請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44716完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏慧(Min-Huey Chen) | |
| dc.contributor.author | Jung-Tsu Chen | en |
| dc.contributor.author | 陳容慈 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:53:27Z | - |
| dc.date.available | 2013-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-02 | |
| dc.identifier.citation | Abreu, J. G., N. I. Ketpura, et al. (2002). 'Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta.' Nat Cell Biol 4(8): 599-604.
Adamson, A. L. and S. Kenney (2001). 'Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies.' J Virol 75(5): 2388-2399. Aggarwal, B. B., C. Sundaram, et al. (2007). 'Curcumin: the Indian solid gold.' Adv Exp Med Biol 595: 1-75. Aggarwal, B. B. and B. Sung (2009). 'Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets.' Trends Pharmacol Sci 30(2): 85-94. Alvarez, H., A. Corvalan, et al. (2008). 'Serial analysis of gene expression identifies connective tissue growth factor expression as a prognostic biomarker in gallbladder cancer.' Clin Cancer Res 14(9): 2631-2638. Arora, P. D., L. Silvestri, et al. (2001). 'Mechanism of cyclosporin-induced inhibition of intracellular collagen degradation.' J Biol Chem 276(17): 14100-14109. Atilla, G. and N. Kutukculer (1998). 'Crevicular fluid interleukin-1beta, tumor necrosis factor-alpha, and interleukin-6 levels in renal transplant patients receiving cyclosporine A.' J Periodontol 69(7): 784-790. Ayaydin, F. and M. Dasso (2004). 'Distinct in vivo dynamics of vertebrate SUMO paralogues.' Mol Biol Cell 15(12): 5208-5218. Babic, A. M., C. C. Chen, et al. (1999). 'Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo.' Mol Cell Biol 19(4): 2958-2966. Bakin, A. V., C. Rinehart, et al. (2002). 'p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration.' J Cell Sci 115(Pt 15): 3193-3206. Balasubramanian, S. and R. L. Eckert (2007). 'Curcumin suppresses AP1 transcription factor-dependent differentiation and activates apoptosis in human epidermal keratinocytes.' J Biol Chem 282(9): 6707-6715. Ball, D. K., A. W. Rachfal, et al. (2003). 'The heparin-binding 10 kDa fragment of connective tissue growth factor (CTGF) containing module 4 alone stimulates cell adhesion.' J Endocrinol 176(2): R1-7. Bennett, B. L., D. T. Sasaki, et al. (2001). 'SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase.' Proc Natl Acad Sci U S A 98(24): 13681-13686. Black, S. A., Jr., A. H. Palamakumbura, et al. (2007). 'Tissue-specific mechanisms for CCN2/CTGF persistence in fibrotic gingiva: interactions between cAMP and MAPK signaling pathways, and prostaglandin E2-EP3 receptor mediated activation of the c-JUN N-terminal kinase.' J Biol Chem 282(21): 15416-15429. Black, S. A., Jr. and P. C. Trackman (2008). 'Transforming growth factor-beta1 (TGFbeta1) stimulates connective tissue growth factor (CCN2/CTGF) expression in human gingival fibroblasts through a RhoA-independent, Rac1/Cdc42-dependent mechanism: statins with forskolin block TGFbeta1-induced CCN2/CTGF expression.' J Biol Chem 283(16): 10835-10847. Bradham, D. M., A. Igarashi, et al. (1991). 'Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10.' J Cell Biol 114(6): 1285-1294. Brigstock, D. R., C. L. Steffen, et al. (1997). 'Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor.' J Biol Chem 272(32): 20275-20282. Buduneli, N., N. Kutukculer, et al. (2001). 'Evaluation of transforming growth factor-beta 1 level in crevicular fluid of cyclosporin A-treated patients.' J Periodontol 72(4): 526-531. Burgess, J. K. (2005). 'Connective tissue growth factor: a role in airway remodelling in asthma?' Clin Exp Pharmacol Physiol 32(11): 988-994. Burgess, J. K., Q. Ge, et al. (2006). 'Connective tissue growth factor and vascular endothelial growth factor from airway smooth muscle interact with the extracellular matrix.' Am J Physiol Lung Cell Mol Physiol 290(1): L153-161. Burstein, B., A. Maguy, et al. (2007). 'Effects of resveratrol (trans-3,5,4'-trihydroxystilbene) treatment on cardiac remodeling following myocardial infarction.' J Pharmacol Exp Ther 323(3): 916-923. Centrella, M., S. Casinghino, et al. (1992). 'Multiple regulatory effects by transforming growth factor-beta on type I collagen levels in osteoblast-enriched cultures from fetal rat bone.' Endocrinology 131(6): 2863-2872. Cheifetz, S., J. A. Weatherbee, et al. (1987). 'The transforming growth factor-beta system, a complex pattern of cross-reactive ligands and receptors.' Cell 48(3): 409-415. Chen, A. and S. Zheng (2008). 'Curcumin inhibits connective tissue growth factor gene expression in activated hepatic stellate cells in vitro by blocking NF-kappaB and ERK signalling.' Br J Pharmacol 153(3): 557-567. Chen, C. C., N. Chen, et al. (2001). 'The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts.' J Biol Chem 276(13): 10443-10452. Chujo, S., F. Shirasaki, et al. (2005). 'Connective tissue growth factor causes persistent proalpha2(I) collagen gene expression induced by transforming growth factor-beta in a mouse fibrosis model.' J Cell Physiol 203(2): 447-456. Dammeier, J., H. D. Beer, et al. (1998). 'Dexamethasone is a novel potent inducer of connective tissue growth factor expression. Implications for glucocorticoid therapy.' J Biol Chem 273(29): 18185-18190. de Larco, J. E. and G. J. Todaro (1978). 'Growth factors from murine sarcoma virus-transformed cells.' Proc Natl Acad Sci U S A 75(8): 4001-4005. Dennler, S., S. Itoh, et al. (1998). 'Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene.' EMBO J 17(11): 3091-3100. Derynck, R., W. M. Gelbart, et al. (1996). 'Nomenclature: vertebrate mediators of TGFbeta family signals.' Cell 87(2): 173. Derynck, R., Y. Zhang, et al. (1998). 'Smads: transcriptional activators of TGF-beta responses.' Cell 95(6): 737-740. di Mola, F. F., H. Friess, et al. (1999). 'Connective tissue growth factor is a regulator for fibrosis in human chronic pancreatitis.' Ann Surg 230(1): 63-71. Duncan, M. R., K. S. Frazier, et al. (1999). 'Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP.' FASEB J 13(13): 1774-1786. Engel, M. E., M. A. McDonnell, et al. (1999). 'Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription.' J Biol Chem 274(52): 37413-37420. Feres-Filho, E. J., Y. J. Choi, et al. (1995). 'Pre- and post-translational regulation of lysyl oxidase by transforming growth factor-beta 1 in osteoblastic MC3T3-E1 cells.' J Biol Chem 270(51): 30797-30803. Franzen, P., P. ten Dijke, et al. (1993). 'Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor.' Cell 75(4): 681-692. Frazier, K., S. Williams, et al. (1996). 'Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor.' J Invest Dermatol 107(3): 404-411. Funaba, M., C. M. Zimmerman, et al. (2002). 'Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase.' J Biol Chem 277(44): 41361-41368. Gaedeke, J., N. A. Noble, et al. (2004). 'Curcumin blocks multiple sites of the TGF-beta signaling cascade in renal cells.' Kidney Int 66(1): 112-120. Gao, R. and D. R. Brigstock (2003). 'Low density lipoprotein receptor-related protein (LRP) is a heparin-dependent adhesion receptor for connective tissue growth factor (CTGF) in rat activated hepatic stellate cells.' Hepatol Res 27(3): 214-220. Goel, A., A. B. Kunnumakkara, et al. (2008). 'Curcumin as 'Curecumin': from kitchen to clinic.' Biochem Pharmacol 75(4): 787-809. Grotendorst, G. R. (1997). 'Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts.' Cytokine Growth Factor Rev 8(3): 171-179. Guha, M., Z. G. Xu, et al. (2007). 'Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes.' FASEB J 21(12): 3355-3368. Hassell, T. M. and A. F. Hefti (1991). 'Drug-induced gingival overgrowth: old problem, new problem.' Crit Rev Oral Biol Med 2(1): 103-137. Hata, A., G. Lagna, et al. (1998). 'Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor.' Genes Dev 12(2): 186-197. Hata, A., R. S. Lo, et al. (1997). 'Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4.' Nature 388(6637): 82-87. Heldin, C. H., K. Miyazono, et al. (1997). 'TGF-beta signalling from cell membrane to nucleus through SMAD proteins.' Nature 390(6659): 465-471. Heng, E. C., Y. Huang, et al. (2006). 'CCN2, connective tissue growth factor, stimulates collagen deposition by gingival fibroblasts via module 3 and alpha6- and beta1 integrins.' J Cell Biochem 98(2): 409-420. Holmes, A., D. J. Abraham, et al. (2003). 'Constitutive connective tissue growth factor expression in scleroderma fibroblasts is dependent on Sp1.' J Biol Chem 278(43): 41728-41733. Holmes, A., D. J. Abraham, et al. (2001). 'CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling.' J Biol Chem 276(14): 10594-10601. Hong, H. H., M. I. Uzel, et al. (1999). 'Regulation of lysyl oxidase, collagen, and connective tissue growth factor by TGF-beta1 and detection in human gingiva.' Lab Invest 79(12): 1655-1667. Huang, S. S. and J. S. Huang (2005). 'TGF-beta control of cell proliferation.' J Cell Biochem 96(3): 447-462. Iacopino, A. M., D. Doxey, et al. (1997). 'Phenytoin and cyclosporine A specifically regulate macrophage phenotype and expression of platelet-derived growth factor and interleukin-1 in vitro and in vivo: possible molecular mechanism of drug-induced gingival hyperplasia.' J Periodontol 68(1): 73-83. Igarashi, A., K. Nashiro, et al. (1995). 'Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis.' J Invest Dermatol 105(2): 280-284. Ikawa, Y., P. S. Ng, et al. (2008). 'Neutralizing monoclonal antibody to human connective tissue growth factor ameliorates transforming growth factor-beta-induced mouse fibrosis.' J Cell Physiol 216(3): 680-687. Imamura, T., M. Takase, et al. (1997). 'Smad6 inhibits signalling by the TGF-beta superfamily.' Nature 389(6651): 622-626. Ito, Y., J. Aten, et al. (1998). 'Expression of connective tissue growth factor in human renal fibrosis.' Kidney Int 53(4): 853-861. Itoh, S., F. Itoh, et al. (2000). 'Signaling of transforming growth factor-beta family members through Smad proteins.' Eur J Biochem 267(24): 6954-6967. James, J. A., C. R. Irwin, et al. (1998). 'Gingival fibroblast response to cyclosporin A and transforming growth factor beta 1.' J Periodontal Res 33(1): 40-48. Jana, N. R., P. Dikshit, et al. (2004). 'Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway.' J Biol Chem 279(12): 11680-11685. Jedsadayanmata, A., C. C. Chen, et al. (1999). 'Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3).' J Biol Chem 274(34): 24321-24327. Kang, H. C., J. X. Nan, et al. (2002). 'Curcumin inhibits collagen synthesis and hepatic stellate cell activation in-vivo and in-vitro.' J Pharm Pharmacol 54(1): 119-126. Kantarci, A., S. A. Black, et al. (2006). 'Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis.' J Pathol 210(1): 59-66. Kavsak, P., R. K. Rasmussen, et al. (2000). 'Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation.' Mol Cell 6(6): 1365-1375. Kucich, U., J. C. Rosenbloom, et al. (2001). 'Signaling events required for transforming growth factor-beta stimulation of connective tissue growth factor expression by cultured human lung fibroblasts.' Arch Biochem Biophys 395(1): 103-112. Lasky, J. A., L. A. Ortiz, et al. (1998). 'Connective tissue growth factor mRNA expression is upregulated in bleomycin-induced lung fibrosis.' Am J Physiol 275(2 Pt 1): L365-371. Leask, A. and D. J. Abraham (2003). 'The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology.' Biochem Cell Biol 81(6): 355-363. Leask, A., A. Holmes, et al. (2003). 'Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts.' J Biol Chem 278(15): 13008-13015. Lee, S., D. E. Solow-Cordero, et al. (1997). 'Transforming growth factor-beta regulation of bone morphogenetic protein-1/procollagen C-proteinase and related proteins in fibrogenic cells and keratinocytes.' J Biol Chem 272(30): 19059-19066. Liu, F., A. Hata, et al. (1996). 'A human Mad protein acting as a BMP-regulated transcriptional activator.' Nature 381(6583): 620-623. Liu, Y., D. A. Peterson, et al. (1997). 'Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction.' J Neurochem 69(2): 581-593. Lo, H. M., C. F. Hung, et al. (2007). 'Tea polyphenols inhibit rat vascular smooth muscle cell adhesion and migration on collagen and laminin via interference with cell-ECM interaction.' J Biomed Sci 14(5): 637-645. Luft, F. C. (2008). 'CCN2, the connective tissue growth factor.' J Mol Med 86(1): 1-3. Luo, G. H., Y. P. Lu, et al. (2008). 'Inhibition of connective tissue growth factor by small interfering RNA prevents renal fibrosis in rats undergoing chronic allograft nephropathy.' Transplant Proc 40(7): 2365-2369. Masamune, A., N. Suzuki, et al. (2006). 'Curcumin blocks activation of pancreatic stellate cells.' J Cell Biochem 97(5): 1080-1093. Massague, J. (1998). 'TGF-beta signal transduction.' Annu Rev Biochem 67: 753-791. Massague, J. and D. Wotton (2000). 'Transcriptional control by the TGF-beta/Smad signaling system.' EMBO J 19(8): 1745-1754. McLennan, S. V., X. Y. Wang, et al. (2004). 'Connective tissue growth factor mediates high glucose effects on matrix degradation through tissue inhibitor of matrix metalloproteinase type 1: implications for diabetic nephropathy.' Endocrinology 145(12): 5646-5655. Meisler, N., K. A. Keefer, et al. (1997). 'Dexamethasone abrogates the fibrogenic effect of transforming growth factor-beta in rat granuloma and granulation tissue fibroblasts.' J Invest Dermatol 108(3): 285-289. Milacic, V., S. Banerjee, et al. (2008). 'Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo.' Cancer Res 68(18): 7283-7292. Mori, T., S. Kawara, et al. (1999). 'Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model.' J Cell Physiol 181(1): 153-159. Myrillas, T. T., G. J. Linden, et al. (1999). 'Cyclosporin A regulates interleukin-1beta and interleukin-6 expression in gingiva: implications for gingival overgrowth.' J Periodontol 70(3): 294-300. Nagarajan, R. P., J. Zhang, et al. (1999). 'Regulation of Smad7 promoter by direct association with Smad3 and Smad4.' J Biol Chem 274(47): 33412-33418. Nakao, A., M. Afrakhte, et al. (1997). 'Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling.' Nature 389(6651): 631-635. Nakao, A., T. Imamura, et al. (1997). 'TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4.' EMBO J 16(17): 5353-5362. Nares, S., M. C. Ng, et al. (1996). 'Cyclosporine A upregulates platelet-derived growth factor B chain in hyperplastic human gingiva.' J Periodontol 67(3): 271-278. Paradis, V., D. Dargere, et al. (1999). 'Expression of connective tissue growth factor in experimental rat and human liver fibrosis.' Hepatology 30(4): 968-976. Phanish, M. K., N. A. Wahab, et al. (2006). 'The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells.' Biochem J 393(Pt 2): 601-607. Piek, E., C. H. Heldin, et al. (1999). 'Specificity, diversity, and regulation in TGF-beta superfamily signaling.' FASEB J 13(15): 2105-2124. Plemons, J. M., R. E. Dill, et al. (1996). 'PDGF-B producing cells and PDGF-B gene expression in normal gingival and cyclosporine A-induced gingival overgrowth.' J Periodontol 67(3): 264-270. Punithavathi, D., N. Venkatesan, et al. (2000). 'Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats.' Br J Pharmacol 131(2): 169-172. Raftery, L. A., V. Twombly, et al. (1995). 'Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila.' Genetics 139(1): 241-254. Roberts, A. B. (1998). 'Molecular and cell biology of TGF-beta.' Miner Electrolyte Metab 24(2-3): 111-119. Saito, K., S. Mori, et al. (1996). 'Immunohistochemical localization of transforming growth factor beta, basic fibroblast growth factor and heparan sulphate glycosaminoglycan in gingival hyperplasia induced by nifedipine and phenytoin.' J Periodontal Res 31(8): 545-555. Sasaki, T. and E. Maita (1998). 'Increased bFGF level in the serum of patients with phenytoin-induced gingival overgrowth.' J Clin Periodontol 25(1): 42-47. Savage, C., P. Das, et al. (1996). 'Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components.' Proc Natl Acad Sci U S A 93(2): 790-794. Sharma, R. A., H. R. McLelland, et al. (2001). 'Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer.' Clin Cancer Res 7(7): 1894-1900. Shi, Y. and J. Massague (2003). 'Mechanisms of TGF-beta signaling from cell membrane to the nucleus.' Cell 113(6): 685-700. Shimo, T., T. Nakanishi, et al. (1998). 'Inhibition of endogenous expression of connective tissue growth factor by its antisense oligonucleotide and antisense RNA suppresses proliferation and migration of vascular endothelial cells.' J Biochem 124(1): 130-140. Si, X., Y. Wang, et al. (2007). 'Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication.' J Virol 81(7): 3142-3150. Smith, P. K., R. I. Krohn, et al. (1985). 'Measurement of protein using bicinchoninic acid.' Anal Biochem 150(1): 76-85. Souchelnytskyi, S., P. ten Dijke, et al. (1996). 'Phosphorylation of Ser165 in TGF-beta type I receptor modulates TGF-beta1-induced cellular responses.' EMBO J 15(22): 6231-6240. Stratton, R., V. Rajkumar, et al. (2002). 'Prostacyclin derivatives prevent the fibrotic response to TGF-beta by inhibiting the Ras/MEK/ERK pathway.' FASEB J 16(14): 1949-1951. Strimpakos, A. S. and R. A. Sharma (2008). 'Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials.' Antioxid Redox Signal 10(3): 511-545. Trackman, P. C. and A. Kantarci (2004). 'Connective tissue metabolism and gingival overgrowth.' Crit Rev Oral Biol Med 15(3): 165-175. Uzel, M. I., A. Kantarci, et al. (2001). 'Connective tissue growth factor in drug-induced gingival overgrowth.' J Periodontol 72(7): 921-931. Van Beek, J. P., L. Kennedy, et al. (2006). 'The induction of CCN2 by TGFbeta1 involves Ets-1.' Arthritis Res Ther 8(2): R36. Verrecchia, F., M. Pessah, et al. (2000). 'Tumor necrosis factor-alpha inhibits transforming growth factor-beta /Smad signaling in human dermal fibroblasts via AP-1 activation.' J Biol Chem 275(39): 30226-30231. Watts, K. L., E. M. Sampson, et al. (2005). 'Simvastatin inhibits growth factor expression and modulates profibrogenic markers in lung fibroblasts.' Am J Respir Cell Mol Biol 32(4): 290-300. Whitman, M. (1998). 'Smads and early developmental signaling by the TGFbeta superfamily.' Genes Dev 12(16): 2445-2462. Williamson, M. S., E. K. Miller, et al. (1994). 'Cyclosporine A upregulates interleukin-6 gene expression in human gingiva: possible mechanism for gingival overgrowth.' J Periodontol 65(10): 895-903. Wrana, J. L., L. Attisano, et al. (1994). 'Mechanism of activation of the TGF-beta receptor.' Nature 370(6488): 341-347. Wright, H. J., I. L. Chapple, et al. (2001). 'TGF-beta isoforms and TGF-beta receptors in drug-induced and hereditary gingival overgrowth.' J Oral Pathol Med 30(5): 281-289. Xu, J., Y. Fu, et al. (2003). 'Activation of peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth.' Am J Physiol Gastrointest Liver Physiol 285(1): G20-30. Yue, J. and K. M. Mulder (2000). 'Activation of the mitogen-activated protein kinase pathway by transforming growth factor-beta.' Methods Mol Biol 142: 125-131. Zawel, L., J. L. Dai, et al. (1998). 'Human Smad3 and Smad4 are sequence-specific transcription activators.' Mol Cell 1(4): 611-617. Zheng, S. and A. Chen (2004). 'Activation of PPARgamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro.' Biochem J 384(Pt 1): 149-157. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44716 | - |
| dc.description.abstract | 許多纖維化的病變都可以偵測到轉化生長因子β (TGF-β)的上升。而轉化生長因子β不僅會促進間質蛋白的合成,同時也會增加蛋白酶抑制劑的分泌,使得膠原蛋白堆積。結締組織生長因子(CTGF)是一種間質蛋白,屬於CCN家族的一員,為富含cysteine的多胜肽,由轉化生長因子β所調控,與許多組織之纖維化有關,也會促進轉化生長因子β所產生纖維化之效果,因此認為抑制結締組織生長因子的表現,可以有效抑制纖維化病變。薑黃素(curcumin)為咖哩中主要的黃色成分,已被證實可以抑制肝臟星狀細胞的活化及膠原蛋白的合成。實驗目的:第一,探討牙齦增生組織,CTGF免疫染色的表現;第二,探討薑黃素對TGF-β1誘發正常牙齦纖維母細胞產生CTGF之抑制效果及其機制。材料與方法:經過同意書的簽署後,收集臨床上七例牙齦增生的組織,進行CTGF免疫組織染色。接著取自年齡介於25-40歲,拔牙時之健康牙齦組織,進行牙齦纖維母細胞培養,利用細胞活性(MTT assay)、反轉錄聚合酶連鎖反應(RT-PCR)及西方點墨法(western blot),完成下列實驗。結果發現:在免疫組織染色方面,藥物引起之牙齦增生組織中,上皮細胞、纖維母細胞、及微血管之內皮細胞與平滑肌細胞,有明顯的CTGF陽性染色。以5 ng/mL TGF-β1刺激正常牙齦纖維母細胞6小時,CTGF的表現達到高峰。MTT assay顯示,Curcumin的濃度在10 μM以下,對正常牙齦纖維母細胞的活性不會產生影響。若先以10 μM curcumin處理1小時,再以5 ng/mL TGF-β1刺激6小時,可發現會明顯抑制CTGF的表現。此外以10 μM curcumin先處理1小時會抑制TGF-β1所引發之Smad2/3、ERK、JNK及p38磷酸化,且抑制Smad2進入細胞核,但加入20 μM ERK inhibitor (U0126)、JNK inhibitor (SP600125)、p38 inhibitor (SB203580)先處理1小時,再以5 ng/mL TGF-β1刺激6小時,卻沒有抑制CTGF之表現。同時以10 μM curcumin 先處理1小時也不會抑制TGF-β receptor type I及type II的表現。因此,推測薑黃素抑制TGF-β1誘發之CTGF表現主要是透過抑制Smad2/3的路徑。 | zh_TW |
| dc.description.abstract | Many fibrotic pathologies are associated with increasing levels of TGF-β. TGF-β not only increases synthesis of matrix proteins but also enhances secretion of protease inhibitors while reducing secretion of proteases and resulted in matrix accumulation. Connective tissue growth factor (CTGF) belongs to CCN family and is a cysteine-rich polypeptide. It acts as a down stream profibrotic effector of TGF-β and has been proved to be associated with the onset and progression of fibrosis in many human tissues. Curcumin, a yellow pigment from turmeric, has been shown to reduce matrix accumulation in pulmonary and hepatic fibrosis. Objectives: One of the purposes of this study is to compare CTGF expression between normal gingival tissue and overgrowth gingival tissue. The other one is to investigate the inhibition effect of curcumin in TGF-β induced CTGF expression in normal primary human gingival fibroblasts. Methods: Tissue specimens from 7 cases of gingival overgrowth were examined by immunohistochemistry with the expression of CTGF protein. Healthy gingival tissues were obtained from patients under treatment of odontectomy. Gingival fibroblasts were isolated by collagenase/dispase digestion method and used for the subsequent analysis in the third passage. The effect of curcumin on cell viability was tested by MTT assay. Gingival fibroblasts were stimulated with 5 ng/mL TGF-β1 and the effects of curcumin (10 μM) on TGF-β1 induced CTGF gene and CTGF protein, TGF-β1 receptors protein, phosphorylated Smad2/3 proteins and MAPK proteins expression were analyzed by RT-PCR and western blotting. Results: Drug-induced gingival overgrowth was found with positive CTGF staining in epithelial cells, fibroblasts, endothelial cells and smooth muscle cells. Curcumin was nontoxic at doses of 0 to 10 μM. Pre-treatment with curcumin one hour before TGF-β1 stimulation demonstrated that curcumin reduced CTGF expression. Curcumin also attenuated the phorsphorylation of Smad2/3, MAPK and translocation of Smad2 induced by TGF-β1. Interruption of MAPK signaling by inhibitors did not reduce the CTGF expression. Conclusion: It is concluded that curcumin suppressed TGF-β1-induced CTGF expression probably through the interruption of Smad2/3 signaling. Further study for application of curcumin in clinical treatment is suggested. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:53:27Z (GMT). No. of bitstreams: 1 ntu-99-R95422009-1.pdf: 18807641 bytes, checksum: 5c93dfdcbd01b998030f11ac6352ef61 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄 I
表目錄 III 圖目錄 IV 中文摘要 V 英文摘要 VII 第一章 緒論 1 1-1牙齦構造 1 1-2牙齦增生之臨床表現 2 1-2-1牙齦之炎性增生 (Inflammtory Gingival Hyperplasia) 3 1-2-2牙齦之纖維性增生 (Fibrous Gingival Hyperplasia) 4 1-3牙齦纖維性增生之致病機轉 6 1-4纖維化相關之細胞激素(cytokines)表現 7 1-4-1轉化生長因子 (Transforming growth factor-β;TGF-β)7 1-4-2結締組織生長因子 (Connective tissue growth factor;CTGF) 13 1-5薑黃素 (Curcumin) 15 1-5-1薑黃素簡介 15 1-5-2薑黃素之藥理功能 16 第二章 研究動機 27 第三章 實驗材料與方法 28 3-1臨床資料的收集 28 3-2免疫組織染色法 (Immunohistochemistry staining) 28 3-3實驗材料 (Materials) 30 3-4細胞培養 (Cell culture) 31 3-5細胞活性測試 (MTT assay) 32 3-6基因表現分析 33 3-6-1 RNA之萃取 (Extraction of RNA) 33 3-6-2反轉錄聚合酵素連鎖反應 (RT-PCR) 33 3-6-3瓊脂凝膠電泳分析 (Agarose gel electrophoresis) 34 3-7總蛋白質定量 (total protein) 35 3-8西方點墨法 (Western blot) 35 3-8-1細胞內蛋白質分離 35 3-8-2核蛋白分離 36 3-8-3西方點墨法 36 3-9數據標準化 37 3-9-1 MTT assay 37 3-9-2 RT-PCR及Western blot 37 3-10統計分析 37 第四章 結果 41 4-1正常牙齦組織與纖維性增生牙齦組織在H&E染色下的觀察 41 4-2正常牙齦組織與纖維性增生牙齦組織在免疫組織染色下的觀察41 4-3初級培養健康牙齦纖維母細胞之型態觀察 42 4-4 TGF-β1誘發之CTGF在不同濃度protein level的表現 42 4-5 TGF-β1誘發之CTGF在不同時間點protein level的表現 42 4-6 Proinflammtory cytokines對TGF-β1誘發之CTGF protein level的影響 42 4-7不同天然物及藥物處理對TGF-β1誘發之CTGF protein level的影響 43 4-8 Curcumin對細胞活性的測試 43 4-9 Curcumin對TGF-β1誘發之CTGF mRNA level 的影響 44 4-10 Curcumin對TGF-β1誘發之CTGF protein level 的影響 44 4-11 Curcumin對TGF-β1 induced Smad2/3 phosphorylation的影響 44 4-12 Curcumin抑制Smad2之translocation 45 4-13 Curcumin對TGF-β1 receptors protein level的影響 45 4-14 Curcumin對TGF-β1 induced MAPK phosphorylation的影響46 4-15不同MAPK抑制劑對TGF-β1誘發之CTGF protein level 的影響46 第五章 討論 56 5-1正常牙齦組織與纖維性增生牙齦組織之比較 56 5-2牙纖維母細胞中TGF-β1誘發CTGF的表現 57 5-3發炎前期細胞激素對TGF-β1誘發之CTGF protein level的影響58 5-4不同天然物及藥物處理對TGF-β1誘發之CTGF protein level的影響 58 5-5薑黃素對細胞活性的影響 59 5-6薑黃素抑制TGF-β1誘發之CTGF表現 60 5-7薑黃素影響TGF-β1誘發CTGF 之機制探討 61 第六章 結論 64 參考文獻 65 附錄 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 牙齦增生 | zh_TW |
| dc.subject | 薑黃素 | zh_TW |
| dc.subject | 結締組織生長因子 | zh_TW |
| dc.subject | 轉化生長因子β | zh_TW |
| dc.subject | TGF-β | en |
| dc.subject | gingival overgrowth | en |
| dc.subject | curcumin | en |
| dc.subject | CTGF | en |
| dc.title | 薑黃素對轉化生長因子β誘發牙齦纖維母細胞產生結締組織生長因子之抑制效果及機制探討 | zh_TW |
| dc.title | Curcumin Inhibits TGF-β-induced CTGF Expression in Human Gingival Fibroblasts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭彥彬,張正琪 | |
| dc.subject.keyword | 牙齦增生,轉化生長因子β,結締組織生長因子,薑黃素, | zh_TW |
| dc.subject.keyword | gingival overgrowth,TGF-β,CTGF,curcumin, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-02 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 18.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
