請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44736完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林江珍 | |
| dc.contributor.author | Hui-Fen Lin | en |
| dc.contributor.author | 林蕙芬 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:53:50Z | - |
| dc.date.available | 2015-07-12 | |
| dc.date.copyright | 2010-07-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-30 | |
| dc.identifier.citation | (1) Nel, A.; Xia, T.; Ma¨dler, L.; Li, N. Science 2006, 311, 622–627.
(2) Nqvqrro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, A. Environ. Sci. Technol. 2008, 42, 8959–8964. (3) Yang, H.; Liu, C.; Yang, D. Zhang, H.; Xi, Z. J. Appl. Toxicol. 2009, 29, 69–78. (4) Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai. W. C. J. Phys. Chem. B. 2006, 110, 18115–18120. (5) Aeschlimann, J. R.; Dresser, L. D.; Kaatz, G. W.; Rybak, M. J. Antimicrob. Agents Chemother. 1999, 43, 335–340. (6) Ikeda, T.; Yamaguchi, H.; Tazuke, S. Antimicrob. Agents Chemother. 1984, 26, 139–144. (7) Kenawy, E.; Abdel-Hay, F. I.; El-Raheem, A.; El-Shanshoury, R.; El-Newehy, M. H. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2384–2393. (8) Dizman, B.; Elasri, M. O.; Mathias, L. J. Biomacromolecules, 2005, 6, 514–520. (9) Parshikov, I. A.; Freeman, J. P.; Lay, J. J. O.; Beger, R. D.; Williams, A. J.; Sutherland, J. B. Appl. Environ. Microbiol. 2000, 66, 2664–2667. (10) Golet, E. M.; Alder, A. C.; Hartmann, A.; Ternes, T. A.; Giger, W. Anal. Chem. 2001, 73, 3632–3638. (11) Biagini, G. A.; Richier, E.; Bray, P. G.; Calas, M.; Vial, H.; Ward, S. A. Antimicrob. Agents Chemother. 2003, 47, 2584–2589. (12) Darouiche, R. O.; Mansouri, M. D.; Raad, I. I. Urology 2002, 59, 303–307. (13) Chung, D. H.; Papadakis, S. E.; Yam, K. L. Int. J. Food Sci. Technol. 2003, 38, 165–169. (14) Klueh, U.; Wagner, V.; Kelly, S.; Johnson, A.; Bryers, J. D. J. Biomed. Mater. Res., Part B 2000, 53, 621–631. (15) Johnson, J. R.; Roberts, P. L.; Olsen, R. J.; Moyer, K. A.; Stamm, W. E. J. Infect. Dis. 1990, 162, 1145–1150. (16) Isquith, A. J.; Abbott, E. A.; Walters, P. A. Appl. Microbiol. 1972, 24, 859–863. (17) Nurdin, N.; Helary, G.; Sauvet, G. J. Appl. Polym. Sci. 1993, 50, 663–670. (18) Grapski, J. A.; Cooper, S. L. Biomaterials 2001, 22, 2239–2246. (19) Tiller, J. C.; Liao, C. J.; Lewis, K.; Klibanov, A. M. P. Natl. Acad. Sci. U.S.A. 2001, 98, 5981–5985. (20) Gottenbos, B.; van der Mei, H. C.; Klatter, F.; Nieuwenhuis, P.; Busscher, H. J. Biomaterials 2002, 23, 1417–1423. (21) Lee, S. B.; Koepsel, R. R.; Morley, S. W.; Matyjaszewski, K.; Sun, Y. J.; Russell, A. J. Biomacromolecules 2004, 5, 877–882. (22) Cen, L.; Neoh, K. G.; Kang, E. T. Langmuir 2003, 19, 10295–10303. (23) Tiller, J. C.; Lee, S. B.; Lewis, K.; Klibanov, A. M. Biotechnol. Bioeng. 2002, 79, 465–471. (24) Kanazawa, A.; Ikeda, T.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 1467–1472. (25) Popa, A.; Davidescu, C. M.; Trif, R.; Ilia, G.; Iliescu, S.; Dehelean, G. React. Funct. Polym. 2003, 55, 151–158. (26) Denyer, S. P. Int. Biodeterior. Biodegrad. 1995, 36, 227–245. (27) Gabrielska, J.; Sarapuk, J.; Przestalski, S.; Wroclaw, P. Tenside Surfact. Det. 1994, 31, 296–298. (28) Przestalski, S.; Sarapuk, J.; Kleszczynska, H.; Gabrielska, J.; Hladyszowski, J.; Trela, Z.; Kuczera, J. Acta Biochim. Pol. 2000, 47, 627–638. (29) Franklin, T. J.; Snow, G. A. Biochemistry of Antimicrobial Action; Chapman and Hall: London, 1981. (30) Tashiro, T. Macromol. Mater. Eng. 2001, 286, 63–87. (31) Domagk, G. Dtsch. Med. Wochenschr. 1935, 61, 829–832. (32) Birnie, C.R.; Malamud, D.; Schnaare, R.L. Antimicrob. Agents Chemother. 2000, 44, 2514–2517. (33) Sauvet, G.; Dupond, S.; Kazmierski, K.; Chojnowski, J. J. Appl. Polym. Sci. 2000, 75, 1005–1012. (34) Borman, S. Sci. Tech. 2002, 80, 36. (35) Goodson, B.; Ehrhardt, A.; Ng, S.; Nuss, J.; Johnson, K.; Giedlin, M.; Yamamoto, R.; Moos, W. H.; Krebber, A.; Ladner, M.; Giacona, M. B.; Vitt, C.; Winter, J. Antimicrob. Agents Chemother. 1999, 43, 1429–1434. (36) Block, S. S. Disinfection, Sterilization and PreserVation; 4th ed.; Lea & Febiger: Philadelphia, 1991. (37) Chu, C. C.; Chiang, M. L.; Tsai, C. M.; Lin, J. J. Macromolecules 2005, 38, 6240–6243. (38) Lin, J. J. Chu, C. C.; Chou, C. C.; Shieu, F. S. Adv. Mater. 2005, 17, 301–304. (39) Lin, J. J. Chu, C. C.; Chiang, M. L.; Tsai. W. C. Adv. Mater. 2006, 18, 3248–3252. (40) Block, S. Disinfection, Sterilization and PreserVation, 3rd ed.; Lea & Febiger: Philadelphia, PA, 1983. (41) Woo, G. L. Y.; Yang, M. L.; Yin, H. Q.; Jaffer, F.; Mittelman, M. W.; Santerre, J. P. J. Biomed. Mater. Res. 2002, 59, 35–45. (42) Acharya, V.; Prabha, C. R.; Narayanamurthy, C. Biomaterials 2004, 25, 4555–4562. (43) Jiang, H.; Manolache, S.; Lee Wong, A. C.; Denes, F. S. J. Appl. Polym. Sci. 2004, 93, 1411–1422. (44) Hume, E. B. H.; Baveja, J.; Muir, B.; Schubert, T. L.; Kumar, N.; Kjelleberg, S.; Griesser, H. J.; Thissen, H.; Read, R.; Poole-Warren, L. A.; Schindhelm, K.; Willcoxy, M. D. P. Biomaterials 2004, 25, 5023–5030. (45) Baveja, J. K.; Li, G.; Nordon, R. E.; Hume, E. B. H.; Kumar, N.; Willcox, M. D. P.; Poole-Warren, L. A. Biomaterials 2004, 25, 5013–5021. (46) Vigo, T. L. In Biotechnol. Bioact. Polym. [Proc. Am. Chem. Soc. Symp.]; Gebelein, C., Carraher, C., Eds.; Plenum Press: New York, 1994; pp 225–237. (47) Ikeda, T.; Tazuke, S.; Suzuki, Y. Macromol. Chem. Phys. 1984, 185, 869–876. (48) Baudrion, F.; Perichaud, A.; Coen, S. J. Appl. Polym. Sci. 1998, 70, 2657–2666. (49) Kenawy, E. R.; Abdel-Hay, F. I.; El-Raheem, A.; El-Shanshoury, R.; El-Newehy, M. H. J. Controlled Release 1998, 50, 145–152. (50) Chen, C. Z. S.; Beck-Tan, N. C.; Dhurjati, P.; van Dyk, T. K.; LaRossa, R. A.; Cooper, S. L. Biomacromolecules 2000, 1, 473–480. (51) Dizman, B.; Elasri, M. O.; Mathias, L. J. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5965–5973. (52) Eren, T.; Som, A.; Rennie, J. R.; Nelson, C. F.; Urgina, Y.; Nusslein, K.; Coughlin, E. B.; Tew, G. N. Macromol. Chem. Phys. 2008, 209, 516–524. (53) Rozga-Wijas, K.; Mizerska, U.; Fortuniak, W.; Chojnowski, J.; Halasa, R.; Werel, W. J. Inorg. Organomet. Polym. Mater. 2007, 17, 605–613. (54) Kenawy, E. R.; Worley, S. D.; Broughton, R. Biomacromolecules 2007, 8, 1359–1384. (55) Chauhan, G.S., Singh, B., Dhiman, S.K. J. Appl. Polym. Sci .2004, 91, 2454–2464. (56) Lin, J.; Tiller, J. C.; Lee, S. B.; Lewis, K.; Klibanov, A. M. Biotechnol. Lett. 2002, 24, 801–805. (57) Chen, J. C.; Yeh, J. T.; Chen, C. C. J. Appl. Polym. Sci. 2003, 90, 1662–1669. (58) Seong, H. S.; Whang, H. S.; Ko, S. W. J. Appl. Polym. Sci. 2000, 76, 2009–2015. (59) Kim, J. Y.; Lee, J. K.; Lee, T. S.; Park, W. H. Int. J. Biol. Macromol. 2003, 32, 23–27. (60) Thorsteinsson, T.; Masson, M.; Kristinsson, K. G.; Hjalmarsdottir, M. A.; Hilmarsson, H.; Loftsson, T. J. Med. Chem. 2003, 46, 4173–4181. (61) Lin, J.; Murthy, S. K.; Olsen, B. D.; Gleason, K. K.; Klibanov, A. M. Biotechnol. Lett. 2003, 25, 1661–1665. (62) Lenoir, S.; Pagnoulle, C.; Galleni, M.; Compere, P.; Jerome, R.; Detrembleur, C. Biomacromolecules 2006, 7, 2291–2296. (63) Ikeda, T.; Hirayama, H.; Suzuki, K.; Yamaguchi, H.; Tazuke, S. Makromol. Chem. 1986, 187, 333–340. (64) Rahn, O.; Van Eseltine, W. P. Bacteriol. ReV. 1947, 1, 173–192. (65) Panarin, E. F.; Solovaskii, M. V.; Zaikina, N. A.; Afinogenov, G. E. Makromol. Chem. Suppl. 1985, 9, 25–33. (66) Kanazawa, A.; Ikeda, T.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2873–2876. (67) Kanazawa, A.; Ikeda, T.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 335–343. (68) Ikeda, T.; Yamaguchi, H.; Tazuke, S. J. Bioact. Compact. Polym. 1990, 5, 31–41. (69) Dizman, B.; Elasri, M. O.; Mathias, L. J. J. Appl. Polym. Sci. 2004, 94, 635–642. (70) Kanazawa, A.; Ikeda, T.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 3031–3038. (71) Costerton, J. W.; K.-J. Cheng. J. Antimicrob. Chemother. 1975, 1, 363–377. (72) Campbell N. Biology, 1993. 3rd ed. Redwood city, CA: Benjamin Cummings Publishing. p. 517. (73) Brooks G, Butel J, Ornston L. 1991. Jawetz Melnick and Adelberg's Medical Microbiology, 19th ed. Norwalk, CT: Appleton and Lange. pp. 15–20. (74) Chiu, C.W.; Chu, C.C.; Cheng W. T.; Lin, J. J. European Polymer Journal 2008, 44, 628–636. (75) Hansen, H. C.; Haataja, S.; Finne, J.; Magnusson, G. J. J. Am. Chem. Soc. 1997, 119, 6974–6979. (76) Dizman, B.; Badger, J. C.; Elasri, M. O.; Mathias, L. J. Appl. Clay Sci. 2007, 38, 57–63. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44736 | - |
| dc.description.abstract | 在過去十年期間,抗菌材料發展受到很大的重視,其中以四級胺鹽被廣泛使用。本篇論文是利用本實驗室發明之高分子聚醚多胺 (polyamine)衍生物進行抗菌機制深討。首先分別利用poly(oxypropylene)-diamine 和triamine (POP-amine)與2,2-Bis[4-(glycidyloxy)phenyl]propane (DGEBA)進行偶合反應,製備出D400-terminating epoxy oligomers (DEO) and T403-terminating epoxy oligomers (TEO) 二種高分子聚醚多胺,高分子聚醚多胺擁有6個可酸化的胺基,利用鹽酸酸化不同比例1/6、3/6、6/6 (H+/amine equiv) 後,得到具有不同親疏水性的四級胺鹽。此論文中,我們利用表面張力儀得知親疏水性及界面活性劑的特性,並利用粒徑分析儀及穿透式電子顯微鏡觀察微胞的大小,發現酸化比例愈高時,微胞愈小。另外,對不同酸化比例的四級胺鹽進行抗菌測試,結果得知,當酸化比例愈高時,抗菌效果愈差。此外,利用掃描式電子顯微鏡去觀察四級胺鹽對大腸桿菌 (E. coli ) 及金黃色葡萄球菌 (S. aureus) 形態上的變化。綜合以上結果,可以推測抗菌機制與微胞大小有關,微胞大小則影響到接觸到細菌表面的局部濃度有關。此外,將我們合成的四級胺鹽與一般常用的抗菌劑比較,將具有調控親疏水性的功能及較好的抗菌效果。 | zh_TW |
| dc.description.abstract | Oligomeric amines were synthesized from the coupling reaction of poly(oxypropylene)-diamine and triamine (POP-amine) with 2,2-Bis[4-(glycidyloxy)phenyl]propane (DGEBA). Various equivalent amounts of acidification with hydrogen chloride at the acidified ratio of H+/amine equiv ratios rendered the oligomers with specific amphiphilic aggregations in water and antibacterial activity. The polyamine salts behave as a surfactant and exhibit the capability of surface tension until 47 mN/m at 0.01 wt %. Laser particle size analyzer and transmission electronic microscopy (TEM) results that polyamine salts at different acid ratios have the different micelle sizes, and further provide a large concentration on bacteria. The oligomers exhibited antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) at the minimum bactericidal concentration (MBC) of 1 μg/mL. Scanning electron microscope (SEM) revealed that polyamine salts confirmed morphological changes and the treated bacteria were damaged. Comparisons between poly(oxypropylene)- and poly(oxyethylene)-backbones for the oligomers had correlated the antibacterial properties that closely related to the different sizes of the micelle formation and the polyvalent ionic sites when interacting with bacteria. A comparison of the commercial product quaternary ammonium salts (QAS) ABLUMINE 1214, the polyamine salts displayed potent antibacterial activity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:53:50Z (GMT). No. of bitstreams: 1 ntu-99-R97549002-1.pdf: 4108020 bytes, checksum: 7c736ab63a055fa1de21a05eb25eb571 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Acknowledgements …………………………………………………………... Ι
中文摘要 Ⅱ Abstract Ⅲ Figure captions …………………………………………………………... Ⅶ Table captions …………………………………………………………... Ⅷ Chapter 1 Introduction…………………………... 1 Chapter 2 Literature Background………...…….………………….. 5 2-1 Application of antibacterial polymer...……….... 5 2-2 Mechanism of quaternary ammonium salts …... 6 2-3 Factors affecting the antibacterial activity……… 7 2-4 The difference in structure of cell walls between gram-positive and gram-negative bacteria……… 9 Chapter 3 Experimental………………………………………......... 11 3-1 Materials..……………………………………….. 11 3-2 Preparation of polyamines………………………. 12 3-3 Antibacterial activity tests…………….……........ 14 3-4 SEM of bacteria incubated with polyamine salts.. 15 3-5 Statistical analysis…………….…………............ 16 3-6 Characterization and Instruments……………….. 16 Chapter 4 Results and discussion…………………………………... 18 4-1 Dispersive and surfactant property of polyamine salts..………………………………...………....... 18 4-2 Emulsify micelle size of polyamines acidifies at different ratios……………................................... 21 4-3.1 Antibacterial activity of Polyamine Salts………. 24 4-3.2 Antibacterial activity of Jaffamine series and ABLUMINE 1214………………….................... 28 4-4 Scanning electron microscopy of bacteria incubated with polyamine salts………………… 31 4-5 Proposed antibacterial mechanism for polyamine salts…................................................................... 33 Chapter 6 Conclusion…………………………………………......... 36 Chapter 7 References...…………………………………………….. 37 | |
| dc.language.iso | en | |
| dc.subject | 局部濃度 | zh_TW |
| dc.subject | 四級胺鹽 | zh_TW |
| dc.subject | 界面活性劑 | zh_TW |
| dc.subject | 抗菌 | zh_TW |
| dc.subject | 微胞 | zh_TW |
| dc.subject | local concentration | en |
| dc.subject | surfactant | en |
| dc.subject | micelle | en |
| dc.subject | antibacterial | en |
| dc.subject | quaternary ammonium salts | en |
| dc.title | 高分子聚醚多胺衍生物之界面性質與抗菌機制探討 | zh_TW |
| dc.title | Amphiphilic Aggregation and Antibacterial Behaviors of Poly(oxyalkylene)-Polyamine-Salts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱文英,謝國煌 | |
| dc.subject.keyword | 四級胺鹽,抗菌,微胞,界面活性劑,局部濃度, | zh_TW |
| dc.subject.keyword | quaternary ammonium salts,antibacterial,micelle,surfactant,local concentration, | en |
| dc.relation.page | 44 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
