Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44726
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾雪峰(Snow Hong Tseng)
dc.contributor.authorChiang-Suo Leeen
dc.contributor.author李將碩zh_TW
dc.date.accessioned2021-06-15T03:53:38Z-
dc.date.available2010-07-12
dc.date.copyright2010-07-12
dc.date.issued2010
dc.date.submitted2010-07-01
dc.identifier.citation[1] L. Novotny and B. Hecht, Principles of nano-optics, Cambridge Univ Pr, 2006.
[2] E. Abbe, 'Contributions to the theory of the microscope and microscopic perception', Archiv. Fur Mikroskopische Anatomic, vol.9, pp. 413-468 1873.
[3] R. Lord, 'Investigations in optics with special reference to the spectroscope', Phil Mag, vol.8, pp. 261-274 1879.
[4] J. Pendry, 'Negative refraction makes a perfect lens', Physical Review Letters, vol.85, no.18, pp. 3966-3969 2000.
[5] X. Zhang and Z. Liu, 'Superlenses to overcome the diffraction limit', Nature Materials, vol.7, no.6, pp. 435-441 2008.
[6] E. Wolf and M. Nietovesperinas, 'Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences', J. Opt. Soc. Am. A-Opt. Image Sci. Vis., vol.2, no.6, pp. 886-889 1985.
[7] E. Synge, 'A suggested method for extending microscopic resolution into the ultra-microscopic region', Philosophical Magazine Series 7, vol.6, no.35, pp. 356-362 1928.
[8] J. O'KEEFE, 'Resolving power of visible light', J. Opt. Soc. Am, vol.46, pp. 359-359 1956.
[9] E. Ash and G. Nicholls, 'Super-resolution aperture scanning microscope', Nature, vol.237, pp. 510-512 1972.
[10] E. Betzig and P. L. Finn, 'Combined shear force and near-field scanning optical microscopy', Appl Phys Lett, vol.60, no.20, pp. 2484 1992.
[11] P. C. Yang, Y. Chen and M. Vaez-Iravani, 'Attractive-mode atomic force microscopy with optical detection in an orthogonal cantilever/sample configuration', J Appl Phys, vol.71, no.6, pp. 2499 1992.
[12] Z. Liu, N. Fang, T. Yen and X. Zhang, 'Rapid growth of evanescent wave by a silver superlens', Appl Phys Lett, vol.83, pp. 5184 2003.
[13] N. Fang, H. Lee, C. Sun and X. Zhang, 'Sub-diffraction-limited optical imaging with a silver superlens', Science, vol.308, no.5721, pp. 534 2005.
[14] Smolyaninov, II, Y. J. Hung and C. C. Davis, 'Magnifying superlens in the visible frequency range', Science, vol.315, no.5819, pp. 1699-1701, Mar 2007.
[15] S. Hell and E. Stelzer, 'Properties of a 4pi confocal fluorescence microscope', Journal of the Optical Society of America A, vol.9, no.12, pp. 2159-2166 1992.
[16] S. Hell and J. Wichmann, 'Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy', Optics Letters, vol.19, no.11, pp. 780-782 1994.
[17] E. Hecht, Optics: Fourth edition (addison-wesley, reading, ma, 2002), p. 444.
[18] J. Goodman, Introduction to fourier optics: Third edition (roberts & company publishers, 2005).
[19] F. de Fornel, Evanescent waves: From newtonian optics to atomic optics, Springer Verlag, 2001.
[20] H. Eichler and O. Mehl, 'Phase conjugate mirrors', Journal of Nonlinear Optical Physics and Materials, vol.10, pp. 43-52 2001.
[21] K. Yee, 'Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media', IEEE Trans. Antennas Propagat, vol.14, no.3, pp. 302-307 1966.
[22] A. Taflove and S. C. Hagness, Computational electrodynamics : The finite-difference time-domain method, Artech House, Boston, 2005.
[23] G. Mur, 'Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations', IEEE Trans. Electromagn. Compat, vol.23, no.4, pp. 377-382 1981.
[24] Z. Liao, H. Wong, B. Yang and Y. Yuan, 'A transmitting boundary for transient wave analysis', Scientia Sinica, vol.27, no.10, pp. 1063-1076 1984.
[25] J. Berenger, 'A perfectly matched layer for the absorption of electromagnetic waves', J Comput Phys, vol.114, no.2, pp. 185-200 1994.
[26] J. Berenger, 'Perfectly matched layer for the fdtd solution of wave-structureinteraction problems', Ieee T Antenn Propag, vol.44, no.1, pp. 110-117 1996.
[27] J. Berenger, 'Improved pml for the fdtd solution of wave-structure interactionproblems', Ieee T Antenn Propag, vol.45, no.3, pp. 466-473 1997.
[28] Z. Wu and J. Fang, 'High-performance pml algorithms', IEEE Microwave and Guided Wave Letters, vol.6, no.9, pp. 335-337 1996.
[29] S. Gedney, 'An anisotropic perfectly matched layer-absorbing medium for thetruncation of fdtd lattices', Ieee T Antenn Propag, vol.44, no.12, pp. 1630-1639 1996.
[30] S. Gedney, 'The perfectly matched layer absorbing medium', Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, pp. 263-343 1998.
[31] S. Schelkunoff, 'Some equivalence theorems of electromagnetics and their application to radiation problems', Bell System Technical Journal, vol.15, no.92-112, pp. 5.6 1936.
[32] C. Balanis, Advanced engineering electromagnetics, Wiley New York, 1989.
[33] G. Mie, 'Beitraege zur optik trueber medien, speziell kolloidaler metalloesungen', Annalen der Physik, vol.25, no.3, pp. 377-391,443 1908.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44726-
dc.description.abstract本文主要利用有限時域差分法(finite-difference time-domain method)分析消散波(evanescent wave)與繞射極限(diffraction limit)之間的關係。我們用二維有限時域差分法模擬次波長單狹縫繞射(sub-wavelength single slit diffraction),觀察其穩態下的瞬時波印亭向量(instantaneous Poynting vector)後發現,瞬時波印亭向量的大小會隨週期改變,但方向恆定。與全反射(total internal reflection)消散波的瞬時波印亭向量比較後,我們認為,次波長單狹縫繞射波全部都是傳輸波(propagating wave),而不存在消散波。我們利用三面的光學相位共軛鏡(phase conjugate mirror),回溯狹縫寬為次波長大小(2λ/5)的單狹縫繞射,並重新聚焦於維度小於繞射極限的點上。進一步地,我們改變狹縫的截面形狀為高斯函數(Gaussian function),在狹縫寬為2λ的情況下,得到完美的回溯剖面場型。zh_TW
dc.description.abstractIn this thesis, the finite-difference time-domain (FDTD) technique is applied to analyze the relationship of evanescent wave and diffraction limit. We employ 2D FDTD to simulate sub-wavelength single slit diffraction and observe the instantaneous Poynting vector in steady-state. We find that the magnitude of the instantaneous Poynting vector varies periodically, while the direction remains unchanged. By comparing the result with the instantaneous Poynting vector of total internal reflection evanescent wave, we think that the diffracted waves of sub-wavelength single slit diffraction are all propagating waves rather than evanescent waves. We simulate the playback of the sub-wavelength (slit width is 2λ/5) single slit diffraction via 3-sided phase conjugate mirror and the phase conjugate waves re-focus back onto the spot with dimension below the diffraction limit. Furthermore, the cross-sectional shape of slit is modified from a rectangular to a Gaussian function. For the slit width is 2λ, a perfect re-focusing profile is generated.en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:53:38Z (GMT). No. of bitstreams: 1
ntu-99-R97941079-1.pdf: 3280602 bytes, checksum: 574c28ae0b37d501441e667f6630adcf (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsThesis Certification...........................................................................i
Acknowledgement...........................................................................ii
Traditional Chinese Abstract.............................................................iii
English Abstract.............................................................................iv
Contents........................................................................................v
List of Figures................................................................................viii
Chapter 1 Introduction......................................................................1
1.1 Preface.. ...................................................................................1
1.2 Chapter Outline..........................................................................4
Chapter 2 Theory.............................................................................5
2.1 Introduction................................................................................5
2.2 Diffraction Theory.......................................................................6
2.2.1 Huygens-Fresnel Principle........................................................6
2.2.2 Fresnel and Fraunhofer Approximation.......................................7
2.2.3 Diffraction Limit.......................................................................9
2.3 Evanescent Field......................................................................11
2.3.1 Introduction............................................................................11
2.3.2 Total Internal Reflection...........................................................12
2.4 Optical Phase Conjugation.........................................................15
2.4.1 Introduction............................................................................15
2.4.2 Basic Mathematical Formulation..............................................16
2.5 Chapter Summary.....................................................................18
Chapter 3 The Finite-Difference Time-Domain Method........................19
3.1 Introduction..............................................................................19
3.2 Maxwell’s Equations.................................................................20
3.3 Central Difference.....................................................................24
3.4 The Yee Algorithm....................................................................27
3.5 Numerical Dispersion and Stability of FDTD................................34
3.6 Perfectly Matched Layer Absorbing Boundary Condition..............37
3.7 Total-Field / Scattered-Field Technique....................................42
3.8 Near-to-Far-Field Transformation.............................................44
3.9 Chapter Summary...............................................................47
Chapter 4 Simulation Results and Discussion................................49
4.1 Introduction........................................................................49
4.2 Validation..........................................................................50
4.3 Sub-Wavelength Single Slit Diffraction Simulation......................53
4.3.1 Simulation Results............................................................53
4.3.2 Summary........................................................................57
4.4 Re-focus Diffracted Wave via Phase Conjugate Mirror.................58
4.4.1 Conventional Single Slit Diffraction.......................................59
4.4.2 Gaussian Function Shape Single Slit Diffraction.....................66
4.4.3 Summary.......................................................................70
4.5 Chapter Summary..............................................................71
Chapter 5 Conclusion and Future Prospect..................................72
5.1 Conclusion.......................................................................72
5.2 Future Prospect................................................................73
Bibliography..........................................................................74
dc.language.isoen
dc.title以有限時域差分法分析繞射極限與光學相位共軛zh_TW
dc.titleAnalyzing Diffraction Limit and Optical Phase Conjugation via FDTD Methoden
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張宏鈞(Hung Chun Chang),張世慧(Shih Hui Chang)
dc.subject.keyword有限時域差分法,消散波,繞射極限,光學相位共軛,zh_TW
dc.subject.keywordfinite-difference time-domain method,evanescent wave,diffraction limit,optical phase conjugation,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2010-07-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved