請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44695
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 孫家棟(Chia-Tung Shun) | |
dc.contributor.author | Kai-Ting Yang | en |
dc.contributor.author | 楊凱婷 | zh_TW |
dc.date.accessioned | 2021-06-15T03:53:04Z | - |
dc.date.available | 2010-09-09 | |
dc.date.copyright | 2010-09-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-05 | |
dc.identifier.citation | 1. Flynn EM. Toolmark identification. J Forensic Sci 1957;2:95-107.
2. Houck MH. Skeletal trauma and the individualization of knife marks in bone. In: Reichs KJ, ed. Forensic Osteology: Advances in the Identification of Human Remains. 2nd ed: Springfield; 1998:410-24. 3. Schmidt U, Pollak S. Sharp force injuries in clinical forensic medicine--findings in victims and perpetrators. Forensic Sci Int 2006;159:113-8. 4. Snider CE, Lee JS. Emergency department dispositions among 4100 youth injured by violence: a population-based study. CJEM 2007;9:164-9. 5. Cukier W. Firearms regulation: Canada in the international context. Chronic Diseases in Canada 1998;19:25-33. 6. Perkins C. Weapon Use and Violent Crime, National Crime Victimization Survey: U.S. Department of Justice , Office of Justice Programs 1993-2001; 2003. 7. Hunt AC, Cowling RJ. Murder by stabbing. Forensic Sci Int 1991;52:107-12. 8. Karch DL, Lubell KM, Friday J, Patel N, Williams DD. Surveillance for violent deaths - National Violent Death Reporting System: Centers for Disease Control and Prevention (CDC); 2008. 9. Rouse DA. Patterns of stab wounds: a six year study. Med Sci Law 1994;34:67-71. 10. Scolan V, Telmon N, Blanc A, Allery JP, Charlet D, Rouge D. Homicide-suicide by stabbing study over 10 years in the toulouse region. Am J Forensic Med Pathol 2004;25:33-6. 11. Fukube S, Hayashi T, Ishida Y, et al. Retrospective study on suicidal cases by sharp force injuries. J Forensic Leg Med 2008;15:163-7. 12. Hamby JE, Thorpe JW. The History of Firearm and Toolmark Identification. Association of Firearm and Tool Mark Examiners Journal 1999;31. 13. Abboud JA, Wiesel B, Tomlinson D, Ramsey M. Intraosseous stab wound to the arm. Am J Orthop (Belle Mead NJ) 2008;37:E52-4. 14. Banasr A, de la Grandmaison GL, Durigon M. Frequency of bone/cartilage lesions in stab and incised wounds fatalities. Forensic Sci Int 2003;131:131-3. 15. Ford TC, Anania WC, Rosen RC. Osseous trauma of the lower extremity secondary to knife wounds. Two case reports. J Am Podiatr Med Assoc 1986;76:462-3. 16. Rose SC, Fujisaki CK, Moore EE. Incomplete fractures associated with penetrating trauma: etiology, appearance, and natural history. J Trauma 1988;28:106-9. 17. Chadwick EK, Nicol AC, Lane JV, Gray TG. Biomechanics of knife stab attacks. Forensic Sci Int 1999;105:35-44. 18. Horsfall I, Prosser PD, Watson CH, Champion SM. An assessment of human performance in stabbing. Forensic Sci Int 1999;102:79-89. 19. 蕭開平, 王志峰, 林文玲, et al. 刀器工具痕跡中刀器與生物動力學之研究. In: 2007年鑑識科學研討會; 2007; 2007. p. 155-62. 20. Biasotti AA. A statistical study of the individual characteristics of fired bullets. J Forensic Sci 1959;4:34-50. 21. Hall BK. Bones and Cartilage: Developmental and Evolutionary Skeletal Biology. London: Elsevier Academic Press; 2005. 22. Martini FH, Timmons MJ, Tallitsch RB. Human Anatomy. 3rd ed. CA: Pearson Education; 2003. 23. Amprino R. Investigations on some physical properties of bone tissue. Acta Anatomica 1958;34:161-86. 24. Ascenzi A. The micromechanics versus the macromechanics of cortical bone--a comprehensive presentation. J Biomech Eng 1988;110:357-63. 25. Ascenzi A, Baschieri P, Benvenuti A. The bending properties of single osteons. J Biomech 1990;23:763-71. 26. Sasaki N, Ikawa T, Fukuda A. Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone. J Biomech 1991;24:57-61. 27. Wagner HD, Weiner S. On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech 1992;25:1311-20. 28. Shaw KP, Chung FC, Tseng BY, Pan CH, Yang KT, Yang CP. Biomechanical study of identifying and matching the V-shape tool mark angles and knifes on bone tissue. J Forensic Sci;In press. 29. Nichols RG. Firearm and toolmark identification criteria: a review of the literature, part II. J Forensic Sci 2003;48:318-27. 30. Symes SA, Berryman HE, Smith OC. Saw marks in bone: introduction and examination of residual kerf contour. In: Reichs KJ, ed. Forensic Osteology: Advances in the Identification of Human Remains. 2nd ed: Springfield; 1998:389-409. 31. Tucker BK, Hutchinson DL, Gilliland MF, Charles TM, Daniel HJ, Wolfe LD. Microscopic characteristics of hacking trauma. J Forensic Sci 2001;46:234-40. 32. Saville PA, Hainsworth SV, Rutty GN. Cutting crime: the analysis of the 'uniqueness' of saw marks on bone. Int J Legal Med 2007;121:349-57. 33. Thali MJ, Taubenreuther U, Karolczak M, et al. Forensic microradiology: micro-computed tomography (Micro-CT) and analysis of patterned injuries inside of bone. J Forensic Sci 2003;48:1336-42. 34. Bartelink EJ, Wiersema JM, Demaree RS. Quantitative analysis of sharp-force trauma: an application of scanning electron microscopy in forensic anthropology. J Forensic Sci 2001;46:1288-93. 35. Seta S. Current research and case work activities of criminalistics in Japan. Forensic Sci Int 1996;80:109-35. 36. Svensson A, Wendel O, Fisher BAJ. Techniques of Crime Scene Investigation. 3rd ed. New York: American Elsevier Publishing; 1981. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44695 | - |
dc.description.abstract | 刀器造成受害者的銳器傷向來是他殺案件的主要來源,當銳器傷及人體骨骼,必留下工具痕跡,成為刑事偵查案中探討工具痕跡證據為鑑識科學主要課題。本研究將收集2005至2009年間之法醫相驗解剖之他殺案件與外傷中銳器傷案件,回溯性篩檢來瞭解台灣地區銳器傷相關的流行病學研究。而銳器傷的型態有砍傷、刺剪傷、切割傷、穿刺傷等;在刀痕工具痕跡方面,本研究的銳器傷對象以砍傷為主,透過生物動力學研究,以羊腿骨模擬骨質刀痕角度,發展生體工具痕跡鑑識技術,並建構人體刀傷與刀器比對鑑驗之標準作業流程。
本研究利用不同施力來產生撞擊動量(質量•速度)之物理性質,製作刀器工具痕跡砍劈實驗模擬平台,透過高解析3D立體顯微鏡掃描量測刀痕工具痕跡角度。骨質回彈係數(κ)為刀器刀刃角度(θ)與骨質刀痕角度(φ)之比值,顯示骨頭受刀器砍劈後彈性恢復之程度,藉以探討分析刀器、骨頭在撞擊時之生物動力學與刀器及工具痕跡之關係。 本實驗結果顯示,骨質刀痕角度(φ)與撞擊動量有正相關性。在固定刀器重量條件下,調整刀器分別於9.8至49.0公分(其中墜落高度依重力加速度G=9.8m/s2之簡單倍數)高處落下,發現骨質刀痕角度(φ)介於10.66±0.29度至38.32±0.33度,計算其骨質回彈係數(κ)介於1.16±0.03至2.70±0.06,當撞擊動量愈大而骨質回彈係數(κ)亦愈大,且雙鋒刀刃類之骨質回彈係數(κ)與撞擊動呈較佳之線性關係,而偏鋒刀刃類之骨質回彈係數(κ)與撞擊動量也有骨質回彈係數(κ)隨撞擊動量增加而變大之趨勢。本研究顯示台灣地區2005至2009年間,法醫相驗解剖死亡案件中他殺案件共有1120件中,銳器傷就佔349件(31.16%),與死亡年齡統計中以25-44歲之青壯年人為他殺案件中銳器傷最多數(佔198件、49.25%),銳器傷致死與性別統計顯示男性佔比例較高〈佔279件、69.4%〉。刀器工具痕跡與生物動力學實驗方面,利用高解析3D立體顯微鏡技術來量測刀器工具痕跡並將其實驗結果統計來建立刀器骨質動力學等研究資料庫,並利用骨質彈性係數和撞擊動量之線性關係,還原凶手犯案時可能之施力大小與方式,最後建構人體骨質刀痕與刀器比對鑑驗之標準作業流程,提昇國內法醫刑事鑑識有關骨質刀痕生體工具痕跡比對的鑑識能力。 | zh_TW |
dc.description.abstract | Sharp instrument injury by knife becomes the leading cause of homicide in Taiwan. According to 1910 Edmund Locard’s Principe, the tool marks can play a crucial role to profile the shape, nature and characteristics of weapons. Therefore, the study of tool mark is one of the major issues in forensic investigation of criminal cases for identifying and mapping the tool mark on bone tissue.
Retrospective study of sharp-instrument injury-related homicide cases during 2005~2009 is conducted. Sharp instrument injuries include chopping wounds, stab wounds, cutting wounds, and penetrating wounds. Through biomechanical studies, lamb bone was used to simulate the human bone under sharp tool chopping, so as to develop the mapping technique and to correlate the sharp instrument impacted on bones, and so as to establish the standard operation procedure for identifying the sharp instrument in correlative with chopping wound on bones. In this research, the experimental chopping stage is designed for knife tool marks. With different impulsive forces generated by angular momentum (velocity and mass) of the knife, different knife tool marks would be observed by 3D digital microscope. The ratio between the knife angle(θ), and the V-shape tool mark angle(ψ), is assigned as κ value (elastic coefficient : θ/ψ) to represent the degree of elastic rebound after the impact of the knife on the bone. The experiment result reveals the V-shape knife tool mark angle is proportionally related to the impulsive force. Under fixed knife masses, with different falling height of the knife (form 9.8cm to 49 cm) were used to mimic the impact force. V-shape knife tool mark angles and the elastic coefficient were 10.66±0.29 to 38.32±0.33 degrees and 1.16±0.03 to 2.70±0.06, respectively. The greater the angular momentum of the knife chopping induces a larger the elastic coefficient of bone. Besides, the double-edge knives induced the V-shape knife mark angle demonstrate a linear relationship between the elastic coefficient and the angular momentum. 349 out of 1120 homicide-related autopsy cases were the sharp instrument-related victims. High risk age ranged between the age of 25 to 44 years old. In conclusion, these results data from the biomechanical and epidemiological studies could be compiled into a practical use for the strategy for the forensic examination and benefit to the identification for knife tool marks, so as to promote the credibility in medico-legal investigation in Taiwan. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:53:04Z (GMT). No. of bitstreams: 1 ntu-99-R93452006-1.pdf: 1230904 bytes, checksum: 8a2e5359eca5caf097a132be8b5765be (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 第一章 緒論 1
1.1 前言 1 1.2 死亡案件外傷中銳器傷之流行病學研究 1 1.2.1 死亡方式為他殺案件中銳器傷的流行病學研究 2 1.3 生物工具痕跡 3 1.3.1 生體工具痕跡與骨質銳器傷 3 1.3.2 刀紋痕跡特性 4 1.3.3 刀刃開鋒型態與骨質刀痕角度 5 1.4 骨質力學研究與骨質刀痕角度之生物動力學探討 5 1.4.1 骨質力學研究 5 1.4.2 骨質刀痕角度與回彈係數之生物動力學探討 6 1.4.3 生體工具痕跡鍵識技術之發展 7 第二章 研究動機與研究目的 9 2.1 研究動機 9 2.2 研究目的 9 第三章 實驗材料與方法 11 3.1 實驗材料與儀器設備 11 3.1.1 台灣地區法醫解剖鑑定案中死亡方式判定為他殺所有案例之收集 11 3.1.2 台灣地區法醫解剖鑑定案之死亡案件所有外傷中銳器傷相關案例收集 11 3.2 收集羊腿骨及不同開鋒型態之刀刃 11 3.2.1 羊腿骨的選購 11 3.2.2 實驗刀刃之選購 12 3.2.2.1 雙鋒刀類之刀具 12 3.2.2.2 偏鋒刀類之刀具 12 3.3 實驗儀器 13 3.3.1 厚度測量計 13 3.3.2 鐵板基底座 13 3.3.3 刀器工具痕跡砍劈實驗之模擬平台 13 3.3.4 三D立體掃描式顯微鏡 14 3.4 實驗設計與方法 14 3.4.1 實驗材料之前處理... 14 3.4.2 實驗材料之固定 14 3.4.3 羊骨管狀骨之實驗前測試 15 3.4.4 刀器工具痕跡模擬實驗: 15 3.4.5 刀刃之基本量測 15 3.4.6 刀刃角度與骨質刀痕角度量測比對 16 3.4.7 骨質回彈係數之計算 16 3.4.8 統計分析 16 3.4.8.1 流行病學之回溯性研究 16 3.4.8.2 刀刃角度與骨質刀痕角度之數據分析 17 3.4.9 骨質刀痕工具痕跡生物動力學實驗之流程圖 17 第四章 實驗結果 18 4.1 回溯性研究之結果 18 4.1.1 台灣地區法醫解剖鑑定案中死亡方式判定為他殺案件之統計結果 18 4.1.2 台灣地區法醫解剖鑑定案之死亡案件中銳器傷之流行病學結果 18 4.2 刀刃型態數據量測與管狀骨砍劈試驗結果 18 4.2.1 刀刃型態數據量測 19 4.2.2 管狀骨砍劈試驗結果 20 4.3 工具痕跡之骨質刀痕角度與生物動力學結果 21 4.3.1 砍劈骨質之撞擊動量對骨質刀痕角度的影響 21 4.3.2 砍劈骨質之撞擊動量與骨質回彈係數之關係 22 4.3.3 比較相同開鋒型態之撞擊動量與骨質刀痕角度的相關性 25 4.4 建構人體骨質刀痕比對鑑驗標準作業流程(Standard Operation Procedure, SOP) 25 4.4.1 目的 25 4.4.2 範圍 25 4.4.3 採檢注意事項 26 4.4.3.1 檢體之封存與標示 26 4.4.3.2 開立「檢體監管送驗紀錄表」 26 4.4.3.3 勘驗流程與輔助資訊 26 4.5 刀器鑑驗標準作業流程 27 4.5.1 凶器觀察 27 4.5.1.1 凶器外觀 27 4.5.1.2 凶器材質分析 28 4.5.2 刀傷觀察 28 4.5.3 凶器與被害人刀傷特徵之交叉比對 28 4.5.4 羊骨模擬刀傷刀痕鑑驗 29 4.5.4.1 無凶刀狀況下兇刀模擬實驗 29 4.5.4.2 有凶刀狀況下兇刀模擬實驗 29 4.5.5 研判與結案 30 4.5.6 建構骨質刀痕鑑驗比對資料庫 30 4.5.7 凶刀的種類之鑑驗 30 4.6 骨質刀痕凶器比對鑑驗作業流程圖 30 第五章 討論 31 5.1 台灣地區法醫解剖鑑定案的死亡案件中銳器傷之流行病學探討 31 5.2 發展刀器工具痕跡鑑定技術之檢測 31 5.3 砍劈骨質之撞擊動量對骨質刀痕角度的影響 32 5.4 砍劈骨質之撞擊動量對骨質回彈係數之關係 33 5.5 比較相同開鋒型態之撞擊動量與骨質刀痕角度的關係 34 5.6 人體骨質刀痕與凶器比對鑑驗標準作業流程之探討 35 第六章 結論 36 6.1 台灣地區法醫解剖鑑定案的死亡案件中銳器傷之流行病學研究 36 6.2 刀痕工具痕跡鑑定技術之檢測 36 6.3 骨質刀痕角度與骨質回彈係數之生物動力學研究 36 6.4 刀傷凶器比對鑑驗標準作業流程 37 參考文獻 38 | |
dc.language.iso | zh-TW | |
dc.title | 骨質刀痕角度與刀器角度鑑識之生物動力學研究 | zh_TW |
dc.title | Biomechanical Study of Identify and Matching the Tool Mark Angles and Knife Angles on Bone Tissue | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 蕭開平(Kai-Ping Shaw) | |
dc.contributor.oralexamcommittee | 陳耀昌(Yao-Chang Chen),方中民 | |
dc.subject.keyword | 刀器工具痕跡,生物動力學研究,刀刃角度(θ),骨質刀痕角度(φ),骨質彈性係數(κ), | zh_TW |
dc.subject.keyword | knife tool mark,biomechanical study,knife angle,V-shape knife tool mark angle,elastic coefficient, | en |
dc.relation.page | 86 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-05 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 法醫學研究所 | zh_TW |
顯示於系所單位: | 法醫學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。