請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44800完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉如熹 | |
| dc.contributor.author | Yu-Chuan Chang | en |
| dc.contributor.author | 張毓娟 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:55:13Z | - |
| dc.date.available | 2013-06-30 | |
| dc.date.copyright | 2010-06-30 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-25 | |
| dc.identifier.citation | [1] Chapin, D. M.; Fuller, C. S.; Pearson, G. L. “A NEW SILICON P-N JUNCTION PHOTOCELL FOR CONVERTING SOLAR RADIATION INTO ELECTRICAL POWER”, J. Appl. Phys. 1954, 25, 676.
[2] O’ Regan, B.; Grätzel, M. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 1991, 353, 737. [3] http://nano.nchc.org.tw/dictionary/quantum_dots.php [4] Raviendra, D.; Sharma, J. K. “Electroless deposition of cadmium stannate, zinc oxide, and aluminm-doped zinc oxide films”, J. Appl. Phys. 1985, 58, 838. [5] http://big5.nikkeibp.com.cn/news/nano.html?start=120 [6] http://140.116.207.96/handle/987654321/60874 [7] 莊佑豪,水溶液法製備氧化鋅薄膜及其光學特性研究,大同大學材料工程研究所碩士論文,民98. [8] 張立群譯,光清淨革命-活躍的二氧化鈦光觸媒,協志工業叢書印行,民89. [9] 藤嶋 昭,本多健一,菊池真一,工業化學,民58. [10] Fujishima, A.; Honda, K. “Electrochemical photolysis of water at a semi- conductor electrode”, Nature 1972, 238, 37. [11] 林宛嫺,溶膠凝膠法與固相法合成鉭酸鈉及其應用於紫外光分解水製氫之研究,國立成功大學化學工程研究所碩士論文,民95. [12] Kudo, A.; Kato, H.; Tsuji, I. “Strategies for the development of visible-light-driven photocatalysts for water splitting”, Chem. Lett. 2004, 33, 1534. [13] Grätzel, M. “Photoelectrochemical Cells”, Nature 2001, 414, 338. [14] 南區奈米科技教育發展中心,奈米科技-基礎、應用與實作,高立圖書有限公司,民94. [15] Tak, Y.; Hong, S. J.; Lee, J. S.; Yong, K. “Solution-Based Synthesis of a CdS Nanoparticle/ZnO Nanowire Heterostructure Array”, Crystal Growth & Design 2009, 9, 2627. [16] Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. “CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes”, J. Am. Chem. Soc. 2008, 130, 1124. [17] Lee, Y. L.; Chi, C. F.; Liau, S. Y. “CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell”, Chem. Mater. 2010, 22 , 922. [18] Chong, L. W.; Chien, H. T.; Lee, Y. L. “Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications”, J. Power Sources 2010, 195, 5109. [19] Gao, X. F.; Li, H. B.; Sun, W. T.; Chen, Q.; Tang, F. Q.; Peng, L. M. “CdTe Quantum Dots-Sensitized TiO2 Nanotube Array Photoelectrodes”, J. Phys. Chem. C 2009, 113, 7531. [20] 葉佳靈,氧化鋅奈米柱與奈米管之製備及其應用研究,國立台灣師範大學光電科技研究所,民98. [21] Akihiko, K. “Development of photocatalyst materials for water splitting”, Int. J. Hydrogen Energy 2006, 31, 197. [22] 鄧熙聖,陳俊吉,金屬氧化物半導體在可見光分解水製氫之研究 ,國立成功大學碩士論文,民94. [23] Li, W. J.; Shi, E. W.; Zhong, W. Z.; Yin, Z. W. “Growth mechanism and growth habit of oxide crystals”, J. Cryst. Growth 1999, 203, 186. [24] 林昇志,量子點的組裝及其在染料敏化太陽能電池的應用,國立成功大學化學工程學系碩士論文,民95. [25] Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. “DYE SENSITIZED ZINC-OXIDE - AQUEOUS-ELECTROLYTE - PLATINUM PHOTOCELL”, Nature 1976, 261, 402. [26] Vlachopoulos, N.; Liska, P.; Augustynski, J.; Grätzel, M. “VERY EFFICIENT VISIBLE-LIGHT ENERGY HARVESTING AND CONVERSION BY SPECTRAL SENSITIZATION OF HIGH SURFACE-AREA POLYCRYSTALLINE TITANIUM-DIOXIDE FILMS”, J. Am. Chem. Soc. 1988, 110, 1216. [27] Grätzel, M. “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg. Chem. 2005, 44, 6841. [28] Sun, W.-T.; Yu, Y.; Pan, H.-Y.; Gao, X.-F.; Chen, Q.; Peng, L.-M. “CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes”, J. Am. Chem. Soc. 2008, 130, 1124. [29] Tang, J.; Birkedal, H.; McFarland, E. W.; Stucky, G. D. “Self-assembly of CdSe/CdS quantum dots by hydrogen bonding on Au surfaces for photoreception”, Chem. Comm. 2003, 18, 2278. [30] Liu, D.; Kamat, P. V. “PHOTOELECTROCHEMICAL BEHAVIOR OF THIN CDSE AND COUPLED TIO2 CDSE SEMICONDUCTOR-FILMS”, J. Phys. Chem. 1993, 97, 10769. [31] Robel, I.; Kuno, M.; Kamat, P. V. “Size-Dependent Electron Injection from Excited CdSe Quantum Dots into TiO2 Nanoparticles”, J. Am. Chem. Soc. 2007, 129, 4136. [32] Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices”, Nano Lett. 2007, 7, 1793. [33] Zaban, A.; Micic, O. I.; Gregg, B. A.; Nozik, A. J. “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots”, Langmuir 1998, 14, 3153. [34] Hoyer, P.; Könenkamp, R. “SMALL QUANTUM-SIZED CDS PARTICLES ASSEMBLED TO FORM A REGULARLY NANOSTRUCTURED POROUS FILM”, Appl. Phys. Lett. 1995, 66, 349. [35] Plass, R.; Pelet, S.; Krueger, J.; Grätzel, M. “Quantum dot sensitization of organic-inorganic hybrid solar cells”, J. Phys. Chem. B 2002, 106, 7578. [36] 賴致遠,化學浴沉積法合成氧化鋅奈米線及其特性分析,國立成功大學化學工程研究所碩士論文,民95. [37] Nazeeruddin, M. K.; Pechy, P.; Grätzel, M. “Efficient panchromatic sensitization of nanocrystalline TiO2 films by black dye based on a trithiocyanato-ruthenium complex”, J. Phys. Chem. B 1997, 18, 8981. [38] Kerr, J. F.; Wyllie, A. H.; Currie, A. R. “APOPTOSIS - BASIC BIOLOGICAL PHENOMENON WITH WIDE-RANGING IMPLICATIONS IN TISSUE KINETICS”, Br. J. Cancer. 1972, 26, 239. [39] Lockshin, R. A.; Beaulaton, J. “Programmed cell death”, Life Sci. 1974, 15, 1549. [40] Zakeri, Z.; Lockshin, R. A. “PHYSIOLOGICAL CELL-DEATH DURING DEVELOPMENT AND ITS RELATIONSHIP TO AGING”, Aging Clock 1994, 719, 212. [41] Reed, J. C. “Mechanisms of apoptosis avoidance in cancer”, Curr. Opin. Oncol. 1999, 11, 68. [42] 簡子傑,硒化鎘量子點敏化氧化鋅奈米柱陣列之光電化學研究,國立中正大學化學工程研究所碩士論文,民97. [43] 鄧昌蔚,科學教育月刊 246期,32,民91. [44] West, A. R. Basic Solid State Chemistry; John Wiley & Sons: Singapore, 1991. [45] 汪建民,材料分析,中國材料科學學會,民87. [46] 伍秀菁、汪若文和林美吟,儀器總覽,國科會精儀中心,民87. [47] 杜正恭,儀器總覽,國科會精儀中心,民87. [48] http://www.ndhu.edu.tw/~nano/labtext/93_Ma_II_v2.pdf. [49] Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films”, J. Am. Chem. Soc. 2006, 128, 2385. [50] Yang, X.; Wolcottt, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting”, Nano Lett. 2009, 9, 2331. [51] Alley, M. C. “Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay”, Cancer Res. 1988, 48, 589. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44800 | - |
| dc.description.abstract | 全球暖化議題近年備受注目,且石油終將耗盡,故各界積極開發大自然資源材料與無汙染之綠色能源,其中利用太陽光作為能源之光觸媒產氫(water splitting)與太陽能電池(solar cell)成為重要發展方向,因此須開發新穎之工作電極,以提高其光電轉換效率。本研究乃利用水熱法(hydrothermal method)於摻氟之二氧化錫基板上成長高均向性之一維氧化鋅(zinc oxide)奈米柱作為工作電極,並合成碲化鎘與碲化汞鎘量子點作為其光敏化劑,將其附著於氧化鋅奈米柱工作電極上,進而成功製作具光敏化效果之功能性複合半導體薄膜。
本研究中將碲化鎘(CdTe)與碲化汞鎘(HgCdTe)量子點吸附於氧化鋅奈米柱表面,利用量子點吸收可見光中偏紅光區域波段之特性,藉以提升光電流,進而提升光電轉換效率,由實驗結果顯示,加入碲化鎘量子點後之氧化鋅奈米柱之效率從0.66%增加至1.83%,提升約200%之效率,當加入碲化汞鎘量子點後之氧化鋅奈米柱之效率從0.66%增加至2.24%,提升約240%之效率,已成功提升量子點敏化光觸媒產氫與量子點敏化太陽能電池效率,展現量子點敏化之效果。 此外,對碲化鎘與碲化汞鎘量子點作細胞毒性測試,發現碲化鎘與碲化汞鎘量子點均具誘發細胞死亡之作用,均會抑制細胞之生長,故更進一步對量子點作細胞凋亡機制分析。 | zh_TW |
| dc.description.abstract | Global warming much attention in recent years, and the oil will eventually run out, so people positively develop the natural resources of materiaproduction and solar cell have become an important direction of development. It is necessary to develop novel working electrode in order to improve its energy conversion efficiency. In this study, utilizing hydrothermal method to grow high-isotropic one-dimensional zinc oxide nanorods on fluorine-doped tin oxide substrate as the working electrode. Synthesis of cadmium telluride or mercury cadmium telluride quantum dots as photosensitizer. Then quantum dots attached to zinc oxide nanorods on the working electrode, and then successfully produced functional effects of a photosensitive compound semiconductor films.
In this study, cadmium telluride and mercury cadmium telluride quantum dots adsorbed on the surface of zinc oxide nanorods. Using quantum dots absorb visible light in the red side band of the region to enhance the photocurrent and thus enhance the photoelectric conversion efficiency, which had successfully enhanced quantum dots-sensitized photocatalytic water splitting and quantum dot-sensitized solar cell efficiency. The results showed that the efficiency of cadmium telluride quantum dots join to ZnO nanorods increased from 0.66% to 1.83%, which enhance the efficiency of about 200%, and the efficiency of mercury cadmium telluride quantum dots join to ZnO nanorods increased from 0.66% to 2.24%, which enhance the efficiency of about 240%. In addition to doing cell toxicity test of the cadmium telluride and mercury cadmium telluride quantum dots and finding that cadmium telluride and mercury cadmium telluride quantum dots have a role in induced cell death. This will inhibit the cell growth. Therefore, further on the mechanism of quantum dots for analysis of apoptosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:55:13Z (GMT). No. of bitstreams: 1 ntu-99-R97223124-1.pdf: 4422652 bytes, checksum: 43b8c66570f6b72b9d5ec2b14b5d793e (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 謝誌......I
摘要......II Abstract......III 圖目錄......VII 表目錄......X 第一章 緒論......1 1.1前言......1 1.2奈米材料之特性......2 1.3氧化鋅簡介......4 1.4水分解簡介......5 1.4.1 光觸媒之發現 : 本多-藤嶋效應(Honda - Fujishima effect)......5 1.4.2 光觸媒催化原理......7 1.4.3 量子點敏化光觸媒產氫......10 1.4.4 量子點敏化光觸媒產氫之原理......10 1.4.5 犧牲試劑之工作原理......12 1. 5太陽能電池......13 1.5.1 染料敏化太陽能電池......13 1.5.2 量子點敏化太陽能電池......15 1.5.3 量子點敏化太陽能電池之原理......16 1.6 細胞凋亡(apoptosis)......20 1.7 研究動機與目的 ......22 第二章 實驗步驟與儀器分析方法......23 2.1化學藥品......23 2.2 碲化鎘量子點......25 2.2.1 碲化鎘量子點之配製......25 2.2.2 實驗流程圖......26 2.3 碲化汞鎘量子點 ......27 2.3.1 碲化汞鎘量子點之配製......27 2.4 氧化鋅奈米柱......29 2.4.1 氧化鋅晶種層之配製......29 2.4.2 實驗流程圖......29 2.4.3 氧化鋅奈米柱之成長......30 2.4.4 實驗流程圖......30 2.5 氧化鋅奈米柱與碲化鎘量子點複合材料之配製......31 2.6 氧化鋅奈米柱與碲化汞鎘量子點複合材料之配製......31 2.7 元件封裝......31 2.7.1 量子點敏化光觸媒之組裝......31 2.7.2 量子點敏化太陽能電池之組裝......33 2.7.3 電流電壓效率曲線(I-V curve)量測......36 2.8 細胞毒性測試(cytotoxicity test)......38 2.9 西方墨點法(Western Blotting)......39 2.10 分析設備與方法......41 第三章 結果與討論......52 3.1碲化鎘量子點......52 3.1.1 碲化鎘量子點之紫外可見光吸收光譜分析......52 3.1.2 碲化鎘量子點之能隙......53 3.1.3 碲化鎘量子點之晶體結構分析......54 3.1.4 碲化鎘量子點之高解析穿透式電子顯微鏡分析......56 3.1.5 碲化鎘量子點之元素組成分析......58 3.2碲化汞鎘量子點......61 3.2.1 碲化汞鎘量子點之紫外可見光吸收光譜分析......61 3.2.2 碲化汞鎘量子點之能隙......62 3.2.3 碲化汞鎘量子點之晶體結構分析......63 3.2.4 碲化汞鎘量子點之高解析穿透式電子顯微鏡分析......65 3.2.5 碲化汞鎘量子點之元素組成分析......67 3.3 氧化鋅吸附碲化鎘量子點之光觸媒......69 3.3.1 氧化鋅吸附碲化鎘量子點之高解析穿透式電子顯微鏡分析......72 3.3.2 電流-電壓特性分析......78 3.4 氧化鋅吸附碲化汞鎘量子點之光觸媒......85 3.4.1 電流-電壓特性分析......85 3.5 氧化鋅吸附碲化鎘量子點敏化太陽能電池......93 3.5.1 電池光電特性分析......93 3.6 氧化鋅吸附碲化汞鎘量子點敏化太陽能電池......95 3.6.1 電池光電特性分析......95 3.7 碲化鎘與碲化汞鎘量子點之毒性測試......97 第四章 結論......100 參考文獻......102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 碲化鎘 | zh_TW |
| dc.subject | 碲化汞鎘 | zh_TW |
| dc.subject | 光觸媒產氫 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | solar cell | en |
| dc.subject | cadmium telluride | en |
| dc.subject | quantum dots | en |
| dc.subject | mercury cadmium telluride | en |
| dc.subject | photocatalytic hydrogen production | en |
| dc.title | 量子點敏化光觸媒水裂解產氫與太陽能電池 | zh_TW |
| dc.title | Quantum-Dot-Sensitized Photocatalytic Water Splitting Hydrogen Generation and Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭淑芬,蕭宏昇,張文昇,許火順 | |
| dc.subject.keyword | 碲化鎘,碲化汞鎘,光觸媒產氫,太陽能電池,量子點, | zh_TW |
| dc.subject.keyword | cadmium telluride,mercury cadmium telluride,photocatalytic hydrogen production,solar cell,quantum dots, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-06-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
