Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44792
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳義雄
dc.contributor.authorChung-Mao Ouen
dc.contributor.author歐宗茂zh_TW
dc.date.accessioned2021-06-15T03:55:02Z-
dc.date.available2012-07-05
dc.date.copyright2010-07-05
dc.date.issued2010
dc.date.submitted2010-06-28
dc.identifier.citationAndrews, J.C., J.P. Nolan, R.H. Hammerstedt, and B.D. Bavister. 1994. Role of zinc during hamster sperm capacitation. Biol Reprod. 51:1238-47.
Aonuma, S., M. Okabe, and M. Kawaguchi. 1978. The effect of zinc ions on fertilization of mouse ova in vitro. J Reprod Fertil. 53:179-83.
Austin, C.R. 1951. Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B. 4:581-96.
Bedford, J.M. 1970. Sperm capacitation and fertilization in mammals. Biol Reprod. 2:Suppl 2:128-58.
Bellve, A.R., W. Zheng, and Y.S. Martinova. 1993. Recovery, capacitation, acrosome reaction, and fractionation of sperm. Methods Enzymol. 225:113-36.
Bielfeld, P., R.S. Jeyendran, and L.J. Zaneveld. 1991. Human spermatozoa do not undergo the acrosome reaction during storage in the cervix. Int J Fertil. 36:302-6.
Bleil, J.D., and P.M. Wassarman. 1990. Identification of a ZP3-binding protein on acrosome-intact mouse sperm by photoaffinity crosslinking. Proc Natl Acad Sci U S A. 87:5563-7.
Boatman, D.E., and R.S. Robbins. 1991. Bicarbonate: carbon-dioxide regulation of sperm capacitation, hyperactivated motility, and acrosome reactions. Biol Reprod. 44:806-13.
Boettger-Tong, H.L., D.J. Aarons, B.E. Biegler, B. George, and G.R. Poirier. 1993. Binding of a murine proteinase inhibitor to the acrosome region of the human sperm head. Mol Reprod Dev. 36:346-53.
Brooks, D.E. 1983. Epididymal functions and their hormonal regulation. Aust J Biol Sci. 36:205-21.
Brown, C.R., and R.A. Harrison. 1978. The activation of proacrosin in spermatozoa from ram bull and boar. Biochim Biophys Acta. 526:202-17.
Brucker, C., and G.B. Lipford. 1995. The human sperm acrosome reaction: physiology and regulatory mechanisms. An update. Hum Reprod Update. 1:51-62.
Bukovsky, A., C.J. Thaler, and J.A. McIntyre. 1991. Antigens of immunoglobulin G-Fc receptor III in human male reproductive tract accessory glands. Fertil Steril. 55:595-602.
Cechová, D., and V. Jonáková. 1981. Bull seminal plasma proteinase inhibitors. Methods Enzymol. 80:792-803.
Chang, M.C. 1951. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature. 168:697-8.
Chen, L.Y., Y.H. Lin, M.L. Lai, and Y.H. Chen. 1998. Developmental profile of a caltrin-like protease inhibitor, P12, in mouse seminal vesicle and characterization of its binding sites on sperm surface. Biol Reprod. 59:1498-505.
Chen, Y.H., B.T. Pentecost, J.A. McLachlan, and C.T. Teng. 1987. The androgen-dependent mouse seminal vesicle secretory protein IV: characterization and complementary deoxyribonucleic acid cloning. Mol Endocrinol. 1:707-16.
Coronel, C.E., and H.A. Lardy. 1992. Functional properties of caltrin proteins from seminal vesicle of the guinea pig. Mol Reprod Dev. 33:74-80.
Coronel, C.E., M.L. Novella, D.E. Winnica, and H.A. Lardy. 1993. Isolation and characterization of a 54-kilodalton precursor of caltrin, the calcium transport inhibitor protein from seminal vesicles of the rat. Biol Reprod. 48:1326-33.
Coronel, C.E., J. San Agustin, and H.A. Lardy. 1990. Purification and structure of caltrin-like proteins from seminal vesicle of the guinea pig. J Biol Chem. 265:6854-9.
Cross, N.L. 1996. Human seminal plasma prevents sperm from becoming acrosomally responsive to the agonist, progesterone: cholesterol is the major inhibitor. Biol Reprod. 54:138-45.
Cross, N.L. 1998. Role of cholesterol in sperm capacitation. Biol Reprod. 59:7-11.
Dacheux, J.L., F. Dacheux, and M. Paquignon. 1989. Changes in sperm surface membrane and luminal protein fluid content during epididymal transit in the boar. Biol Reprod. 40:635-51.
DasGupta, S., C.L. Mills, and L.R. Fraser. 1994. A possible role for Ca(2+)-ATPase in human sperm capacitation. J Reprod Fertil. 102:107-16.
Dietl, T., J. Kruck, W.B. Schill, and H. Fritz. 1976. Localization of seminal plasma proteinase inhibitors in human spermatozoa as revealed by the indirect immunofluorescence technique. Hoppe Seylers Z Physiol Chem. 357:1333-7.
Fink, E., and H. Fritz. 1976. Proteinase inhibitors from guinea pig seminal vesicles. Methods Enzymol. 45:825-33.
Fink, E., C. Hehlein-Fink, and M. Eulitz. 1990. Amino acid sequence elucidation of human acrosin-trypsin inhibitor (HUSI-II) reveals that Kazal-type proteinase inhibitors are structurally related to beta-subunits of glycoprotein hormones. FEBS Lett. 270:222-4.
Florman, H.M., and Babcock D.F. 1991. Progress towards understanding the molecular basis of capacitation. In: Wassarman P, ed. Elements of Mammalian Fertilization. Vol. I. Basic Concepts. Boca Raton, Florida: CRC Press; 105-132.
Florman, H.M., K.B. Bechtol, and P.M. Wassarman. 1984. Enzymatic dissection of the functions of the mouse egg's receptor for sperm. Dev Biol. 106:243-55.
Florman, H.M., M.E. Corron, T.D. Kim, and D.F. Babcock. 1992. Activation of voltage-dependent calcium channels of mammalian sperm is required for zona pellucida-induced acrosomal exocytosis. Dev Biol. 152:304-14.
Fritz, H., H. Tschesche, and E. Fink. 1976. Proteinase inhibitors from boar seminal plasma. Methods Enzymol. 45:834-47.
Gates, A.H., and J.L. Bozarth. 1978. Ovulation in the PMSG-treated immature mouse: effect of dose, age, weight, puberty, season and strain (BALB/c, 129 and C129F1 hybrid). Biol Reprod. 18:497-505.
Go, K.J., and D.P. Wolf. 1985. Albumin-mediated changes in sperm sterol content during capacitation. Biol Reprod. 32:145-53.
Hall, J.C., and G.J. Killian. 1987. Changes in rat sperm membrane glycosidase activities and carbohydrate and protein contents associated with epididymal transit. Biol Reprod. 36:709-18.
Honda, A., K. Yamagata, S. Sugiura, K. Watanabe, and T. Baba. 2002. A mouse serine protease TESP5 is selectively included into lipid rafts of sperm membrane presumably as a glycosylphosphatidylinositol-anchored protein. J Biol Chem. 277:16976-84.
Huang, Y.H., S.T. Chu, and Y.H. Chen. 2000. A seminal vesicle autoantigen of mouse is able to suppress sperm capacitation-related events stimulated by serum albumin. Biol Reprod. 63:1562-6.
Huhtala, M.L. 1984. Demonstration of a new acrosin inhibitor in human seminal plasma. Hoppe Seylers Z Physiol Chem. 365:819-25.
Irwin, M., N. Nicholson, J.T. Haywood, and G.R. Poirier. 1983. Immunofluorescent localization of a murine seminal vesicle proteinase inhibitor. Biol Reprod. 28:1201-6.
Kalab, P., P. Visconti, P. Leclerc, and G.S. Kopf. 1994. p95, the major phosphotyrosine-containing protein in mouse spermatozoa, is a hexokinase with unique properties. J Biol Chem. 269:3810-7.
Kinloch, R.A., Y. Sakai, and P.M. Wassarman. 1995. Mapping the mouse ZP3 combining site for sperm by exon swapping and site-directed mutagenesis. Proc Natl Acad Sci U S A. 92:263-7.
Kohno, N., K. Yamagata, S. Yamada, S. Kashiwabara, Y. Sakai, and T. Baba. 1998. Two novel testicular serine proteases, TESP1 and TESP2, are present in the mouse sperm acrosome. Biochem Biophys Res Commun. 245:658-65.
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680-5.
Lai, M.L., S.W. Chen, and Y.H. Chen. 1991. Purification and characterization of a trypsin inhibitor from mouse seminal vesicle secretion. Arch Biochem Biophys. 290:265-71.
Lee, M.A., and B.T. Storey. 1986. Bicarbonate is essential for fertilization of mouse eggs: mouse sperm require it to undergo the acrosome reaction. Biol Reprod. 34:349-56.
Lenz, R.W., G.D. Ball, J.K. Lohse, N.L. First, and R.L. Ax. 1983. Chondroitin sulfate facilitates an acrosome reaction in bovine spermatozoa as evidenced by light microscopy, electron microscopy and in vitro fertilization. Biol Reprod. 28:683-90.
Lewis, R.V., J.S. Agustin, W. Kruggel, and H.A. Lardy. 1985. The structure of caltrin, the calcium-transport inhibitor of bovine seminal plasma. Proc Natl Acad Sci U S A. 82:6490-1.
Lin, H.J., C.W. Luo, and Y.H. Chen. 2002. Localization of the transglutaminase cross-linking site in SVS III, a novel glycoprotein secreted from mouse seminal vesicle. J Biol Chem. 277:3632-9.
Lundwall, A. 1996. The cloning of a rapidly evolving seminal-vesicle-transcribed gene encoding the major clot-forming protein of mouse semen. Eur J Biochem. 235:424-30.
Luo, C.W., H.J. Lin, and Y.H. Chen. 2001. A novel heat-labile phospholipid-binding protein, SVS VII, in mouse seminal vesicle as a sperm motility enhancer. J Biol Chem. 276:6913-21.
Luo, C.W., H.J. Lin, S.C. Gopinath, and Y.H. Chen. 2004. Distinction of sperm-binding site and reactive site for trypsin inhibition on p12 secreted from the accessory sex glands of male mice. Biol Reprod. 70:965-71.
Marshall, R.D. 1972. Glycoproteins. Annu Rev Biochem. 41:673-702.
Meloun, B., D. Cechova, and V. Jonakova. 1983. Homologies in the structures of bull seminal plasma acrosin inhibitors and comparison with other homologous proteinase inhibitors of the Kazal type. Hoppe Seylers Z Physiol Chem. 364:1665-70.
Mills, J.S., M. Needham, and M.G. Parker. 1987. A secretory protease inhibitor requires androgens for its expression in male sex accessory tissues but is expressed constitutively in pancreas. EMBO J. 6:3711-7.
Mortillo, S., and P.M. Wassarman. 1991. Differential binding of gold-labeled zona pellucida glycoproteins mZP2 and mZP3 to mouse sperm membrane compartments. Development. 113:141-9.
Mortimer, D., E.F. Curtis, and R.G. Miller. 1987. Specific labelling by peanut agglutinin of the outer acrosomal membrane of the human spermatozoon. J Reprod Fertil. 81:127-35.
Neill, J.M., and P. Olds-Clarke. 1987. A computer-assisted assay for mouse sperm hyperactivation demonstrates that bicarbonate but not bovine serum albumin is required. Gamete Res. 18:121-40.
Neurath, H. 1984. Evolution of proteolytic enzymes. Science. 224:350-7.
Nolan, J.P., and R.H. Hammerstedt. 1997. Regulation of membrane stability and the acrosome reaction in mammalian sperm. FASEB J. 11:670-82.
Noyes, R.W. 1953. The fertilizing capacity of spermatozoa. West J Surg Obstet Gynecol. 61:342-9.
Ohmura, K., N. Kohno, Y. Kobayashi, K. Yamagata, S. Sato, S. Kashiwabara, and T. Baba. 1999. A homologue of pancreatic trypsin is localized in the acrosome of mammalian sperm and is released during acrosome reaction. J Biol Chem. 274:29426-32.
Okamura, N., Y. Tajima, A. Soejima, H. Masuda, and Y. Sugita. 1985. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem. 260:9699-705.
Pacey, A.A., N. Davies, M.A. Warren, C.L. Barratt, and I.D. Cooke. 1995. Hyperactivation may assist human spermatozoa to detach from intimate association with the endosalpinx. Hum Reprod. 10:2603-9.
Peitz, B., and P. Olds-Clarke. 1986. Effects of seminal vesicle removal on fertility and uterine sperm motility in the house mouse. Biol Reprod. 35:608-17.
Phelps, B.M., and D.G. Myles. 1987. The guinea pig sperm plasma membrane protein, PH-20, reaches the surface via two transport pathways and becomes localized to a domain after an initial uniform distribution. Dev Biol. 123:63-72.
Poirier, G.R., and J. Jackson. 1981. Isolation and characterization of two proteinase inhibitors from the male reproductive tract of mice. Gamete Res. 4:555-569.
Ravnik, S.E., J.J. Albers, and C.H. Muller. 1993. A novel view of albumin-supported sperm capacitation: role of lipid transfer protein-I. Fertil Steril. 59:629-38.
Ravnik, S.E., P.W. Zarutskie, and C.H. Muller. 1992. Purification and characterization of a human follicular fluid lipid transfer protein that stimulates human sperm capacitation. Biol Reprod. 47:1126-33.
Rawlings, N.D., D.P. Tolle, and A.J. Barrett. 2004. Evolutionary families of peptidase inhibitors. Biochem J. 378:705-16.
Richardson, R.T., N. Yamasaki, and M.G. O'Rand. 1994. Sequence of a rabbit sperm zona pellucida binding protein and localization during the acrosome reaction. Dev Biol. 165:688-701.
Riegman, P.H., R.J. Vlietstra, J.A. van der Korput, A.O. Brinkmann, and J. Trapman. 1991. The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinol. 5:1921-30.
Roche, P.J., S.A. Hoare, and M.G. Parker. 1992. A consensus DNA-binding site for the androgen receptor. Mol Endocrinol. 6:2229-35.
Roldan, E.R., and A.D. Fleming. 1989. Is a Ca2+ -ATPase involved in Ca2+ regulation during capacitation and the acrosome reaction of guinea-pig spermatozoa? J Reprod Fertil. 85:297-308.
Rufo, G.A., Jr., P.K. Schoff, and H.A. Lardy. 1984. Regulation of calcium content in bovine spermatozoa. J Biol Chem. 259:2547-52.
Saling, P.M. 1981. Involvement of trypsin-like activity in binding of mouse spermatozoa to zonae pellucidae. Proc Natl Acad Sci U S A. 78:6231-5.
Schill, W.B., N. Heimburger, H. Schiessler, R. Stolla, and H. Fritz. 1975. Reversible attachment and localization of the acid-stable seminal plasma acrosin-trypsin inhibitors on boar spermatozoa as revealed by the indirect immunofluorescent staining technique. Hoppe Seylers Z Physiol Chem. 356:1473-6.
Shi, Q.X., and E.R. Roldan. 1995. Bicarbonate/CO2 is not required for zona pellucida- or progesterone-induced acrosomal exocytosis of mouse spermatozoa but is essential for capacitation. Biol Reprod. 52:540-6
Shur, B.D., and N.G. Hall. 1982. A role for mouse sperm surface galactosyltransferase in sperm binding to the egg zona pellucida. J Cell Biol. 95:574-9.
Skudlarek, M.D., D.R. Tulsiani, S.K. Nagdas, and M.C. Orgebin-Crist. 1993. Beta-D-galactosidase of rat spermatozoa: subcellular distribution, substrate specificity, and molecular changes during epididymal maturation. Biol Reprod. 49:204-13.
Summers, M.C., L.K. McGinnis, J.A. Lawitts, M. Raffin, and J.D. Biggers. 2000. IVF of mouse ova in a simplex optimized medium supplemented with amino acids. Hum Reprod. 15:1791-801.
Thaler, C.D., and R.A. Cardullo. 1996. The initial molecular interaction between mouse sperm and the zona pellucida is a complex binding event. J Biol Chem. 271:23289-97.
Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 76:4350-4.
Tschesche, H., B. Wittig, G. Decker, W. Muller-Esterl, and H. Fritz. 1982. A new acrosin inhibitor from boar spermatozoa. Eur J Biochem. 126:99-104.
Tseng, H.C., H.J. Lin, P.S. Sudhakar Gandhi, C.Y. Wang, and Y.H. Chen. 2008. Purification and identification of transglutaminase from mouse coagulating gland and its cross-linking activity among seminal vesicle secretion proteins. J Chromatogr B Analyt Technol Biomed Life Sci. 876:198-202.
Tseng, H.C., H.J. Lin, J.B. Tang, P.S. Gandhi, W.C. Chang, and Y.H. Chen. 2009. Identification of the major TG4 cross-linking sites in the androgen-dependent SVS I exclusively expressed in mouse seminal vesicle. J Cell Biochem. 107:899-907.
Tufano, M.A., R. Porta, B. Farzati, P. Di Pierro, F. Rossano, P. Catalanotti, A. Baroni, and S. Metafora. 1996. Rat seminal vesicle protein SV-IV and its transglutaminase-synthesized polyaminated derivative SPD2-SV-IV induce cytokine release from human resting lymphocytes and monocytes in vitro. Cell Immunol. 168:148-57.
Tulsiani, D.R., M.D. Skudlarek, M.K. Holland, and M.C. Orgebin-Crist. 1993. Glycosylation of rat sperm plasma membrane during epididymal maturation. Biol Reprod. 48:417-28.
Veselsky, L., and D. Cechová. 1980. Distribution of acrosin inhibitors in bull reproductive tissues and spermatozoa. Hoppe Seylers Z Physiol Chem. 361:715-22.
Visconti, P.E., J.L. Bailey, G.D. Moore, D. Pan, P. Olds-Clarke, and G.S. Kopf. 1995. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 121:1129-37.
Visconti, P.E., and G.S. Kopf. 1998. Regulation of protein phosphorylation during sperm capacitation. Biol Reprod. 59:1-6.
von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14:4683-90.
Ward, C.R., and B.T. Storey. 1984. Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Dev Biol. 104:287-96.
Wassarman, P.M. 1999. Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion. Cell. 96:175-83.
Williams-Ashman, H.G. 1983. Regulatory features of seminal vesicle development and function. Curr Top Cell Regul. 22:201-75.
Wincek, T.J., R.F. Parrish, and K.L. Polakoski. 1979. Fertilization: a uterine glycosaminoglycan stimulates the conversion of sperm proacrosin to acrosin. Science. 203:553-4.
Winnica, D.E., M.L. Novella, A. Dematteis, and C.E. Coronel. 2000. Trypsin/acrosin inhibitor activity of rat and guinea pig caltrin proteins. Structural and functional studies. Biol Reprod. 63:42-8.
Xia, X., and Z. Xie. 2001. DAMBE: software package for data analysis in molecular biology and evolution. J Hered. 92:371-3.
Yu, L.C., J.L. Chen, W.B. Tsai, and Y.H. Chen. 1993. Primary structure and characterization of an androgen-stimulated autoantigen purified from mouse seminal-vesicle secretion. Biochem J. 296:571-6.
Zaneveld, L.J., R.T. Robertson, M. Kessler, and W.L. Williams. 1971. Inhibition of fertilization in vivo by pancreatic and seminal plasma trypsin inhibitors. J Reprod Fertil. 25:387-92.
Zaneveld, L.J., C.J. De Jonge, R.A. Anderson, and S.R. Mack. 1991. Human sperm capacitation and the acrosome reaction. Hum Reprod. 6:1265-74.
Zeng, Y., J.A. Oberdorf, and H.M. Florman. 1996. pH regulation in mouse sperm: identification of Na+, Cl-, and HCO3--dependent and arylaminobenzoate-dependent regulatory mechanisms and characterization of their roles in sperm capacitation. Dev Biol. 173:510-20.
Zhou, Z.X., C.I. Wong, M. Sar, and E.M. Wilson. 1994. The androgen receptor: an overview. Recent Prog Horm Res. 49:249-74.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44792-
dc.description.abstract本研究室已從小白鼠儲精囊分泌液純化得到一個由 57 個胺基酸所組成的 Kazal 型的胰蛋白酶抑制因子,其對胰蛋白酶的抑制常數 (Ki) 為 0.15 nM。由於此胰蛋白酶抑制因子的 cDNA 及胺基酸序列與 Mills 等人已發表的 P12 cDNA 所推測的結構相同,因此本實驗室將此小分子量 (約 6000 Da) 的蛋白暫時稱作 P12;而根據目前的國際命名,P12 已正式定名為 Spink3。從本實驗室的研究顯示,Spink3 會專一地結合在精蟲頂體前端,以 Scatchard plot 的分析可知Spink3 對精蟲的結合強度以解離常數 (Kd) 表示約為 70 nM,且與精蟲的結合部位為單一形式,每隻精蟲的最大結合量為 1.49 x 106。但研究至今,尚無法得知 Spink3 在精蟲的結合部位為何。
  本論文利用酵母菌雙雜合系統的方法 (yeast two-hybrid system),鑑定出Spink3 在精蟲上的結合蛋白可能是TESPL (testis-specific protease-like protein)。由西方和北方墨點法顯示 TESPL 只專一地在睪丸表現且表現量會隨著發育成長而有增加的趨勢。具有 GPI 修飾部位的 TESPL 在一級結構的胺基酸序列與絲胺酸蛋白酶相似,都保留著活性區的 His 與 Asp,但 Ser 卻被 Pro 取代,因此被認為是失去胰蛋白酶活性的膜蛋白。觀察睪丸切片的免疫組織染色,TESPL 主要表現在只含有單套染色體的精細胞及成熟精蟲。以副睪尾部的精蟲作間接免疫螢光染色,TESPL 也會出現在精蟲的頂體前端。從這些數據提示 TESPL 是 Spink3 在精蟲的潛在結合部位。
  Spink3 會經由射精時伴隨精液進入到雌鼠生殖道,子宮腔含結合 Spink3 的精蟲,但在輸卵管所發現的精蟲卻沒有 Spink3 的訊號。以體外實驗探討 Spink3 對精蟲的生理功能,顯示 Spink3 不會影響精蟲進行獲能效應而伴隨的反應如蛋白質酪胺酸磷酸化、精蟲的泳動力,但卻會降低頭部的鈣離子濃度及 A23187 所誘發的頂體反應。從體外受精的實驗,Spink3 卻會因為影響精蟲與卵子的結合能力,而進一步地降低受精率。失去胰蛋白酶抑制能力的 Spink3 突變種 R19L 也同樣地具有降低頂體反應及受精能力的功能,顯示 Spink3 對精蟲的影響並不是藉由抑制胰蛋白酶活性而產生的。
  精蟲獲能效應不會移除精蟲上的 Spink3,但子宮分泌液的胰蛋白酶 (Spink3-Inhibiting trypsin-like activity, SITA) 卻有此能力;不過 SITA 會在交配後一開始會先受到進入子宮腔的 Spink3 抑制。因此 Spink3 與雌性生殖道的蛋白酶兩者相互作用的關係亦影響著正常的生殖功能。
  本論文以小白鼠為動物模式,闡釋 Spink3扮演的生殖角色:1) 結合在精蟲頂體的 Spink3 會抑制獲能的精蟲發生自發性的頂體反應,避免精蟲遇到卵子之前,失去生殖能力;2) 由於 Spink3 會抑制受精過程,因此須藉由子宮液分泌 SITA將精蟲上的 Spink3移除,使精蟲到達輸卵管可以發生頂體反應而進一步與卵子結合達到授精;3) Spink3 會抑制 SITA,保護精蟲不受雌性生殖道蛋白酶的破壞。
zh_TW
dc.description.abstractMice were used to study the involvement of reproductive-derived Spink from males in mammalian reproduction. A Kazal-type protease inhibitor purified from mouse seminal vesicle secretion by our group has an inhibitory constant (Ki) of 0.15 nM to trypsin and a primary structure consisting 57 amino acid residues. Since this rather small protein was derived from the P12 cDNA cloned from the mouse ventral prostate by Mills et al., it was tentatively named P12. According to the Mouse Genome Informatics nomenclature committee, P12 is now renamed mouse Spink3. Our previous study suggest that Spink3 has a single-type binding site (1.49 x 106 sites/cell) with a Kd value of 70 nM mainly on the plasma membrane overlaying the acrosomal region of mouse sperm cell. Yet, the membrane-anchored molecule of Spink3 on sperm head has not been established.
We identified a testis-specific protease-like protein tentatively named TESPL from the clones of a yeast two-hybrid screen against a mouse testicular cDNA library using the trypsin inhibitor Spink3 from male accessory sexual glands as bait. We found that TESPL transcription was restricted to the testis and that the level of transcription was positively correlated with animal maturation. Alignment of the cDNA-deduced sequences of serine proteases showed the replacement of an essential serine residue in the catalytic triad of serine proteases by a proline residue in TESPL, which was demonstrated to be a membrane-bound protein devoid of proteolytic activity. The immunohistochemical staining patterns of seminiferous tubules in the testis revealed TESPL mainly on postmeiotic cells such as spermatids and spermatozoa. On the mouse sperm from caudal epididymis, TESPL was localized mainly on the plasma membrane overlaying the acrosomal region.
Result of indirect immunofluorescence stain indicated that Spink3 was found in the secretion and seen on a considerable portion of sperm in the uterine cavity but disappeared in the oviduct lumen after coitus. The Spink3-sperm binding did not change the cell status and inhibit the capacitation-related protein tyrosine phosphorylation and cell motility enhancement, but reduced the head [Ca2+]i and the ionophore A23187-induced acrosome reaction. The sperm-egg interaction and fertility rate greatly suppressed after insemination of oocyte-cumulus complexes containing Spink3 in the capacitated sperm preparation. It is of interest to note that R19L, like its wild type, can bind sperm to suppress AR and reduce fertility. This substantiates that the reactive R19 on the Spink3 molecule for protease inhibition is not essential for its action on sperm.
Not the membrane modification associated with the sperm capacitation but the Spink3-inhibiting trypsin-like activity (SITA) in the uterine fluid of estrous females was involved in releasing Spink3 from sperm to resume their fertilizing ability. Meanwhile, suppressing SITA by free Spink3 protected sperm from proteolytic damage in the uterine cavity, manifesting the important interplay of Spink and SITA during natural coitus.
Using mice as experimental animals, this work was conducted to prove that: i) Spink3 binding on the apical hook of sperm head prevents them from becoming infertile before encountering an egg by diminishing the acrosome reaction of capacitated sperm; ii) Spink3 on sperm reduces in vitro fertility, and the Spink3-inhibiting trypsin-like activity (SITA) secreted from the uterus of estrous females during natural coitus releases Spink3 from sperm to restore their ability to fertilize; iii) the proteolytic damage to sperm from SITA is suppressed by free Spink3 in the uterine cavity.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:55:02Z (GMT). No. of bitstreams: 1
ntu-99-D93b46016-1.pdf: 2739555 bytes, checksum: afdf7d376e7a87e631e1bbd87e58e4f7 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄            頁次
縮寫表 6
中文摘要 7
英文摘要 9
論文內容
第一章 概論
哺乳類生殖概述 13
1.1.有性生殖 13
1.2.卵子生成 (oogenesis) 與透明帶 (zona pellucida) 13
1.3.精蟲的分化過程 (spermatogenesis and spermiogenesis) 與結構 15
1.4.成熟精蟲在副睪進行的修飾 16
1.5.哺乳類雄性附屬性腺 16
1.6.精蟲的生理反應 16
1.6.1.獲能效應 (capacitation) 16
1.6.2.體外獲能效應的進行 (in vitro capacitation) 18
1.6.3.頂體反應 (acrosome reaction) 20
1.7.獲能效應在實驗上的定義及分析 21
1.8.儲精囊分泌蛋白 (seminal vesicle secretary protein) 21
1.9.Kazal Type蛋白酶抑制因子 (Kazal type protease inhibitor) 23
1.10.胰蛋白酶抑制因子在生殖生理的影響 24
第二章 實驗材料與方法
2.1.實驗動物 25
2.2.酵母菌雙雜交系統 (Yeast two-hybrid system) 25
2.3.北方墨點法 (Northern blotting) 25
2.4.以逆轉錄-聚合酶連鎖反應 (RT-PCR) 比較基因表現量 25
2.4.1. mRNA 反轉錄合成 (reverse transcription) 25
2.4.2. Total RNA 濃度計算 26
2.4.3.逆轉錄-聚合酶連鎖反應 (RT-PCR) 26
2.5.利用 TESPL 載體建構產生重組蛋白並製備抗體 27
2.6.從儲精囊分泌液純化 Spink3 27
2.7.逆向高效液相層析法 (reverse phase HPLC) 28
2.8. Spink3 抗體的製備 28
2.9.還原性電泳分析 (SDS-PAGE) 及膠內蛋白酶水解法 (zymography) 28
2.10.西方墨點法 (Western blotting) 28
2.11.以基因重組技術表現 Spink3 蛋白 29
2.11.1.重組載體的建構 29
2.11.2. Spink3 的定點突變 (site-directed mutagenesis for Spink3) 29
2.11.3.重組蛋白的純化 30
2.12.免疫組織化學染色法 (Immunohistochemistry) 31
2.12.1.玻片標本製備:固定、脫水、滲蠟、埋蠟及切片 31
2.12.2.免疫組織化學染色步驟:脫蠟、復水、染色及觀察 31
2.12.3.目前實驗室所用的呈色系統 32
2.13.精蟲的製備 33
2.14.計算細胞的數量 33
2.15.間接免疫螢光染色法 33
2.16.精蟲蛋白質酪胺酸磷酸化的偵測 34
2.17.精蟲獲能效應的觀察 34
2.18.精蟲頂體反應的誘發與觀察 35
2.19.鈣離子濃度的測定 36
2.20.電腦輔助精蟲分析 (Computer-Aided Sperm Analysis, CASA) 36
2.21.超排卵及卵子的收集 37
2.22.精卵結合與體外受精 (sperm-egg binding and in vitro fertilization) 37
2.23.子宮液 (uterine lumen fluid) 的製備 38
2.24.蛋白酶活性的測定 38
2.25.統計方法 39
第三章 結果
3.1.鑑定 Spink3 在精蟲上的結合蛋白 41
3.1.1.從小鼠睪丸細胞 cDNA 基因庫鑑定與 Spink3 作用的類絲胺酸蛋白酶 41
3.1.2. TESPL 為不具蛋白酶活性的膜蛋白 42
3.1.3. TESPL 蛋白及 mRNA 的表現和分佈 43
3.1.4. TESPL 在小鼠睪丸組織內和在精蟲上的分佈 43
3.2.探討 Spink3 對精蟲活性及生理功能造成的影響 44
3.2.1. Spink3 對精蟲獲能效應的影響 44
3.2.2.Spink3 對精蟲鈣離子的調控 46
3.2.3.以體外受精的方法,探討 Spink3 對精卵受精過程的影響 46
3.3.研究 Spink3 自精蟲上移除的機制 47
3.3.1觀察交配後雌性生殖道內精蟲的Spink3分佈 47
3.3.2. Spink3 對子宮分泌液內類胰蛋白酶的影響 47
第四章 討論
4.1. TESPL 可能是Spink3 在精蟲上的結合蛋白 49
4.2. Spink3 在生理上的功能 50
4.3. Spink3 與SITA 之間的相互調控在生殖過程中扮演重要角色 51
圖目錄
圖 1:小鼠 TESPL 和 TESP5 的基因結構 54
圖 2:TESPL cDNA 序列及其轉譯的胺基酸序列 56
圖 3:TESPL 其轉譯蛋白序列與相關絲胺酸蛋白酶的比較 58
圖 4:以 PCR 方法判斷 TESPL 在睪丸內有無存在 Serine isoform 60
圖 5:推論 TESPL 為不具活性的膜蛋白酶 62
圖 6:TESPL 在各器官間的分佈 64
圖 7:TESPL mRNA 在不同年齡小鼠睪丸中的表現情形 66
圖8:以間接免疫螢光染色及免疫組織染色法觀察 TESPL 的分佈 68
圖 9:以間接免疫螢光染色觀察 Spink3 在精蟲上的分佈 70
圖 10:Spink3 對精蟲生理狀態的影響 72
圖 11:Spink3 對精蟲細胞內蛋白質磷酸化程度的變化 74
圖 12:Spink3 對精蟲泳動力的影響 76
圖 13:經由 A23187 所誘發的精蟲頂體反應會受到Spink3 的抑制 78
圖 14:觀察 Spink3 對精蟲細胞內鈣離子濃度 [Ca2+]i 的影響 80
圖 15:以螢光顯微鏡觀察精蟲細胞內鈣離子的分佈 82
圖 16:Spink3 抑制精蟲的受精能力 84
圖 17:觀察小鼠交配後,Spink3 在雌性生殖道的分佈 86
圖 18:利用免疫螢光染色法觀察 Spink3 在子宮及輸卵管內精蟲的分佈 88
圖 19:小鼠子宮液胰蛋白酶能力的分析 90
圖 20:小鼠子宮液的初步純化 92
圖 21:證實在 peak-3 中具有被 Spink3 抑制的胰蛋白酶活性 94
圖22: 探討 PMSF 和 Spink3 對peak-3 中的類胰蛋白酶活性 (SITA) 的影響 96
表目錄
表1:子宮分泌液類胰蛋白酶移除結合在精蟲上的 Spink3 的能力 101
表2:在 TESPL 基因組中存在的 ARE-like 序列 103
參考文獻 105
dc.language.isozh-TW
dc.subject頂體zh_TW
dc.subject受精zh_TW
dc.subject蛋白&#37238zh_TW
dc.subject精蟲zh_TW
dc.subject獲能效應zh_TW
dc.subjectspermen
dc.subjectacrosomeen
dc.subjectcapacitationen
dc.subjectfertilizationen
dc.subjectproteaseen
dc.title以小白鼠為動物模式探討雄性附屬性腺分泌胰蛋白酶抑制蛋白 Spink3 調控哺乳類生殖的機制zh_TW
dc.titleModulation of Mammalian Sperm Activity by Reproductive-derived Spink Using Mice as Experimental Animalsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee張清風,潘榮隆,蔡懷楨,賴明德,李明亭
dc.subject.keyword精蟲,蛋白&#37238,頂體,受精,獲能效應,zh_TW
dc.subject.keywordsperm,protease,acrosome,fertilization,capacitation,en
dc.relation.page119
dc.rights.note有償授權
dc.date.accepted2010-06-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved