Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44674
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張文亮
dc.contributor.authorChiao-Wen Linen
dc.contributor.author林巧雯zh_TW
dc.date.accessioned2021-06-15T03:52:41Z-
dc.date.available2020-07-22
dc.date.copyright2010-07-12
dc.date.issued2010
dc.date.submitted2010-07-07
dc.identifier.citation1.丁健原,1987,重金屬鉻之土壤污染及其溶質吸附移動模擬研究,國立台灣大學農業工程學研究所碩士論文。
2.林雅雯,2006,以廢棄牡蠣殼製備懸浮性重金屬吸附劑之研究,屏東科技大學環境工程與科學系所碩士論文。
3.郭正翔,2009,牡蠣殼礫間處理初期操作對都市污水之淨化,國立台灣大學生物環境系統工程學研究所碩士論文。
4.梁明煌,1981,布袋養殖牡蠣之成長與著苗研究,國立台灣大學動物學研究所碩士論文。
5.黃培安,吳純衡,2006,牡蠣殼萃取物在抗氧化及抑制酪胺酸酶活性之研究,水產試驗所,pp. 1-3。
6.楊松岳,1999,以熱力學觀點及有限混合分佈理論論重金屬鎘在土壤中之傳輸及污染分級,國立台灣大學農業工程學研究所碩士論文。
7.潘文欽,2003,東石養蚵業的生產與勞動之研究,南華大學公共行政與政策所碩士論文。
8. Biggar, J. W. and Nielsen, D. R., 1962a. “Miscible Displacement: II. Behavior of Tracers.”, Soil Science Society of America Proceedings, Vol. 26. pp. 125-128.
9. Biggar, J. W. and Nielsen, D. R., 1963b. “Miscible Displacement: V. Exchange Processes.”, Soil Science Society of America Proceedings, Vol. 27. pp. 623-627.
10. Biggar, J. W. and Nielsen, D. R., 1964. “Chloride-36 Diffusion during Stable and Unstable Flow through Glass Beads.”, Soil Science Society of America Proceedings, Vol. 28. pp. 591-595.
11. Biswas, B. K., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K., Kawakita, H., 2008. ”Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium.”, Bioresource Technology, Vol.99. pp. 8685-8690.
12. Bubba, M. D., Arias, C. A., Brix, H., 2003. “Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm.”, Water Research, Vol. 37. pp. 3390-3400.
13. De Camargo, O. A., Biggar, J. W., Nielsen D. R., 1979. “Transport of Inorganic Phosphorus in an Alfisol.”, Soil Science Society of America Proceedings, Vol.43. pp. 884-890.
14. Jung, J. H., Yoo, K. S., Kim, H. G., Lee, H. K., Shon, B. H., 2007. “Reuse of Waste Oyster Shells as a SO2/NOx Removal Absorbent.”, Journal of Industrial and Engineering Chemistry, Vol.13(4). pp. 512-517.
15. Jung, Y. J., Koh, H. W., Shin,W. T., and, Sung, N. C., 2006. “A novel approach to an advanced tertiary wastewater treatment:Combination of a membrane bioreactor and an oyster - zeolite column.”, Desalination, Vol. 190. pp. 243–255.
16. Kirkham D. and W. L. Powers, 1972, “Advanced Soil Physics”, John Wiley & Sons, Inc., New York, pp. 379-427.
17. Korte, N. E., Skopp, J., Fuller, W. H., Niebla, E. E., Alesii, B. A., 1976. “Trace Element Movement in Soils: Influence of Soil Physical and Chemical Properties.”, Soil Science, Vol. 122. pp. 350-359.
18. Kwon, H. B., Lee, C. W., Jun, B. S., Yun, J. D., Weon, S. Y., Koopman, B.,2004. “Recycling waste oyster shells for eutrophication control.” , Resources, Conservation & Recycling, Vol.41. pp. 75–82.
19. Lee, S. H., Vigneswaran, S., Chung Y., 1997. “A Detailed Investigation of Phosphorus Removal in Soil and Slag Media.”, Environmental Technology, Vol.18. pp. 699-710.
20. Lee, S. H., Vigneswaran, S., Moon, H., 1997. “Adsorption of phosphorus in saturated slag media columns.”, Separation and Purification Technology,Vol.12. pp. 109-118.
21. Mann, R. A., 1997, “Phosphorus adsorption and desorption characteristics of constructed wetland gravels and steelworks by-products.”, Australian Journal of Soil Research, Vol. 35. pp. 375-384.
22. Mansell, R. S., McKenna, P. J., Flaig, E., Hall, M., 1985. “Phosphate Movement in Columns of Sandy Soil From A Wastewater-Irrigated Site.”, Soil Science, Vol. 140. pp. 59-68.
23. Namasivayam, C., Sakoda A., Suzuki M., 2005. “Removal of phosphate by adsorption onto oyster shell powder - kinetic studies.”, Journal of Chemical Technology and Biotechnology, Vol.80. pp. 356–358.
24. Nielsen, D. R., and Biggar, J. W., 1961. “Miscible Displacement in Soils: I. Experimental Information.”, Soil Science Society of America Proceedings,
Vol. 25. pp. 1-5.
25. Nielsen, D. R., and Biggar, J. W., 1962b. “Miscible Displacement : III. Theoretical Considerations.”, Soil Science Society of America Proceedings,
Vol. 26. pp. 216-221.
26. Nielsen, D. R., and Biggar, J. W., 1963a. “Miscible Displacement: IV. Mixing in Glass Beads.”, Soil Science Society of America Proceedings, Vol. 27.pp. 10-13.
27. Odoemelam, S. A., Eddy, N. O., 2009. “Studies on the Use of Oyster, Snail and Periwinkle Shells as Adsorbents for the Removal of Pb2+ from Aqueous Solution.”, E-Journal of Chemistry, Vol. 6(1). pp. 213-222.
28. Olsen, S. R. and Watanabe, F. S., 1957. “A Method to Determine a
Phosphorus Adsorption Maximum of Soils as Measured by the Langmuir Isotherm.”, Soil Science Society of America Proceedings, Vol.21. pp. 144-149.
29. Ozacar, M., 2003. “Adsorption of phosphate from aqueous solution onto
alunite.”, Chemosphere, Vol.51. pp. 321-327.
30. Park, W. H., 2009. “Integrated constructed wetland systems employing alum sludge and oyster shells as filter media for P removal.”, Ecological Engineering , Vol. 35. pp. 1275-1282.
31. Passioura, J. B. and Rose, D. A., 1971. “Hydrodynamic Dispersion in Aggregated Media: 2. Effects of Velocity and Aggregate Size.”, Soil Science, Vol. 3. pp. 345-351.
32. Seo, D. C., Cho, J. S., Lee, H. J., and, Heo, J. S., 2005. “Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland.”, Water Research, Vol.39. pp. 2445–2457.
33. Veith, J. A. and Sposito, G., 1977. “On the Use of the Langmuir Equation in the Interpretation of 'Adsorption' Phenomena.”, Soil Science Society of America, Vol.41. pp. 697-702.
34. Yang, E. I., Yi, S.T., Leem Y. M., 2005. “Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties.”, Cement & Concrete Research, Vol. 35. pp. 2175-2182.
35. Yoon, G. L., Kim, B. T., Kim, B. O., Han, S. H., 2003. “Chemical–mechanical characteristics of crushed oyster-shell.”, Waste Management, Vol.23. pp. 825-834.
36. Yoon H., Park S., Lee K., Park J., 2004. “Oyster shell as substitute for aggregate in mortar.”, Waste Management & Research, Vol. 22. pp. 158-170.
37. Zhang, G., Liu, H., Liu, R., Qu, J., 2009. “Removal of phosphate from water by a Fe-Mn binary oxide adsorbent.”, Journal of Colloid and Interface Science, Vol.335. pp. 168-174.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44674-
dc.description.abstract牡蠣為台灣西南沿海常見的養殖生物,其副產物牡蠣殼卻造成相當嚴重的廢棄物問題。若可利用牡蠣殼成為現地處理中,吸附污水中磷的介質,不但可減少牡蠣殼過多的數量問題,也可降低水中磷的濃度,改善水質優養化。
本研究主要探討不同粒徑間,三種粒徑的牡蠣殼粉(0.42~0.84mm),透過Langmuir等溫吸附實驗設計,求取牡蠣殼對磷的最大吸附量,並與其他吸附材料做比較。另外,以混合取代(Miscible Displacement)的實驗,研究磷在三種粒徑的牡蠣殼粉孔隙中動力傳輸的情形,並計算磷在三種粒徑的牡蠣殼粉的延散係數(Dispersion Coefficient)。最後,分析牡蠣殼化學成分,主要分析重金屬的含量。希望藉由以上研究,建立牡蠣殼吸附磷的能力和相關參數,供日後牡蠣殼移除污水中磷之應用。
其結果顯示,牡蠣殼對磷的吸附與Langmuir isotherm的假設接近。粒徑為0.42 mm,0.59 mm,0.84 mm,其最大吸附量(qm)分別為:200 mg/kg,166.67 mg/kg,125 mg/kg,最大吸附量隨著粒徑減小而增加。和不同種類的土壤和常用於吸附磷的材料比較,牡蠣殼也能夠成為吸附磷的介質,其效果相似。
另外,根據混合取代理論,求得磷在牡蠣殼的延散係數為0.42mm:17.05 cm2/s;0.59mm:0.90 cm2/s;0.84mm:0.21 cm2/s,隨著粒徑減小有增大的趨勢。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T03:52:41Z (GMT). No. of bitstreams: 1
ntu-99-R97622013-1.pdf: 1162822 bytes, checksum: 5f2e09663f82cceb9eeba40486252f7a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目 錄
中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VI
表目錄 VII
第一章 前言 1
1.1文獻回顧 1
1.2研究目的 2
第二章 理論與模式 4
2.1 Langmuir等溫吸附模式 (Langmuir Isotherm) 4
2.2 混合取代理論 (Miscible Displacement) 7
第三章 材料與方法 12
3.1 Langmuir等溫吸附實驗 12
3.1.1牡蠣殼 12
3.1.2磷溶液的配製 12
3.1.3實驗步驟 12
3.1.4牡蠣殼釋放的磷 13
3.2混合取代實驗 14
3.2.1實驗步驟 14
3.2.2繪製突破曲線 16
3.2.3計算導水係數(K) 16
3.3牡蠣殼化學成分分析 17
第四章 結果與討論 18
4.1 Langmuir等溫吸附實驗 18
4.1.1三種粒徑的牡蠣殼粉對磷的吸附量(q)和初始濃度(C)的關係 18
4.1.2三種粒徑的牡蠣殼粉在不同時間下的最大吸附量(qm)和Kads 22
4.1.3與其他材料比較qm值 27
4.1.4牡蠣殼釋放的磷 32
4.2混合取代實驗 33
4.3牡蠣殼化學成分分析結果 41
第五章 結論與建議 42
5.1結論 42
5.2建議 43
參考文獻 44
附錄 49
附錄A 公式符號對照表 49
附錄B Langmuir等溫吸附實驗原始數據 51
附錄C 混合取代實驗原始數據 69
附錄D 牡蠣殼重金屬分析 76
圖目錄
圖2-1 Langmuir等溫吸附模式中q和C的關係圖 6
圖2-2 線性回歸的Langmuir等溫吸附模式 6
圖2-3 突破曲線 11
圖3-1 錐形瓶置放於等溫震盪器 13
圖3-2 混濁的牡蠣殼溶液 13
圖3-3 過濾裝置過濾牡蠣殼溶液 13
圖3-4 透明無色的KH2PO4溶液 13
圖3-5定水頭裝置實圖 14
圖3-6 ΔH、L、d位置圖 14
圖4-1 0.42 mm 2hr∼24hr q與C關係圖 19
圖4-2 0.59 mm 2hr∼24hr q與C關係圖 20
圖4-3 0.84 mm 2hr∼24hr q與C關係圖 21
圖4-4 0.42 mm 2hr~24hr Langmuir Isotherm線性回歸圖 24
圖4-5 0.59 mm 2hr~24hr Langmuir Isotherm線性回歸圖 25
圖4-6 0.84 mm 2hr~24hr Langmuir Isotherm線性回歸圖 26
圖4-7 三種粒徑牡蠣殼的突破曲線圖 36
圖4-8 0.42 mm濃度移除率和累積時間關係圖 38
圖4-9 0.59 mm濃度移除率和累積時間關係圖 38
圖4-10 0.84 mm濃度移除率和累積時間關係圖 39
圖4-11 0.42 mm導水係數(K)和累積時間關係圖 39
圖4-12 0.59 mm導水係數(K)和累積時間關係圖 40
圖4-13 0.84 mm導水係數(K)和累積時間關係圖 40
表目錄
表4.1 牡蠣殼在不同研磨粒徑不同時間的qm和Kads值 22
表4.2 牡蠣殼與吸附劑其他材料的比較 29
表4.3 10g牡蠣殼在不同研磨粒徑不同時間釋放的磷和所佔全部
含磷量的比例 32
表4.4 牡蠣殼在不同研磨粒徑之混合取代實驗結果 33
表4.5牡蠣殼與其他材料平均孔隙流速和延散係數的比較 37
表4.6 牡蠣殼所含重金屬的成分含量表 41
dc.language.isozh-TW
dc.subject牡蠣殼zh_TW
dc.subject磷zh_TW
dc.subjectLangmuir等溫吸附zh_TW
dc.subject混合取代理論zh_TW
dc.subject延散係數zh_TW
dc.subjectmiscible displacementen
dc.subjectLangmuir isothermen
dc.subjectdispersion coefficienten
dc.subjectphosphorusen
dc.subjectoyster shellen
dc.title牡蠣殼粉移除水中磷之等溫吸附與混合取代研究zh_TW
dc.titlePhosphorus Removal from Aqueous Solution Using Oyster Shell Powder–Adsorption Isotherm and Miscible Displacement Studiesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張尊國,張倉榮,游進裕
dc.subject.keyword牡蠣殼,磷,Langmuir等溫吸附,混合取代理論,延散係數,zh_TW
dc.subject.keywordoyster shell,phosphorus,Langmuir isotherm,miscible displacement,dispersion coefficient,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2010-07-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved