請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44803完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | |
| dc.contributor.author | Jo-Ling Wang | en |
| dc.contributor.author | 王若凌 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:55:17Z | - |
| dc.date.available | 2011-06-30 | |
| dc.date.copyright | 2010-06-30 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-25 | |
| dc.identifier.citation | [1]R. Hoffmann, A. Rot, S. Niiyama, A. Billich, Steroid sulfatase in the human hair follicle concentrates in the dermal papilla. Journal of Investigative Dermatology 117 (2001) 1342-1348.
[2]B.W. Christelle Adolphe, Structure of the mammalian skin and hair follicle. Expert Reviews in Molecular Medicine 7 (2005). [3]S.E. Millar, Molecular mechanisms regulating hair follicle development. Journal of Investigative Dermatology 118 (2002) 216-225. [4]S. Muller-Rover, B. Handjiski, C. van der Veen, S. Eichmuller, K. Foitzik, I.A. McKay, K.S. Stenn, R. Paus, A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. Journal of Investigative Dermatology 117 (2001) 3-15. [5]M.J. Hoogduijn, E. Gorjup, P.G. Genever, Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Stem Cells and Development 15 (2006) 49-60. [6]M.P. Philpott, G.E. Westgate, T. Kealey, An in vitro model for the study of human hair-growth. Ann. N.Y. Acad. Sci. 642 (1991) 148-166. [7]W. Krugluger, W. Rohrbacher, K. Laciak, K. Moser, C. Moser, J. Hugeneck, Reorganization of hair follicles in human skin organ culture induced by cultured human follicle-derived cells. Experimental Dermatology 14 (2005) 580-585. [8]R.F. Oliver, Ectopic regeneration of whiskers in hooded rat from implanted lengths of vibrissa follicle wall. Journal of Embryology and Experimental Morphology 17 (1967) 27-34. [9]K.S. Stenn, G. Cotsarelis, Bioengineering the hair follicle: fringe benefits of stem cell technology. Current Opinion in Biotechnology 16 (2005) 493-497. [10]A.J. Reynolds, C. Lawrence, P.B. Cserhalmi-Friedman, A.M. Christiano, C.A.B. Jahoda, Trans-gender induction of hair follicles. Nature 402 (1999) 33-34. [11]K.J. McElwee, S. Kissling, E. Wenzel, A. Huth, R. Hoffmann, Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. Journal of Investigative Dermatology 121 (2003) 1267-1275. [12]C.A.B. Jahoda, K.A. Horne, R.F. Oliver, Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311 (1984) 560-562. [13]K.A. Horne, C.A.B. Jahoda, R.F. Oliver, Whisker growth induced by implantation of cultured vibrissa dermal papilla cells in the adult-rat. Journal of Embryology and Experimental Morphology 97 (1986) 111-124. [14]W. MuellerKlieser, Three-dimensional cell cultures: from molecular mechanisms to clinical applications. American Journal of Physiology-Cell Physiology 273 (1997) C1109-C1123. [15]H. Kurosawa, Methods for inducing embryoid body formation: In vitro differentiation system of embryonic stem cells. Journal of Bioscience and Bioengineering 103 (2007) 389-398. [16]T.H. Young, C.Y. Lee, H.C. Chiu, C.J. Hsu, S.J. Lin, Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials 29 (2008) 3521-3530. [17]J. Cooley, Follicular cell implantation: an update on “hair follicle cloning”. Facial Plastic Surgery Clinics of North America 12 (2004) 219-224. [18]M. Inamatsu, T. Matsuzaki, H. Iwanari, K. Yoshizato, Establishment of rat dermal papilla cell lines that sustain the potency to induce hair follicles from afollicular skin. Journal of Investigative Dermatology 11 (1998) 767-775. [19]J. Kishimoto, R.E. Burgeson, B.A. Morgan, Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes & Development 14 (2000) 1181-1185. [20]M. Rendl, L. Polak, E. Fuchs, BMP signaling in dermal papilla cells is required for their hair follicle inductive properties. Journal of Investigative Dermatology 128 (2008) 856. [21]J.Z. Qiao, A. Turetsky, P. Kemp, J. Teumer, Hair morphogenesis in vitro: formation of hair structures suitable for implantation. Regenerative Medicine 3 (2008) 683-692. [22]C.A.B. Jahoda, R.F. Oliver, A.J. Reynolds, J.C. Forrester, J.W. Gillespie, P.B. Cserhalmi-Friedman, A.M. Christiano, K.A. Horne, Trans-species hair growth induction by human hair follicle dermal papillae. Experimental Dermatology 10 (2001) 229-237. [23]C.A.B. Jahoda, Induction of follicle formation and hair-growth by vibrissa dermal papillae implanted into rat ear wounds - vibrissa-type fibers are specified. Development 115 (1992) 1103-1109. [24]M. Itoh, Y. Hiraoka, K. Kataoka, N.H. Huh, Y. Tabata, H. Okochi, Novel collagen sponge reinforced with polyglycolic acid fiber produces robust, normal hair in murine hair reconstitution model. Tissue Engineering 10 (2004) 818-824. [25]A.J. Reynolds, C.A.B. Jahoda, Cultured dermal papilla cells induce follicle formation and hair growth by trans differentiation of an adult epidermis. Development 115 (1992) 587-593. [26]Y. Zheng, X.B. Du, W. Wang, M. Boucher, S. Parimoo, K.S. Stenn, Organogenesis from dissociated cells: Generation of mature cycling hair follicles from skin-derived cells. Journal of Investigative Dermatology 124 (2005) 867-876. [27]J. Qiao, E. Philips, J. Teumer, A graft model for hair development. Experimental Dermatology 17 (2008) 512-518. [28]K. Inoue, H. Kato, T. Sato, A. Osada, N. Aoi, H. Suga, H. Eto, K. Gonda, K. Yoshimura, Evaluation of Animal Models for the Hair-Inducing Capacity of Cultured Human Dermal Papilla Cells. Cells Tissues Organs 190 (2009) 102-110. [29]A. Osada, T. Iwabuchi, J. Kishimoto, T.S. Hamazaki, H. Okochi, Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Engineering 13 (2007) 975-982. [30]J. Colina. B. , Roy F.Oliver, Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro. J. Embryol. exp. Morph 79 (1984) 211-224. [31]C.A.B. Jahoda, A.J. Reynolds, C. Chaponnier, J.C. Forester, G. Gabbiani, Smooth-muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. Journal of Cell Science 99 (1991) 627-636. [32]S. Muller-Rover, E.J.M. Peters, V.A. Botchkarev, A. Panteleyev, R. Paus, Distinct patterns of NCAM expression are associated with defined stages of murine hair follicle morphogenesis and regression. Journal of Histochemistry & Cytochemistry 46 (1998) 1401-1409. [33]B.K. Handjiski, S. Eichmuller, U. Hofmann, B.M. Czarnetzki, R. Paus, Alkaline-phosphatase activity and localization during the murine hair cycle. Br. J. Dermatol. 131 (1994) 303-310. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44803 | - |
| dc.description.abstract | 對嚴重掉髮及患有雄性禿的患者而言,利用組織工程的方式使毛囊再生來治療毛囊缺失可望成為未來一個重要的醫療方法。在毛囊重建工程中,毛囊內的間 葉細胞群,包含真皮乳頭及真皮鞘細胞被指出具有分化表皮角質細胞以形成完整的毛囊結構,但這項能力只存在當真皮乳頭或真皮鞘細胞聚集成多細胞球(微組織)的情況下才可在無毛的皮膚上新生毛囊。
而本研究的目的在於發展一個方式可以大量形成真皮乳頭微組織,使用的聚 二甲基矽氧烷(PDMS)製造的微陣列孔洞薄膜配合真皮乳頭細胞自我聚集的特性,最後希望可以有效率的進行毛囊重建的工作,亦即,先大量擴展真皮乳頭細胞的數量;將真皮乳頭細胞培養成具有誘導能力的微組織;將微組織移植到無毛的皮膚上進行毛囊重建工作。為了達到此目的,我們使用高生物相容性的 PDMS 做為材料製造微陣列孔洞薄膜,薄膜上含有 200μm 到 800μm 不同大小的微孔洞,由於真皮乳頭細胞對 PDMS 的貼附性不佳,因此會掉落到微孔洞內後自行產生聚集的細胞團。我們發現當細胞密度為 2.1*105/cm2 時,在大小為 200μm 以及 300μm 的微陣列孔洞薄膜中(含 100 個微孔洞)可以形成規則排列且大量的均勻球狀微組織。 而為了確認這些為組織誘導毛囊新生的能力,首先我們對為組織進行真皮乳頭細胞特殊細胞標記,包含 α-SMA 及 NCAM 的免疫螢光染色,發現其確實仍保有這些特殊蛋白。之後在一般被認為與真皮乳頭誘導能力有關的鹼性磷酸酶上,我們的微組織也同樣有大量表現。最後,利用真皮乳頭微組織混合新生鼠的表皮細胞植入裸鼠背部,也發現有新生的毛髮結構。 因此藉由本實驗提出的方式,我們確實可以在高細胞密度下利用 PDMS 微孔洞薄膜來形成大量的真皮乳頭微組織,而近一步應用在毛囊工程上及研究毛囊細胞間的交互作用上。 | zh_TW |
| dc.description.abstract | For severe cases of hair loss or alopecia, regeneration of hair follicles (HFs) by tissue engineering is a promising future treatment. To regenerate HFs in hairless skin, the unique HF mesenchymal cells, including dermal papilla (DP) cells and dermal sheath (DS) cells, have been demonstrated to be able to transdifferentiate epidermal keratinocytes into HF structures when the in vitro expanded DP cells are transplanted to the dermis as multicellular aggregates.
The aim of this study was to develop a strategy for mass generation DP microtissues from dissociated DP cells by patterned Polydimethylsiloxane (PDMS) membranes and self-assembly of DP cells. After all, we hope we can have an efficient approach for HF regeneration: expansion of DP cells; cultivation of DP cells into inductive microtissues; transplantation of DP microtissues to the hairless skin. For this purpose, we used biocompatible material, PDMS, to fabricate patterned membranes containing many pores with size from 200μm to 800μm. Because DP cells are poorly adherent to the PDMS surface, they tend to aggregate in the pore of the membrane. Therefore, we could generate uniform patterned spheroid DP microtissues within 3 days when the cell density was 2.1*105cells/cm2 on the membrane containing 100 pores with size between 200μm to 300μm. To investigate the possibility of HF reformation induced by DP microtissues, at first, we examined the preservation of the phenotype of DP cells in microtissues. The expression of two markers of DP cells, α-smooth muscle actin (α-SMA) and neural cell adhesion molecule (NCAM), is well preserved in microtissues. Second, cultured DP microtissues also expressed alkaline phosphotase (AP) which has been regarded as an indicator for hair inductivity. Third, typical HF structures formed when mixing DP microtissues with epithelial cells of C57B/6 neonatal mice. Hence we can generate a large-scale DP microtissues by using patterned PDMS membranes at a higher seeding density. This system is of potential to be applied to HF engineering and the investigation of cellular interaction in the pattered follicular cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:55:17Z (GMT). No. of bitstreams: 1 ntu-99-R97548031-1.pdf: 4535957 bytes, checksum: 295bdd582fbfc4e1df7ff3c00d944b3a (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………………………I
摘要……………………………………………………………………………………II Abstract..…………………………………………………………………III 目錄……………………………………………………………………………………V 圖目錄………………………………………………………………………………VIII 表目錄…………………………………………………………………………………X 第一章 序論……………………………………………………………………………1 1.1 禿髮與禿髮治療…………………………………………………………1 1.1.1 禿髮…………………………………………………………………………1 1.1.2 禿髮治療…………………………………………………………………2 1.2 毛囊……………………………………… …………………2 1.2.1 毛囊結構…………………………………………………………………2 1.2.2 毛囊的型態發育學 (Morphogenesis)……4 1.2.3 毛髮週期…………………………………………………………………5 1.3 毛囊組織工程與毛囊幹細胞………………………………………………8 1.3.1 組織工程…………………………………………………………………8 1.3.2 毛囊組織工程……………………………………………………………9 1.3.2.1 毛囊體外培養與毛囊各部位再生能力………9 1.3.2.2 毛囊表皮幹細胞……………………………………………………10 1.3.2.3 誘導性真皮細胞……………………………………………………10 1.4 毛囊重建……………………………………………………………………..13 1.4.1 毛囊細胞植入法(Follicular cell implantation, FCI)…………13 1.4.2 體外培養毛囊微小器官(mini organ)………………15 1.5 毛囊重建動物實驗模型…………………………………………………16 1.6 聚二甲基矽氧烷 Polydimethylsiloxane (PDMS)………17 第二章 研究概述……………………………………………………………………20 2.1 毛囊重建的方法…………………………………………………………20 2.2 研究假設與目的…………………………………………………………20 2.3 研究方法簡述……………………………………………………………21 第三章 實驗材料與方法………………………………………………………23 3.1 實驗藥品……………………………………………………………………23 3.2 實驗儀器……………………………………………………………………24 3.3 分離大鼠鬍鬚真皮乳頭與真皮乳頭細胞繼代培養……………………25 3.4 PDMS 微陣列製備…………………………………………………………26 3.5 塗佈乙烯-乙烯醇共聚合(EVAL)薄膜於培養基上……………………26 3.6 設定不同細胞數量於不同孔徑大小的微陣列中培養…………………26 3.7 免疫螢光染色……………………………………………………………28 3.8 細胞活性染色……………………………………………………………29 3.9 鹼性磷酸酶染色………………………………………………………29 3.10 掃描式電子顯微鏡觀測…………………………………………………30 3.11 共軛焦顯微鏡觀測…………………………………………………………30 3.12 計算真皮乳頭細胞密度與微組織形成之關聯性…………………………30 3.13 動物實驗……………………………………………………………………32 第四章 結果與討論…………………………………………………………………34 4.1 PDMS 微陣列………………………………………………………………34 4.2 大鼠鬍鬚毛囊真皮乳頭細胞初代培養……………………………………35 4.3 真皮乳頭細胞數搭配不同微陣列孔洞大小形成微組織的型態觀察……36 4.4 觀察真皮乳頭微組織的活性………………………………………………47 4.4.1 真皮乳頭微組織之生長型態可隨培養方式不同而改變…………47 4.4.2 真皮乳頭微組織活性螢光染色………………………………………48 4.5 In vitro 培養下觀察真皮乳頭微組織保留毛囊再生誘導能力……………49 4.6 真皮乳頭細胞與角質細胞共同培養進行真皮乳頭微組織團型態觀察…51 4.7 利用塗佈乙烯-乙烯醇共聚物培養基搭配微陣列培養真皮乳頭細胞……53 4.8 討論細胞密度與形成真皮乳頭微組織的關係………………………………………………55 4.9 長時間培養真皮乳頭微組織表現鹼性磷酸酶之差異性…………………62 4.10 動物實驗驗證真皮乳頭微組織具有誘導毛髮生長能力…………………67 第五章 結論…………………………………………………………………………69 第六章 參考文獻……………………………………………………………………70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聚二甲基矽氧烷 | zh_TW |
| dc.subject | 毛囊重建 | zh_TW |
| dc.subject | 真皮乳頭細胞 | zh_TW |
| dc.subject | 聚集 | zh_TW |
| dc.subject | dermal papilla | en |
| dc.subject | PDMS | en |
| dc.subject | aggregation | en |
| dc.subject | hair follicle regeneration | en |
| dc.title | 利用聚二甲基矽氧烷微陣列薄膜形成具誘導毛囊新生能力的真皮乳頭微組織並應用於毛囊重建工程上 | zh_TW |
| dc.title | Using PDMS microarray film to form inductive dermal papilla microtissues for application of hair follicle reconstruction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾次文,劉得任,黃意真 | |
| dc.subject.keyword | 毛囊重建,真皮乳頭細胞,聚集,聚二甲基矽氧烷, | zh_TW |
| dc.subject.keyword | hair follicle regeneration,dermal papilla,aggregation,PDMS, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-06-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
