” IEEE International Symposium on Circuits and Systems, vol. 3, pp.554-557, May 1998. [16] Jen-Shiun Chiang and Kuang-Yuan Chen, “A 3.3V All Digital Phase-Locked Loop With Small DCO Hardware And Fast Phase Lock,” IEEE International Symposium on Circuits and Systems, vol. 3, pp. 554-557, 1998 [17] Kuo-Hsing Cheng; Yu-Jung Chen, “A Novel All Digital Phase Locked Loop (ADPLL) With Ultra Fast Locked Time And High Oscillation Frequency,” IEEE International Symposium on ASIC/SOC Conference, pp.139-143, 2001. [18] Pialis and K. Phang, “Analysis of Timing Jitter in Ring Oscillators Due to Power Supply Noise,” IEEE International Symposium on Circuits and Systems, vol. 1, pp. I-685 – I-688, May 2003. [19] A. Abidi and R. G. Meyer, “Noise in Relaxation Oscillators,” IEEE Journal of Solid-State Circuits, Vol. 18, pp.794-802, December 1983. [20] T. Olsson and P. Nilsson, “A Digitally Controlled PLL For Soc Applications,” IEEE Journal of Solid-State Circuits, vol. 39, pp.751-760, May 2004. [21] Ho, R., Mai, K.W., Horowitz, M.A.,, “The Future of Wires,” Proceedings of the IEEE, Volume 89, Issue 4, pp. 490-504, 2001. [22] Benini, L., De Micheli, G.,, “Networks on Chips: A New SoC Paradigm,” IEEE Computer, Volume 35, Issue 1, pp. 70-78, 2002. [23] Lahiri, K., Raghunathan, A., Lakshminarayana, G., Dey, S., “Design of High-Performance System-on-Chips using Communication Architecture Tuners,” IEEE Transaction on CAD/ICAS, Volume 23, Issue 5, pp. 620-636, 2004. [24] Karim, F., Nguyen, A., Dey, S., Rao, R., “On-Chip Communication Architecture for OC-768 Network Processors,” Proc. DAC, pp. 678-683, 2001. [25] Se-Joong Lee, Seong-Jun Song, Kangmin Lee, Jeong-Ho Woo, Sung-Eun Kim, Byeong-Gyu Nam, Hoi-Jun Yoo, “An 800MHz Stat-Connected On-Chip Network for Application to Systems on a chip,” ISSCC, pp. 468-469, 2003. [26] Kimura, S., Hayakawa, T., Horiyama, T., Nakanishi, M., Watanabe, K., “An On-Chip High Speed Serial Communication Method Based on Independent Ring Oscillators,” IEEE International Conference on Solid-State Circuits, pp. 390-391, 2003. [27] Jinn-Shyan Wang, Po-Hui Yang, Duo Sheng, “Design of a 3-V 300MHz Low-Power 8-b X 8-b Pipelined Multipliers Using Pulse-Triggered TSPC Flip-Flops“IEEE Journal of Solid-State Circuits, vol 35, pp. 583-592, April 2000. [28] Kuo-Hsing Cheng, Chia-Wei Su, Chen-Lung Wu, and Yu-Lung Lo, “A Phase-Locked Pulse-Width Control Loop with Programmable Duty Cycle,” IEEE Asia-Pacific Conference on Advanced System Integrated Circuits 2004, pp. 84–87, Aug 2004. [29] Peter M, Levine, and Gordon W. Roberts, “A Calibration Technique For A High-Resolution Flash Time-To-Digital Converter,” IEEE International Symposium on Circuits and Systems, May 2004. [30] Yi-Ming Wang, Chang-Fen Hu, Yi-Jen Chen and Jinn-Shyan Wang, “An All-Digital Pulse-width Control Loop,” IEEE International Symposium on Circuits and Systems, vol. 2, pp.541-544, May 2005. [31] Vaucher C.S., Ferencic I., Locher M., Sedvallson S., Voegeli U., Wang Z., “A Family Of Low-Power Truly Modular Programmable Dividers In Standard 0.35-Μm CMOS Technology,”IEEE Journal of Solid-State Circuits, Vol. 35, pp.1039 -1045, July 2000. [32] Maneatis J.G., “Low-Jitter Process-Independent DLL And PLL Based On Self-Biased Techniques,” IEEE Journal of Solid-State Circuits, Vol. 31, pp. 1723-1732, Nov. 1996. [33] Takamoto Watanabe and Shigenori Yamauchi, “An All-Digital PLL for Frequency Multiplication by 4 to 1022 With Seven-Cycle Lock Time,” IEEE J. Solid-State Circuit, vol.38, pp. 198-204, Feb 2003. [34] I-Chyn Wey, Yo-Gon Chen and An-Yeu (Andy) Wu, “A High-Speed Scalable Shift-Register Based On-Chip Serial Communication Design for SoC Applications”, IEEE International Symposium on Circuits and Systems, pp.1074-1077, May 2005. [35] Duo Sheng, Ching-Che Chung and Chen-Yi Lee, “An All-Digital Phase-Locked Loop With High-Resolution For Soc Applications,” IEEE Internal Symposium on VLSI Design Automation and Test, pp. 1 -4, April 2006. [36] Kwang-Jin Lee, Seung-Hun Jung, Yun-Jeong Kim, Chul Kim, Suki Kim, Uk-Rae Cho, Choong-Guen Kwak, and Hyun-Geun Byun, “A Digitally Controlled Oscillator for Low Jitter All-Digital Phase-locked Loops,” IEEE Asian Solid-State Circuit Conference, pp. 365-368, Nov. 2005. [37] Tzu-Chiang Chao, and Wei Hwang, “A 1.7mW All-Digital Phase-locked Loop with New Gain Generator and Low Power DCO,” IEEE International Symposium on Circuits and Systems, pp. 21-24, May 2006. [38] Jim Dunning, Gerald Garcia, Jim Lundberg and Ed Nuckolls, “An All-Digital Phase-locked Loop with 50-cycle Lock Time suitable for High-Performance Microprocessors,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 412-422, April 1995. [39] Ching-Che Chung, and Chen-Yi Lee, “A New DLL-based approach for All-Digital Multiphase Clock Generation,” IEEE Journal of Solid-State Circuits, vol. 39, No. 3, pp. 469-475 March 2004. [40] Liming Xiu, Wen Li, Jason Meiners, and Rajitha Padakanti, “A Novel All-Digital PLL with Software Adaptive Filter,” IEEE Journal of Solid-State Circuits, vol. 39, No. 3, pp. 476-483, March 2004. [41] Pao-Lung Chen, Ching-Che Chung, Jyh-Neng Yang, and Chen-Yi Lee, “A Clock Generator with Cascaded Dynamic Frequency Counting Loops for Wide Multiplication Range Applications,” IEEE Journal of Solid-State Circuits, vol. 41, No. 6, pp. 1275-1285, June 2006. [42] Dorin Emil Calbaza, Ioan Cordos, Nigel Seth-Smith, and Yvon Savaria, “An ADPLL Circuit Using a DDPS for Genlock Applications,” IEEE International Symposium on Circuits and Systems, Vol. 4, pp. 23-26, May 2004. [43] Pao-Lung Chen, Ching-Che Chung, and Chen-Yi Lee, “An all-digital PLL with Cascaded Dynamic Phase Average Loop for Wide Multiplication Range Applications”, IEEE International Symposium on Circuits and Systems, Vol. 5, pp. 23-26, May 2005. [44] Hsuan-Jung Hsu and Shi-Yu Huang, “A Low-Jitter ADPLL via a Suppressive Digital Filter and an Interpolation-based Locking Scheme,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, to be published. [45] Kwang-Hee Choi, Jung-Bum Shin, Jae-Yoon Sim, and Hong-June Pard, “An Interpolation Digitally Controlled Oscillator for a Wide-Range All-Gigital PLL,” IEEE Transactions on Circuits and Systems I, vol. 56, no. 9, pp. 2055-2063, September 2009. [46] Thomas Olsson, and Peter Nilsson, “A Digitally Controlled PLL for SoC Applications,” IEEE Journal of Solid-State Circuits, vol. 39, pp.751-760, May 2004. [47] Pao-Lung Chen, Ching-Che Chung, Jyh-Neng Yang, and Chen-Yi Lee, “A Clock Generator with Cascaded Dynamic Frequency Counting Loops for Wide Multiplication Range Applications,” IEEE Journal of Solid-State Circuits, vol. 41, No. 6, pp. 1275-1285, June 2006. [48] Wei Liu, Wei Li, Peng Ren, Chinglong Lin, Shengdong Zhang, Yangyuan Wang, “A PVT Tolerant 10 to 500 MHz All-Digital Phase-Locked Loop With Coupled TDC and DCO,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 314-321, 2010. [49] Kwang-Hee Choi, Jung-Bum Shin, Jae-Yoon Sim, Hong-June Park, “An Interpolating Digitally Controlled Oscillator for a Wide-Range All-Digital PLL,” IEEE Transactions on Circuits and Systems I, vol. 56, pp. 2055-2063, 2009. [50] Syllaios, I.L., Staszewski, R.B., Balsara, P.T., “Time-Domain Modeling of an RF All-Digital PLL,” IEEE Transactions on Circuits and Systems I, vol.55, pp. 601-605, 2008. [51] Song-Yu Yang, Wei-Zen Chen, Tai-You Lu, “A 7.1 mW, 10 GHz All Digital Frequency Synthesizer With Dynamically Reconfigured Digital Loop Filter in 90 nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 578-586, 2010. [52] Temporiti, E., Weltin-Wu, C., Baldi, D., Tonietto, R., Svelto, F., “A 3 GHz Fractional All-Digital PLL With a 1.8 MHz Bandwidth Implementing Spur Reduction Techniques,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 824-834, 2009. [53] Byoung-Mo Moon, Young-June Park, Deog-Kyoon Jeong, “Monotonic Wide-Range Digitally Controlled Oscillator Compensated for Supply Voltage Variation,” IEEE Transactions on Circuits and Systems II, vol.55, pp. 1036-1040, 2008. [54] Tierno, J.A., Rylyakov, A.V., Friedman, D.J.m “A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 42-51, 2008. [55] Mendel, S., Vogel, C., Da Dalt, N., “A Phase-Domain All-Digital Phase-Locked Loop Architecture Without Reference Clock Retiming,” IEEE Transactions on Circuits and Systems II, vol.56, pp. 860-864, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44808 | - |
| dc.description.abstract | 自從1932年第一個鎖相迴路(phase locked loop,PLL)電路被設計出來以來,到目前為止針對各種不同的應用已經發展出各式各樣的鎖相迴路電路。最近幾年針對系統晶片(SoC)的應用,有一種被稱為全數式鎖相迴路(all-digital phase-locked loop,ADPLL)的新型鎖相迴路被大量的探討,主要原因是,隨著積體電路(integrated circuit, IC)功能性高度的整合之下,常常需要在一顆晶片(chip)之中整合大量而且不同的電路,通常這些電路都需要一個可靠的時脈(clock)做為電子電路工作的參考依據。全數位式鎖相迴路電路因為不使用任何的電阻電容電感(RLC)做為電路的零件(component)使得這種基於數位設計方法的鎖相迴路不但很容易被整合入系統晶片,而且還同時具有體積小的優點。
然而全數位式鎖相迴路對於數位控制振盪器(digitally-controlled oscillator,DCO)的控制只能在有限的解析度下進行操作,通常為幾10個微微秒(picosecond)至100多個微微秒,對於非線性微分(differential non-linearity,DNL)的表現他非常的不盡理想。為了保有全數式鎖相迴路電路之優點並且同時改進其缺點,本論文提出了數個基於數位信號處理的演算法來大幅改進這些缺點,在聯華電子 0.18微米之互補式金屬氧化物半導體製程(UMC 0.18µm CMOS process)驗証下,能達到0.03毫米平方(mm2) 的大小。 本論文從第三章開始針對全數位式鎖相迴路之各設計單元提出一個可以同時改進其效能,並同時維持小面積的創新或改進電路。這些電路有些是基於現有的研究成果加以改進,有些則是透過數位信號處理演算法推導後提出的新創想法。在數位控制振盪器方面本文提出一個系統的建構方式來產生振盪器電路,這樣的方法即便在不同的製程下也能很快的建構出符合規格的振器電路。這幾年,高速的數位電路均採用雙倍資料流(double data rate,DDR)的設計技巧,針對這類需要50%工作週期(duty cycle)的時脈需求,本文也提出了一個全數位式脈宽控制迴路設計以符合高速電路的需求。另外,一般而言全數式鎖相迴路的迴路頻宽(loop bandwidth)都不高,約不到輸入參考信號的千分之一,使得全數位式鎖相迴路的迴路嚮應不好,在論文中會提出一個可適性之迴路濾波器使得全數式鎖相迴路的頻率嚮應可以大幅提升至數百倍的輸入時脈,由於迴路頻宽會基於迴路狀況自動的調整至合適的頻宽,因此可以大幅的提升迴路嚮應的效能,更可貴的是這個被優化過的演算法在硬體實現的結果指出硬體需求還比原來方法實現更低。除了以上三點的突破外,在全數位式鎖相迴路中最被引以為傲的鎖定時間(lock-in time)我們也提出一個全新的演算法,相較於目前最好的研究論文比較之下提升至3.5倍效能。 基於前述所提出的四點創新,本論文針對了全數位式鎖相迴路的每一主要電路都做了相當的優化,所有的設計都是基於硬體描述語言(hardware description language,HDL)設出來,這樣的設計不僅非常適合於系統晶片內的整合,同時也非常容易在不用的製程或設計規格之間轉換。總結本論文所提出上述四種創新的全數位式鎖相迴路設計方式,皆可同時改進全數位式鎖相迴路電路設計,並針對如何快速設計可攜式全數式鎖相迴路有深入的探討,搭配standard cell設計流程,可以在最短的時程內設計出目標之迴相迴路電路。本論所提出各種設計電路都經過晶片設計來驗證所提出這四種全數位式鎖相迴路的設計方法。 | zh_TW |
| dc.description.abstract | Different kinds of phase-locked loops (PLL) have been developed for various applications since the design of the first PLL in 1932. In recent years, the all-digital phase-locked loop (ADPLL) has been broadly studied for System-on-Chip (SoC) applications, because many designs need to be integrated into one chip in the SoC environment. In a majority of cases, these designs need a reliable clock source to work. As there is no RLC component involved in the ADPLL design, the ADPLL offers the dual advantage of being easy to integrate and entailing very low hardware overhead. From this point of view, the ADPLL offers the advantages of not only reducing both the production and design cost, but can also be produced for market in a very short span of time.
In Chapter 3~5, the dissertation presents improved circuits for each module of the ADPLL. Some of these modules are an improvement on recent published research while some have been newly developed using the DSP algorithm. All these modules maintain low hardware overhead along with good performance. This thesis also presents a systematic methodology to construct the DCO circuit. The new design methodology achieves a very low design cycle time for various processes and design specifications. In recent years, double data rate (DDR) circuits have become the major design components of high-speed circuits. This thesis also describes the operation of an all-digital pulse width control loop (ADPWCL), to produce an output equal to 50% of the duty cycle of the ADPLL for such high-speed circuits. In addition, the loop bandwidth of the ADPLL is usually lower and typically less than 1/1000 of the reference clock to yield a low loop response. In Chapter 3, this thesis presents an adaptive loop filter to adjust the loop bandwidth from a 100x to a value of <1/1000 reference clock. This is because the adaptive loop filter has the ability to adjust its loop bandwidth dynamically using its phase error. The optimized algorithm and hardware demonstrate a more compact hardware requirement as compared to current research and enable a high tracking performance with respect to the input reference clock. Lastly, this thesis also presents a new frequency estimation algorithm, which demonstrates a 350% improvement on the lock-in time as compared to the current state of the art. Using the new approaches, we have developed many circuits based on the hardware description language (HDL). The developed ADPLL designs are not only easy to integrate into the SoC chip but also can also easily be applied to various CMOS processes. In summary, the new approaches presented in this dissertation improve the overall design and performance of the ADPLL. All the proposed designs have been verified using a highly portable chip-level design. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:55:24Z (GMT). No. of bitstreams: 1 ntu-99-D92943007-1.pdf: 4634740 bytes, checksum: a88c2666dfd33c553fa6bb5d46a28f21 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III Abstract V Contents VII List of Figures XIII List of Tables XVII Chapter 1 Introduction 1 1.1 INTRODUCTION TO PHASE LOCKED LOOPS (PLL) 1 1.2 RECENT ADPLL RESEARCH 7 1.3 DESIGN OBJECTIVE 9 1.4 RESEARCH CONTRIBUTIONS 14 1.5 ORGANIZATION OF THE DISSERTATION 17 Chapter 2 Valuable ADPLL Design Research 19 2.1 RING BASED DIGITALLY-CONTROLLED OSCILLATOR 20 2.1.1 DCO CONTROLLED BY NUMBER OF ITS INVERTERS 20 2.1.2 DCO BASED ON THE DRIVE STRENGTH 23 2.1.3 DCO BASED ON THE DRIVEN STRENGTH COUPLED WITH A STANDARD-CELL LIBRARY 25 2.2 PHASE FREQUENCY DETECTOR 27 2.3 THE FAST LOCK SCHEME 28 2.3.1 BINARY SEARCH ALGORITHM FOR FREQUENCY SEARCH 29 2.3.2 THE TDC APPROACH FOR A FAST LOCK-IN TIME ADPLL DESIGN 31 2.4 OVERVIEW OF THE PWCL TECHNIQUE 33 2.4.1 PSEUDO-INVERTER-BASED PWCL 35 2.4.2 AND-GATE-BASED PWCL 37 2.4.3 THE ALL-DIGITAL PWCL 38 Chapter 3 Design of a Portable DCO for ADPLL Designs 41 3.1 DESIGN OF A PORTABLE DCO 42 3.1.1 DESIGN OF A HIGH RESOLUTION AND HIGH LINEARITY DCO 43 3.1.1.1. METHODOLOGY OF THE STANDARD-CELL BASED DCO DESIGN 43 3.1.1.2. COARSE-TUNE-UNIT ARCHITECTURE 45 3.1.1.3. FINE-TUNE-UNIT ARCHITECTURE 46 3.1.2 HARDWARE COMPLEXITY OF THE DCO CONTROLLER 48 3.1.3 THE PROPOSED DESIGN 49 3.1.4 IMPLEMENTATION AND CHIP MEASUREMENTS 50 3.1.5 A SUMMARY OF THE ABOVE WORK 53 3.2 A 2GB/S DCO BASED ON-CHIP SERIAL COMMUNICATION DESIGN FOR SOC APPLICATIONS 54 3.2.1 PROPOSED DCO BASED ON-CHIP SERIAL COMMUNICATION DESIGN 56 3.2.2 THE PROPOSED DCO BASED RECEIVER DESIGN 59 3.2.3 HIGH-SPEED, SCALABLE DESIGN AND TIMING ANALYSIS 59 3.2.4 PERFORMANCE COMPARISON AND SIMULATION RESULTS 63 3.2.5 A SUMMARY OF THE ABOVE WORK 66 3.3 PULSE WIDTH CONTROL LOOP BASED DCO DESIGN 67 3.3.1 PSEUDO-INVERTER-BASED PWCL [12] 69 3.3.2 THE AND-GATE-BASED PWCL [11] 70 3.3.3 THE ALL-DIGITAL PWCL 71 3.3.4 THE ALL-DIGITAL PWCL ARCHITECTURE 73 3.3.5 THE DIGITAL PULSE WIDTH MODULATOR (DPWM) 74 3.3.6 DIGITAL PULSE WIDTH CONVERTER (DPWC) 76 3.3.6.1. SIMULATION OF A DIGITAL PULSE WIDTH MODULATOR 80 3.3.6.2. DPWC DESIGN SIMULATION 82 3.3.7 CHIP IMPLEMENTATION AND SUMMARY OF THE ABOVE WORK 86 Chapter 4 Design of a Dynamic Loop Bandwidth Based Loop Filter for ADPLL Designs 89 4.1 DYNAMIC LOOP BANDWIDTH BASED LOOP FILTER APPROACH 89 4.2 PROPOSED ADAPTIVE TRACKING ALGORITHM FOR THE ADPLL DESIGN 93 4.3 ADAPTIVE TRACKING ALGORITHM FOR THE ADPLL DESIGN 94 4.4 THE ADAPTIVE FUNCTION Μ(N) 98 4.5 IMPLEMENTATION AND MEASUREMENT RESULTS 100 4.6 MEASUREMENT OF THE ADPLL SYSTEM CONVERGENCE 104 4.7 MEASUREMENT OF THE ADPLL TRACKING PERFORMANCE WITH VARYING FREF 106 4.8 ADPLL JITTER PERFORMANCE MEASUREMENT 107 4.9 SUMMARY OF THE ABOVE RESEARCH 109 Chapter 5 Design of a Two-Cycle Lock-In Time ADPLL 111 5.1 INTRODUCTION TO THE PORTABLE AND FAST LOCKED ADPLL FOR SOC APPLICATIONS. 111 5.2 PROPOSED FREQUENCY ESTIMATION ALGORITHM FOR FAST LOCKED ADPLL DESIGNS 113 5.2.1 FREQUENCY ESTIMATION ALGORITHM FOR FAST FREQUENCY CALCULATION 114 5.2.2 ANALYZING THE RANGE OF THE MULTIPLICATION FACTOR AND FREF 116 5.3 DESIGN OF A PORTABLE TWO-CYCLE LOCK-IN TIME ADPLL 116 5.3.1 PORTABLE VLSI ARCHITECTURE FOR THE FEA ALGORITHM 117 5.3.2 TWO PORTABLE COMPONENT CIRCUITS FOR THE ADPLL DESIGN 118 5.3.3 PORTABLE HIGH TIME-DOMAIN LINEARITY DCO DESIGN 119 5.3.4 PORTABLE SKEW COMPENSATED PFD DESIGN 123 5.3.5 PORTABLE PHASE SYNCHRONIZED SCHEME FOR THE FAST PHASE LOCK 124 5.3.6 PORTABLE CONFIGURABLE LOCK DETECTOR 125 5.3.7 ADPLL OPERATION FLOW TO ACHIEVE A TWO-CYCLE LOCK-IN TIME 128 5.4 IMPLEMENTATION AND MEASUREMENT RESULTS 129 5.4.1 BUILT TEST BOARD AND THE DCO MEASUREMENT 130 5.4.2 MEASUREMENT OF THE LOCK-IN PERFORMANCE OF THE ADPLL SYSTEM 132 5.4.3 ADPLL JITTER PERFORMANCE MEASUREMENT 133 5.5 A SUMMARY OF THE ABOVE WORK (CHAPTER SUMMARY) 134 Chapter 6 Conclusion 135 6.1 DESIGN ACHIEVEMENTS 136 6.2 FUTURE WORK 139 Bibliography 141 | |
| dc.language.iso | en | |
| dc.subject | 快速鎖定 | zh_TW |
| dc.subject | 鎖相迴路 | zh_TW |
| dc.subject | 全數位鎖相迴路 | zh_TW |
| dc.subject | PLL | en |
| dc.subject | fast locked | en |
| dc.subject | ADPLL | en |
| dc.title | 可攜式全數位鎖相迴路電路設計與實現 | zh_TW |
| dc.title | Design and Implementation of Portable All-Digital PLLs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 曹恆偉(Hen-Wai Tsao),陳少傑(Sao-Jie Chen),林宗賢(Tsung-Hsien Lin),盧奕璋(Yi-Chang Lu),馮武雄(Shiung-Feng Wu),陳怡然(Yi-Jan Chen),魏一勤(I-Chyn Wey) | |
| dc.subject.keyword | 鎖相迴路,全數位鎖相迴路,快速鎖定, | zh_TW |
| dc.subject.keyword | PLL,ADPLL,fast locked, | en |
| dc.relation.page | 140 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-06-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
