請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44667
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 歐陽明 | |
dc.contributor.author | Kuan-Ting Liu | en |
dc.contributor.author | 劉冠廷 | zh_TW |
dc.date.accessioned | 2021-06-15T03:52:34Z | - |
dc.date.available | 2010-07-12 | |
dc.date.copyright | 2010-07-12 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-08 | |
dc.identifier.citation | [1] Adaboost. http://en.wikipedia.org/wiki/AdaBoost.
[2] Feret database. http://itl.nist.gov/iad/humanid/feret/feret_master.html [3] Hierarchical clustering. http://www.resample.com/. [4] Picasa. http://picasaweb.google.com. [5] A tutorial on clustering algorithms. http://home.dei.polomi.it/. [6] Boosting for fast face recognition. Proc. IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Face and Gesture in Real-Time Systems, pages 96-100, 2001. [7] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary pat- terns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:2037-2041, 2006. [8] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:711-720. 1997. [9] A. Bhuiyan and C. H. Liu. On face recognition using gabor filters. World Academy of Science, Engineering and Technology 28, 2007. [10] H. M. Chang. Face recognition based on local image descriptor. Master Thesis, Department of Computer Science and Information Engineering, National Taiwan University, 2010. [11] R. Chu, Z. Lei, Y. Han, and S. Z. Li. Learning gabor magnitude features for palm- print recognition. Computer Vision-ACCV, pages 22-31, 2007. [12] J. G. Daugman. Two-dimensional spectral analysisof cortical receptive field profile. Vision Research, 20(10):847-856, 1980. [13] J. G. Daugman. Complete discrete 2-d gabor transforms by neural network for image analysis and compression. IEEE Transactions on Acoustics, Speech and Signal Processing, 36(7):1169-1179, 1988. [14] J. G. Daugman. High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1148-1161, 1993. [15] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. EuroCOLT'95: Proceedings of the Second European Conference on Computational Learning Theory, pages 23-37, 1995. [16] S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 2:241-254, 1967. [17] T. S. Lee. Image representation using 2d gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:959-971, 1996. [18] B. Moghaddam, T. Jebara, and A. Pentland. Bayesian face recognition. Pattern Recognition, 33(11):1771-1782, 2000. [19] H. Moon and P. J. Phillips. Computational and performance aspects of pca-based face-recognition algorithms. Perception, 30:303-321, 2001. [20] M. Turk and A. Pentland. Eigenfaces for face detection/recognition. Journal of Cognitive Neuroscience, 3(1):71-86, 1991. [21] S. C. Pei, M. Tzeng, and Y. Z. Hsiao. Uneven illumination removal and image enhancement using empirical mode decomposition. IPPR Conference on Computer Vision, Graphics, and Image Processing, 2007. [22] L. Qing, S. Shan, X. Chen and W. Gao. Face recognition under varying lighting based on the probabilistic model of gabor phase. ICPR'06: Proceedings of the 18th International Conference on Pattern Recognition, pages 1139-1142, 2006. [23] P. R. Shih. Face recognition using local binary pattern and partial matching. Master Thesis, Graduate Institute of Networking and Multimedia, National Taiwan Univer- sity, 2010. [24] C. G. M. Snoek. Early versus late fusion in semantic video analysis, 2005. [25] M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision, 7(1):11-32, 1991. [26] Wikipedia. Cluster analysis. http://en.wikipedia.org/wiki/Cluster_analysis. [27] Wikipedia. Euler's formula. http://en.wikipedia.org/wiki/Euler's_formula. [28] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recogni- tion via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31:210-227, 2009. [29] P. Yang, S. Shan, W. Gao, S. Z. Li, and D. Zhang. Face recognition using ada- boosted gabor features. Proceedings of the 16th International Conference on Face and Gesture Recognition, pages 356-361, 2004. [30] C. H. Yeh, P. Ri Shih, K. T. Liu, Y. T. Lin, H. M. Chang, and M. Ouhyoung. A comparison of three methods of face recognition for home photos. ACM SIGGRAPGH Poster, 2009. [31] B. Zhang, Y. Gao, S. Zhao, and J. Liu. Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Transactions on Image Processing, 19(2):533-544. 2010. [32] B. Zhang, S. Shan, X. Chen, and W. Gao. Histogram of gabor phase patterns (hgpp): A novel object representation approach for face recognition. IEEE Transations on Image Processing, 16(1):57-68, 2007. [33] W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang. Local gabor binary pattern histogram sequence (lgbphs): A novel non-statistical model for face representation and recognition. ICCV'05: Proceeding of the Tenth IEEE Internationa; Conference on Computer Vision (ICCV'05) Volume 1, pages 786-791, 2005. [34] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition: A litera- ture survey. ACM Computing Surveys, 35(4):399-458, 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44667 | - |
dc.description.abstract | 在電腦視覺和電腦圖學的領域中,人臉辨識是一項頗受學術界和產業界重視的技術,雖然目前已有為數不少的學術性論文和商業性產品,但辨識生活照中的人臉仍然是一大艱鉅的挑戰。在本論文中,我們將重點放在對生活照進行非監督式辨識(Unsupervised Recognition),而非監督式辨識指的是在整個辨識過程中不需要訓練任何模型。生活照具有各種不利於辨識的因素,如表情、光影、遮蔽和模糊等等,大大增加了辨識的難度。由於加伯濾波器(Gabor Filter)能夠有效地擷取出不同尺度和方向的材質特徵,在本論文中,我們以加伯濾波器為基礎實做了兩種演算法,分別為區域性加伯二元圖樣統計圖串(LGBPHS)和加伯相位統計圖(HGPP),這兩種演算法分別使用加伯量(Gabor Magnitude)和加伯相位(Gabor Phase)來描述臉部特徵。進一步地,我們使用了三種方法來合併區域性加伯二元圖樣統計圖串和加伯相位統計圖,並使用了多核處理器和圖形處理器技術來加速程式執行速度,而在實驗部分。除了生活照外,我們也使用FERET人臉照片資料庫來驗證我們的演算法在標準臉部相片中的辨識準確度。我們的演算法可將309張生活照分為109個群組,並有96.7%的準確率,另一組測試資料為838張生活照,我們的演算法將其分為252個群組,準確率為99.2%,而在FERET人臉照片資料庫中,準確率則可達到95.97%。同時,加伯濾波器可使用圖形處理器來加速,在我們的實做中,執行速度可加快140倍以上。 | zh_TW |
dc.description.abstract | In the past ten years, face recognition has become a popular area in computer vision. This technique can be used in several applications, such as security system or photo categorization system. Although many technical papers and commercial systems have emerged, recognition of photos under uncontrolled environment is still a challenge. Here we will focus on recognizing different people in home photo datasets without any training procedure. Since Gabor filter has the multi-resolution and multi-orientation characteristics, we implement two algorithms, called Local Gabor Binary Pattern Histogram Sequence (LGBPHS) and Histogram of Gabor Phase Patterns (HGPP), which use Gabor magnitude and Gabor phase as the face descriptor respectively. How to combine LGBPHS and HGPP is also addressed here. Moreover, we use multi-thread and GPU programming to reduce the computation time, and evaluate our approach on general face images from the FERET Database. Our approach can result in 96.71% precision in dividing into 109 clusters from 309 home photos, and 99.22% precision in dividing into 252 clusters from 838 home photos. On FERET Database, precision of our approach is 95.97%, which is higher than the previous research. In our implementation, the Gabor filter using GPU programming is more than 140 times faster than the single core version. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:52:34Z (GMT). No. of bitstreams: 1 ntu-99-R97944015-1.pdf: 7272114 bytes, checksum: 401f78e1d566c1908a23017c00c2f9e9 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員審定書 2
致謝 3 摘要 4 Abstract 5 1 Intorduction 10 2 Related Work 11 3 Gabor Filter 13 3.1 Introduction to Gabor Filter 13 3.2 Gabor Magnitude 17 3.3 Gabor Phase 18 4 LGBPHS (Local Gabor Binary Pattern Histogram Sequence) 19 4.1 LGBP (Local Gabor Binary Pattern) 19 4.2 LGBP Histogram Sequence 20 4.3 LGBPHS Matching 22 5 HGPP (Histogram of Gabor Phase Pattern) 23 5.1 Quadrant Bit Coding 23 5.2 GGPP (Global Gabor Phase Pattern) 24 5.3 LGPP (Local Gabor Phase Pattern) 25 5.4 Histogram of Gabor Phase Pattern 26 5.5 HGPP Matching 28 6 Further Improvement of LGBPHS and HGPP 30 6.1 The Characteristics of LGBPHS and HGPP 30 6.2 The Combination of LGBPHS and HGPP 31 7 Hierarchical Clustering 34 8 Multi-thread and GPU Speedup 36 9 Experiments and Results 38 9.1 Data Set Preparation 38 9.2 Experiment Result 39 10 Conclusion and Discussion 44 Bibliography 45 Appendix 48 | |
dc.language.iso | en | |
dc.title | 以加伯濾波器之材質特徵為基礎的人臉表示與辨識技術 | zh_TW |
dc.title | Face Representation and Recognition based on Texture Scale and Orientation through Gabor Filter | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 梁容輝,傅楸善 | |
dc.subject.keyword | 人臉辨識,加伯濾波器,統計圖,AdaBoost,Late Fusion,階層式分群法,圖形處理器, | zh_TW |
dc.subject.keyword | Face Recognition,Gabor Filter,Histogram,AdaBoost,Late Fusion,Hierarchical Clustering,GPU, | en |
dc.relation.page | 53 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-08 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 7.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。