請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44631完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹幸之(Shing-Jy Tsao) | |
| dc.contributor.author | Wei-Chao Hu | en |
| dc.contributor.author | 胡唯昭 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:52:01Z | - |
| dc.date.available | 2012-08-23 | |
| dc.date.copyright | 2011-08-23 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | 山崎肯哉. 1982. 養液栽培全編. 博友社. 東京, 日本.
王毓華、林毓雯、黃晉興、魏夢麗. 2008. 美濃瓜的生產概況及未來展望. 農友月刊. 722:40-42. 王鐘和、丘麗蓉、江志峰. 2003. 蔬菜園作物合理施肥技術. 苗栗地區作物合理施肥研討會專刊. p. 11-24 王鐘和. 2005. 作物需肥診斷之應用. 刊於:臺灣農家要覽. 增修訂三版策劃委員會編著. 臺灣農家要覽 農作篇(一). 行政院農業委員會. p.519-524 江汶錦、黃瑞彰、林晉卿、林經偉、卓家榮. 2010. 設施甜瓜合理化施肥技術. 臺南區農業專訊. 72:16-21 行政院農業委員會. 2002. 設施栽培之土壤肥料管理技術. 合理化施肥推廣手冊(6). p. 48 李國明. 1991. 東方甜瓜栽培管理要點. 花蓮區農業推廣簡訊. 8(2):8-10 沈再發. 2009a. 培養液組成之理論和實際 (上). 農業試驗所技術服務. 78:26-30 沈再發. 2009b. 培養液組成之理論和實際 (中). 農業試驗所技術服務. 79:37-41 沈再發. 2009c. 培養液組成之理論和實際 (下). 農業試驗所技術服務. 80:37-42 沈再發、許淼淼. 1990. 溫室洋香瓜水耕之養分吸收研究. 中華農業研究. 39:55-64 邱如峰. 2006. 美濃瓜「嘉玉」直立式栽培. 園藝之友. 115:40-42 林楨佑、陳甘澍、林照能. 2009. 東方甜瓜之設施栽培技術介紹. 農業試驗所技術服務季刊. 20(80):8-10 張禮忠、毛知耘譯. 1992. 利用植物測試診斷礦物元素缺乏症. 刊於:植物無機營養. 農業出版社. 中國北京. p.63-76 游雯蓉、林慧玲. 2003. 瓜類不同嫁接組合對礦物元素吸收及運移之調查. 興大園藝. 28:39-56 黃圓滿、黃賢良. 2005. 甜瓜. 刊於:臺灣農家要覽. 增修訂三版策劃委員會編著. 臺灣農家要覽 農作篇(二). 行政院農業委員會. p.459-464 黃瑞彰、林晉卿、孫文章. 2009. 設施栽培合理化施肥技術. 臺南區農業改良場技術專刊. 138:1-20 廖乾華. 2005. 植物之必需元素. 刊於:臺灣農家要覽. 增修訂三版策劃委員會編著. 臺灣農家要覽 農作篇(一). 行政院農業委員會. p.499-506 廖慶樑. 2003. 合理化施肥理念. 花蓮地區作物合理施肥研討會專刊. p.1-3 蔡竹固、童伯開、陳瑞祥.1999.甜瓜病害的診斷及其防治. 國立嘉義技術學院農業推廣委員會編印.p.20-57 蔡宜峯、高德錚. 2002. 本土化蔬菜有機介質配方之開發. 臺中區農業改良場專訊. 38:4-11 劉依昌、謝明憲、黃瑞彰、林經偉、林棟樑、王仕賢. 2009. 設施番茄之養液土耕栽培技術. 臺南區農業專訊. 67:7-9 賴文龍. 2000. 果園土壤管理. 合理化施肥技術. 臺中區農業改良場. p.33-38 賴文龍、陳榮五. 2010. 推動作物合理化施肥成果. 刊於:行政院農業委員會臺中區農業改良場近年來試驗研究暨推廣成果專輯. 陳榮五、張致盛、廖君達編著. 行政院農業委員會. p.186-190 戴振洋. 2009. 設施番茄介質耕栽培技術. 臺中區農業技術專刊. p. 1-2 戴振洋、李文汕. 2009. 高品質東方甜瓜栽培技術. 興大農業第71期瓜果類蔬菜栽培專輯. p.24-p28 戴振洋、蔡宜峯. 2008. 不同養液肥料對介質栽培東方甜瓜之影響. 臺中區農業改良場研究彙報. 99:61-72 戴振洋、蔡宜峯. 2009. 不同養液配方對東方甜瓜植體中氮、磷、鉀、鈣及鎂含量之影響. 臺中區農業改良場研究彙報. 104:17-28 Adams, P. 1991. Effects of increasing the salinity of the nutrient solution with major nutrients or sodium-chloride on the yield, quality and composition of tomatoes grown in rockwool. J. Hort. Sci. 66:201-207 Adams, P. and L.C. Ho. 1989. Effect of constant and fluctuating salinity on the yield, quality and calcium status of tomatoes. J. Hort. Sci. 64:725-732 Adams, P. and L.C. Ho. 1992. The susceptibility of modern tomato cultivars to blossom-end rot in relation to salinity. J. Hort. Sci. 67:827-839 Adams, P. and L.C. Ho. 1993. Effects of environment in the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant Soil 154:127-132 Alam, S.M. 1994. Nutrient uptake by plants under stress condition. pp. 227-243. In M. Pessarakli (ed.). Handbook of plant and crop stress. Marcel Dekker, NY. Al-Karaki, G. N. 2000. Growth, sodium, and potassium uptake and translocation in salt stressed tomato. J. Plant Nutr. 23(3): 369-379 Almansouri, M., J.M. Kinet, and S. Lutts 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243-254 Al-Mukhtar, F.A., F.M. Hummadi, and F.H. Al-Sahaf. 1987. Effect of different levels of NPK fertilizer on growth and yield of two summer squash cultivars. Acta Hort. 220:253-258 Ames, M. and W.S. Johnson. 1986. A review of factors affecting plant growth. Proceedings of the 7th Annual Conference on Hydroponics: The Evolving Art, The Evolving Science. Hydroponic Society of America, Concord, CA. Amuyunzu, P.A., J.A.Chweya, Y. Rosengartner, and S. Mendlinger. 1997. Short communication: effect of different temperature regimes on vegetative growth of melon plants. Afr. Crop Sci. J. 5:77-86 Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora 199:361-376 Ashraf, M. and M.A. Foolad. 2007. Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Envir. Exp. Bot. 59:206-216 Auerswald, H., D. Schwarz, C. Kornelson, A. Krumbein, and B. Bruckner. 1999. Sensory analysis, sugar and acid content of tomato at different EC values of the nutrient solution. Sci. Hort. 82:227-242 Aziz, A. B. 1968. Seasonal changes in the physical and chemical composition of tomato fruits as affected by nitrogen levels. Meded. Landbouw. Wageningen. 68(7):1-6 Balasubramanian, V., A.C. Morales, R.T. Cruz, T.M. Thiyagarajan, R. Nagarajan, M. Babu, S. Abdulrachman, and L.H. Hai. 2000. Adaptation of the chlorophyll meter (SPAD) technology for real-time N management in rice: a review. Int. Rice Res. Inst. 5:25-26. Bar-Yosef, B. 1999. Advances in fertigation. Adv. Agro. 65:1-70 Benard, C., H. Gautier, F. Bourgaud, D. Grasselly, B. Navez, C. Caris-Veyrat, M. Weiss, and M. Genard. 2009. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J. Agric. Food Chem. 57:4112-4123 Bernstein, L. 1974. Crop growth and salinity. In: J. van Schiffgaarde (ed.). Drainage for agriculture. Agron. Monogr. 17. ASA, Madison, WI. pp.39-54 Besford, R.T. and G.A. Maw. 1975. Effect of potassium nutrition on tomato plant growth and fruit development. Plant Soil 42:395-412 Bode Stoltzfus, R.M., H.G. Taber, and A.S. Aiello. 1998. Effect of increasing root-zone temperature on growth and nutrient uptake by 'gold star' muskmelon plants. J. Plant Nutr. 21:321-328 Cassman KG, M.J. Kropff, J. Gaunt , and S. Peng. 1993. Nitrogen use efficiency of irrigated rice: what are the key constraints? Plant Soil 155:359-362 Castellanos, M. T., M. J. Cabello, M. C. Cartagena, A. M. Tarquis, A. Arce, and F. Ribas. 2011. Growth dynamics and yield of melon as influenced by nitrogen fertilizer. Sci. Agri. 68:191-199 Chance, W.O., Z.C. Somda, and H.A. Mills. 1999. Effect of nitrogen form during the flowering period on zucchini squash growth and nutrient element uptake. J. Plant Nutr. 22:597-607 Clark, C., S. Miller, J. Burton, and M. Manning. 2001. The effects of mineral nutrition on fruit quality and vine health in Hort16A. Report to ZESPRT group. Project 260/99 (unpublished) Clough G.H., S.L. Locascio, and S.M. Olson. 1990. Yield of successively cropped polyethylene-mulched vegetables as affected by irrigation method and fertilization management. J. Amer. Soc. Hort. Sci. 115:884-887. Clough G.H., S.L. Locascio, and S.M. Olson. 1992. Mineral composition of yellow squash responds to irrigation method and fertilization management. J. Amer. Soc. Hort. Sci. 117:725-729 Colla, G., S. Fanasca, A.L. Molle and F. Saccardo. 2004. Use of hydroponic culture to assess the mineral nutrition of zucchini squash. Acta Hort. 644:457-462 Cooper, A., 1979. The ABC of NFT. Grower Books, London. p.181 Coruzzi, G., and D.R. Bush. 2001. Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol. 125:61-64 Coruzzi, G. M., and L. Zhou. 2001. Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’. Curr. Opin. Plant Biol. 4:247-253 Crawford, N. M. 1995. Nitrate: Nutrient and signal for plant growth. Plant Cell 7. p.859-868 Crawford, N. M., and A. D. M. Glass. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3:389-395 Dahiya, S.S., and M. Singh. 1976. Effect of salinity, alkalinity and iron application on the availability of iron, manganese, phosphorus and sodium in pea (Pisum sativum L.) crop. Plant Soil 44:697-702 De Pascale, S., A. Maggio, V. Fogliano, P. Ambrosino and A. Ritieni. 2001. Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J. Hort. Sci. Biotechnol. 76:447-453 del Amor, F.M., M. Carvajal, V. Martinez, and A. Cerda. 1998. Response of muskmelon plants (Cucumis melo L.) to irrigation with saline water. Acta Hort. 456:263-268 del Amor, F.M., V. Martinez, and A. Cerda. 1999. Salinity duration and concentration affect fruit yield and quality, and growth and mineral composition of melon plants growth in perlite. HortScience 34:1234-1237. Dorais, M., A. Papadopoulos, and A. Gosselin. 2001. Greenhouse tomato fruit quality. Hort. Rev. 26:239-319 Dumas, Y., J. Suniaga Quijada, and M. Bonafous. 1993. Influence of nitrogen availability on growth and development of tomato plants until fruit-setting, pp. 235-241. In: M. A. C. Fragoso, M. L. van Beusichem (eds.). Optimization of Plant Nutrition. Kluwer Acad. Publ. Netherlands Ehret, D.L., and L.C. Ho. 1986. The effect of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J. Hort. Sci. 61:361-367 Fabeiro, C., F.M.D. Olalla, and J.A. de Juan. 2002. Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate. Agr. Water Mgt. 54:93-105 FAO, 1990. Soilless culture for horticultural crop production. FAO Plant Production and Protection paper no. 101, Rome. Flowers, T. J. 2004. Improving crop salt tolerance. J. Exp. Bot. 55:639-648 Forde, B. G., and D. T. Clarkson. 1999. Nitrate and ammonium nutrition of plants: Physiological and molecular perspectives. Adv. Bot. Res. 30:1-90 Franco, J.A., C. Esteban, and C. Rodriguez. 1993. Effects of salinity on various growth stages of muskmelon cv. Revigal. J. Hort. Sci. 68:899-904 Franco, J.A., J.A. Fernandez, S. Banon, and A. Gonzalez. 1997. Relationship between the effects of salinity on seedling leaf area and fruit yield of six muskmelon cultivars. HortScience 34:642-644 Gautier, H., V. Diakou-Verdin, C. Benard, M. Reich, M. Buret, F. Bourgaud, J. L. Poessel, C. Caris-Veyrat, and M. Genard. 2008. How does tomato quality (sugar, acid and nutritional quality) vary with ripening stage, temperature and irradiance? J. Agric. Food Chem. 56:1241-1250 Geier, D. R. 1966. Effect of sink region cooling on translocation of photosynthate. Planta Physiol. 41:1667-1672 Gericke, W.F. 1929. Aquaculture, a means of crop production. Amer. J. Bot. 16:862 Grillas, S., M. Lucas, E. Bardopoulou, and S. Sarafopoulos. 2001. Perlite based soilless culture systems: current commercial applications and prospects. Acta Hort. 548:105-113 Gruda, N. 2009. Do soilless culture systems have an influence on product quality of vegetables? J. Appl. Bot. Food Qual. 82:141-147 Guidi, L., G. Lorefice, A. Pardossi, F. Malorgio, F. Tognoni, and G.F. Soldatini. 1998. Growth and photosynthesis of Lycopersicum esculentum (L.) plants as affected by nitrogen deficiency. Biol. Plant 40:235-244 Hagin, J. and B. Tucker. 1982. Fertilization of dryland and irrigated soils. Springer- Verlag, NY. Harker, F.R., R.J. Redgwell, I.C. Hallett, and S.H. Murray. 1997. Texture of fresh fruit. Hort. Rev. 20:121-223 Hartz, T.K. and G.J. Hochmuth. 1996. Fertility management of drip-irrigated vegetables. HortTechnology 6:168-176 Hassan, H.A.K., J.V. Drew, D. Knudsen, and R.A. Olson. 1970a. Influence of soil salinity on production of dry matter and uptake and distribution of nutrients in barley (Hordeum vulgare L.) and corn. I. Agro. J. 62:43-45 Hassan, H.A.K., J.V. Drew, D. Knudsen, and R.A. Olson. 1970b. Influence of soil salinity on production of dry matter and uptake and distribution of nutrients in barley (Hordeum vulgare L.) and corn. II. Agro. J. 62:46-48 Heuer, B. 2003. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci. 165:693-699 Heuer, B., 1994. Osmoregulatory role of proline inwater and salt stressed plants. In: Pessarakli, M. (ed.). Handbook of Plant and Crop Stress. Marcel Dekker, NY. p. 363-381 Ho, L.C. 1988. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Annu. Rev. Plant Physiol. 39:355-378 Johnson, R. S., F. G. Mitchell, C. H. Crisosto, W. H. Olsen, and G. Gosta. 1997. Nitrogen influences kiwifruit storage life. Acta Hort. 444:285-289 Juld, R. 1982. Bag culture. Amer. Veg. Grower. 30:40-42 Kang, B.T. and V. Balasubranian. 1990. Long-term fertilizer trial on Alfisols in West Africa. In: Transactions of XIV International Soil Science Society Congress, Kyoto, Japan. pp.350 Kaya, C., A.L. Tuna, M. Ashraf, and H. Altunlu. 2007. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Envir. Expt. Bot. 60:397-403 Kee Kwong, K.F., J.P. Paul and J. Deville. 1999. Drip-fertigation – a means for reducing fertilizer nitrogen to sugarcane. Expl. Agric. 35:31-37 Khayyat, M., E. Tafazoli, S. Eshghi, M. Rahemi and S. Rajaee. 2007. Salinity, supplementary calcium and potassium effects on fruit yield and quality of strawberry (Fragaria ananassa Duch.). Amer. Eurasian J. Agri. Envir. Sci. 2(5):539-544 Kirkby, E. A., and A. H. Knight. 1977. Influence of the level of nitrate nutrition on ion uptake assimilation, organic acid accumulation, and cation-anion balance in whole tomato plants. Plant Physiol. 60:349-353 Kozlowski, T.T. and S. G. Pallardy. 1984. Effect of flooding on water, carbohydrate, and mineral reactions, p. 165-193. In: T. T. Kozlowski (eds.). Flooding and Plant Growth. Academic Press, Orlando, FL. Krauss, S., W.H. Schnitzler, J. Grassmann, and M. Woitke. 2006. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J. Agric. Food Chem. 54:441-448 Kroen, W.K., D.M. Pharr, and S.C. Huber. 1991. Root flooding of muskmelon (Cucumis melo L.) affects fruit sugar concentration but not leaf carbon exchange rate. Plant Cell Physiol. 32:467-473 Larkcom, J. 1991. Oriental vegetables: the complete guide for garden and kitchen. London, John Murray. p.232 Le Bot, J., B. Jeannequin, and R. Fabre. 2001. Impact of N-deprivation on the yield and nitrogen budget of rockwool grown tomatoes. Agronomie 21:341-350 Lester, G.E and J.L. Jifon. 2006. Foliar fertilization improving the human wellness attributes of melon. Great Plains Soil Fert. Conf. 11:1-6 Letard, M., P. Erard, and B. Jeannequin. 1995. Maitrise de l'irrigation fertilisante: Tomate sous serre rt abris en sol et hors sol. Ctr. Tech. Interprofessionnel Fruits Legumes, Paris. p.217 Li, Y.L., S. Cecilia, and C. Hugo. 2001. Effect of electrical conductivity and transpiration on production of greenhouse tomato (Lycopersicon esculentum L.). Sci. Hort. 88:11-29 Libik, A. and P. Siwek. 1994. Changes in soil temperature affected by the aplication of plastic covers in field production of lettuce and vatermelon. Acta Hort. 371:269-274 Linck, A. J. and C. A. Swanson. 1960. A study of several factors affecting the distribution of phosphorus-32 from the leaves of Pisum sativum. Plant Soil 12:57-68 Locascio, S.J., W.J., Wiltbank, D.D. Gull, and D.N. Maynard. 1984. Fruit and vegetable quality as affected by nitrogen nutrition. pp. 617-626. In: R.D. Hauck (ed.). Nitrogen in Crop Production. American Society of Agronomy, Madison, WI. Long, R.L., K. B. Walsh, G. Rogers, D. M. Midmore. 2004. Source-sink manipulation to increase melon (Cucumis melo L.) fruit biomass and soluble sugar content. Austr. J. Agri. Res. 55:1241-1251 Maas, E.V., G. Ogata, and M.J. Garber. 1972. Influence of salinity on Fe, Mn, and Zn uptake by plants. Agro. J. 64:793-795 Magan, J. J., M. Gallardo, R. B. Thompson, P. Lorenzo. 2008. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouse in Mediterranean climatic conditions. Agr. water Mgt. 95:1041-1055 Makinde E.A., O.T. Ayoola and M.O. Akande. 2007. Effects of organo-mineral fertilizer application on the growth and yield of ‘Egusi’ melon. Austr. J. Basic Appl. Sci. 1(1):15-19 Makinde, E.A., M.O. Akande and A.A. Agboola. 2001. Effects of fertilizer type on performance of melon in a maize-melon intercrop. ASSET Series. A(2):151-158 Mangal, J. L., Hooda, P. S. and Lai, S. 1988. Salt tolerance of five muskmelon cultivars. J. Agri. Sci. 10:641-643 Marcelis, L.F.M. and E. Heuvelink. 1999. Modelling fruit set, fruit growth and dry matter partitioning. Acta Hort.499:39-49 Meiri, A., Z. Plaut, and L. Pincas. 1981. Salt tolerance of glasshouse-grown muskmelon. Soil Sci. 131:189-193 Mendlinger, S. 1994. Effect of increasing plant density and salinity on yield and fruit quality in muskmelon. Scientia Hort. 57:41-49 Mendlinger, S. and M. Fossen. 1993. Flowering, vegetative growth, yield, and fruit-quality in muskmelons under saline conditions. J. Amer. Soc. Hort. Sci. 118:868-872 Mills, T., H. Boldingh, P. Blattmann, S. Green, and J. Meekings. 2008. Nitrogen application rate and the concentration of other macronutrients in the fruit and leaves of gold kiwifruit. J. Plant Nutr. 31:1656-1675 Mitchell, P.D., P.H. Jerie, and D.J. Chalmers. 1984. The effects of regulated water deficits on pear tree growth, flowering, fruit growth, and yield. J. Amer. Soc. Hort. Sci. 109:604-606 Mohammad M.J., S. Zuraiqi, W. Quasmeh, and I. Papadopoulos. 1999. Yield response and nitrogen utilization efficiency by dripirrigated potato. Nutr. Cycl. Agroecosyst. 54:243-249 Mohammad, M., R. Shibli, M. Ajlouni, and L. Nimri. 1998. Tomato root and shoot response to salt stress under different levels of phosphorous nutrition. J. Plant Nutr. 21(8): 1667-1680 Mohammad, M. J. 2004. Squash yield, nutrient content and soil fertility parameters in response to methods of fertilizer application and rates of nitrogen fertigation. Nutr. Cycling Agroecosystems 68:99-108 Mohsen, S. 2008. Field test evaluation of salinity effects on quantitative and qualitative parameters of three Iranian muskmelon cultivars. World Appl. Sci. J. 3:240-243. Molz, F. J. and Klepper, B. 1972. Radial propagation of water potential in stems. Agro. J. 64:469-473 Moorby, J., J. H. Troughton, and B. G. Currie. 1974. Investigations of carbon transport in plants. II. The effects of light and darkness and sink activity on translocation. J. Exp. Bot. 25:937-44 Morard, P. 1995. Les cultures végétales hors sol. Publications Agricoles, Agen. p.304 Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Envir. 25:239-250 Nelson, D.W. 1984. Effect of nitrogen excess on quality of food and fiber. In: R.D. Hauck (ed.). Nitrogen in Agriculture. American Society of Agronomy, Madison, WI. pp. 643-663. Nerson, H. and H.S. Paris. 1984. Effects of salinity on germination, seedling growth, and yield of melons. Irr. Sci. 5:265-273 Papadopoulos, I. 1988. Nitrogen fertigation of trickle-irrigated potato. Fert. Res. 16:157-167 Pardossi, A., F. Malorgio, L. Incrocci, F. Tognoni., and C. A. Campiotti. 2001. Recirculating nutrient solution culture of melon (Cucumis melo L.): Physiological and cultural aspects. Acta Hort. 554:213-219 Peet, M. M., and G. Welles. 2005. Greenhouse tomato production. In:Tomatoes; Heuvelink, E.(ed). CABI Publishing: Wallingford, U.K. p. 257-304 Petersen, K. K., J. Willumsen, and K. Kaack. 1998. Composition and taste of tomatoes as affected by increased salinity and different salinity source. J. Hort. Sci. Biotechnol. 73:205-215 Peterson, T.A., T.M. Blackmer, D.D. Francis, and J.S. Scheppers. 1993. Using a chlorophyll meter to improve N management. A webguide in soil resource management: D-13 Fertility. Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, NE, USA. Pew, W.D. and B.R. Gardner. 1972. Nitrogen effects on cantaloupes. Soil Sci. Plant Anal. 3:467-476 Potarzycki, J. 2011. Effect of magnesium or zinc supplementationat the background of nitrogen rate on nitrogenmanagement by maize canopy cultivated in monoculture. Plant Soil Envir. 57:19-25 Qawasmi, W., Mohammad M.J., Najem H., and Qubrusi R. 1999. Response of bell pepper grown inside plastic houses to nitrogen fertigation. Commun. Soil Sci. Plant Anal. 30:2499-2509 Rauschkolb, R.S., T.L. Jackson, and A.I. Dow. 1984. Management of nitrogen in the Pacific States. In: R.D. Hauck (ed.). Nitrogen in Crop Production. American Society of Agronomy, Madison, WI. p.765-778. Redinbaugh, M. G., and W. H. Campbell. 1991. Higher plant responses to environmental nitrate. Physiol. Plant 82:640-650 Smeal, D. and H. Zhang. 1994. Chlorophyll meter evaluation for nitrogen management in corn. Commun. Soil Sci. Plant Anal. 25:1495-1503 Wardlaw, I. F., and L. Moncur. 1976. Source, sink and hormonal control of translocation in wheat. Planta 128:93-100 Rus, A., S.Yokoi, , A.Sharkhuu, M.Reddy, B.Lee, T.K. Matsumoto, H. Koiwa, J.K. Zhu, R.A. Bressan, and P.M. Hasegawa. 2001. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc. Natl. Acad. Sci. 98:14150-14155 Rus, A., B.Lee, A.Munoz-Mayer, A.Sharkhuu, K.Miura, J.K. Zhu, R.A.Bressan, and P.M. Masegawa. 2004. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in plants. Plant Physiol. 136:2500-2511 Saied, A.S., A.J. Keutgen and G. Noga, 2005. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’ and ‘Korona’. Sci. Hort. 103: 289-303 Saito, T., N. Fukuda, C. Matsukura, and S. Nishimura. 2009. Effects of salinity on distribution of photosynthates and carbohydrate metabolism in tomato grown using nutrient film technique. J. Jap. Soc. Hort. Sci. 78:90-96 Sarkar, S., Y. Kiliiwa, M. Endo, T. Kobayashi, and A. Nukaya. 2008. Effect of fertigation management and the composition of nutrient solution on the yield and quality of high soluble solid content tomatoes. J. Jap. Soc. Hort. Sci. 77:143-149 Scholberg, J., B. L. McNeal, K. J. Boote, J. W. Jones, S. J. Locascio, and S. M. Olsen. 2000. Nitrogen stress effects on growth and nitrogen accumulation by field grown tomato. Agron. J. 92:159-167 Schoon, M. 1992. Tailoring nutrient solution to meet the demand of your plants. In:D. Schact (ed.), Proceedings of the 13th Annual Conference on Hydroponics. Hydroponic Soc. Amer., San Ramon, CA. p.1-7 Segura Perez, M.L., J.I. Contreras Paris, R.S. Yasuda, and M.T. Lao. 2009. Influence of salinity and fertilization level on the nutrient distribution in tomato plants under a polyethylene greenhouse in the mediterranean area. Commun. Soil Sci. Plant Anal. 40:498-513 Shannon, M.C., G.W. Bohn, and J.D. McCreight. 1984. Salt tolerance among muskmelon genotypes during seed emergence and seedling growth. HortScience 19:828-830 Shinichiro, K., T. Minami, S. Naoki. 2006. Monitoring of elasticity index of melon fruit in a greenhouse. J. Jap. Soc. Hort. Sci. 75(5):415-420 Shaw, N. L., J. C. Daniel, and M. H. Jeanmarie. 2009. Galia muskmelons: Evaluation for Florida freenhouse production. Horticultural Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. HS919:1-5 Sonneveld, C. and W.H. Welles. 1988. Yield and quality of rockwool-grown tomatoes as affected by variations in EC-value and climatic conditions. Plant Soil 111:37-42 Steiner, A.A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15:134-154 Stitt, M. 1999. Nitrate regulation of metabolism and growth. Curr. Opin. Plant Biol. 2:178-186 Szamosi, Cs., H. Nemethy-Uzoni, G. Balazs, E. Stefanovits-Banyai. 2007. Nutritional values of traditional open-pollinated melon (Cucumis melo L.) and watermelon (Citrullus lanatus [Thumb]) varieties. Intr. J. Hort. Sci. 13(2):29-31 Tagliavini, M., M. Toselli, B. Marangoni, G. Stampi, F. Pelliconi, and C. A. P. Ravenna. 1995. Nutritional status of kiwifruit affects yield and fruit storage. Acta Hort. 383:227-237 Taiz, L. and E. Zeiger. 2006. Stress Physiology. In: L. Taiz and E. Zeiger (eds.) Plant Physiology. Sinauer Associates, Inc.,Publishers, Sunderland, MA. pp.592-623 Tester, M. and Davenport R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91:503-527 Uchida, R. 2000. Recommended plant tissue nutrient levels for some vegetable, fruit, and ornamental foliage and flowering plants in Hawaii. In: J. A. Silva and R. Uchida (eds.). Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa Van den Ende, B., D. J. Chalmers, P. H. Jerie. 1987. Latest developments in training and management of fruit crops on Tatura trellis. HortScience 22:561-568 Van Zinderen Bakker, E.M. 1986. Development of hydroponic systems and a look into the future. Proceedings of the 7th Annual Conference on Hydroponics: The Evolving Art, the Evolving Science. Hydroponic Soc. Amer. Concord, CA. p.371-372 Ventura, Y. and S.Mendlinger. 1999. Effects of suboptimal low temperature on yield, fruit appearance and quality in muskmelon (Cucumis melo L.) cultivars. J. Hort. Sci. Biotechnol. 74:602-607 Verma, T.S., and H.U. Neue. 1984. Effect of soil salinity levels and zinc application on growth, yield and nutrient composition of rice. Plant Soil 82:3-24 Vitousek, P. M. and W. H. Robert. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochem. 13(2):87-115 Wardlaw, I. F. 1974. Temperature control of translocation. In: R. L. Bieleski, A. R. Ferguson, and M. M. Cresswell (eds.). Mechanisms of Regulation of Plant Growth. Bull. 12:533-538 Walker, A. J., and L.C. Ho. 1977. Carbon translocation in the tomato: effects of fruit temperature on carbon metabolism and the rate of translocation. Ann. Bot. 41:825-832 Yasar, F., S. Kusvuran, and S. Ellialtioglu. 2006. Determination of anti-oxidant activities in some melon (Cucumis melo L.) varieties and cultivars under salt stress. J. Hort. Sci. Biotechnol. 81:627-630 Zhang, H., and B. G. Forde. 2000. Regulation of Arabidopsis root development by nitrate availability. J. Exp. Bot. 51:51-59 Zhang, M. F. and Z. L. Li. 2005. A comparison of sugar accumulating patterns and relative compositions in developing fruits of two oriental melon varieties as determined by HPLC. Food Chem. 90:785-790 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44631 | - |
| dc.description.abstract | 臺灣蔬菜栽培常有施肥過量之問題,又以設施栽培之情形更為嚴重,且農民尚未普遍有定期監測栽培土壤或介質 EC 值之知識與習慣,等植株發生營養障礙或顯現病徵時,才知道養分管理不當,而為時已晚,嚴重影響蔬菜產量與品質。本研究以適合瓜類作物養液栽培之 EC 值 (1.6 dS . m-1) 養液做為對照組,調整養液配方中巨量元素倍數以調製為各 EC 值 (不改變養液巨量元素間比例)。2009 年夏作試驗以東方甜瓜 (Cucumis melo L. var. makuwa Makino) 品種‘嘉玉’與‘銀輝’為試驗材料,於塑膠布網室採直立式栽培。以 EC 值分別為 1.1、1.6 (對照組) 及 3.6 dS . m-1 三種養液行滴灌栽培。另加入前期適量 (1.6 dS . m-1 )/後期三倍量 (3.6 dS . m-1) 共四處理以探討東方甜瓜養分之需求。結果顯示 EC 值為 1.1 dS . m-1 之處理顯著降低甜瓜植株營養生長 (葉面積、葉片乾重),隨著養液濃度提高,葉片相對葉綠素含量增加,葉色加深。各處理之果高、果寬、單果重及果實總可溶性固形物含量均無顯著差異。1.1 dS . m-1 處理之果肉最厚,3.6 dS . m-1 處理果肉最薄。各處理果實糖度均符合市場標準 (糖度13 oBrix以上),單果重為 350 - 450 g。以低於合適濃度之養液 (1.1 dS . m-1) 栽培東方甜瓜,雖植株營養生長受到抑制,但尚未達嚴重缺乏巨量元素之程度,且可獲得與合適濃度 (1.6 dS . m-1) 相當之果實品質,可降低肥料成本,供合理化施肥參考依據。養液 EC 值為 3.6 dS . m-1時,雖影響東方甜瓜之營養生長及果肉厚度,但並未顯著抑制其單果重及糖度,故東方甜瓜應可歸類為輕度耐鹽之作物。2010 年夏作試驗以‘嘉玉’為試驗材料,栽培方法同 2009 年,養液 EC 值處理為 1.6、2.5、5.5 dS . m-1,以 EC 值 5.5 dS . m-1 養液栽培時,植株營養生長及生殖生長均受顯著抑制,且不能提升果實總可溶性固形物含量。因此東方甜瓜不宜以 EC 值高於 3.6 dS . m-1 之養液灌溉以求增進果實品質。本研究以 1.1、1.6、2.5 dS . m-1 EC 值養液處理之葉片元素結果,可供訂定東方甜瓜‘嘉玉’及‘銀輝’葉片元素足量範圍之參考。 | zh_TW |
| dc.description.abstract | Over-fertilization is a common problem of green house vegetable production in Taiwan. However, examination and monitoring the electrical conductivity of soil or nutrient solution is not usually practiced by growers. By the time plant renders nutritional disorder symptoms, the yield or quality of vegetables often decreases. From an environmental point of view, it thus seems necessary to optimize fertilizer or nutrient solution use efficiency by the crops or the leaching of excess fertilizers would causes environmental contamination. In this research, two oriental melon (Cucumis melo L. var. makuwa Makino) cultivars ‘Jill’ and ‘Silver Light’ were grown in summer, 2009 under drip irrigation system in PE film greenhouse to investigate the effect of nutrient solution concentrations on fruit yield and quality. Three nutrient solution concentration treatments (EC values were 1.1, 1.6, and 3.6 dS . m-1, respectively) and a complementary treatment (1.6 dS . m-1 NS in vegetative stage and 3.6 dS . m-1 in reproductive stage) were involved. The alteration of nutrient solution EC was achieved by dividing or multiplying the concentration of macronutrients. Results revealed a significant decrease in plant vegetative growth (leaf area, leaf dry weight) and SPAD value under 1.1 dS . m-1 nutrient solution. Fruit height, width, single fruit weight and total soluble solids content were not significantly influenced by these treatments. The fruit flesh was thicker by treatment of 1.1 dS . m-1 whereas 3.6 dS . m-1 treatment obtained thinner flesh. The total soluble content met the market requirement of high quality melons (above 13 oBrix) under every treatments and the single fruit weight ranged from 350 to 450 g. Although the vegetative growth was inhibited by 1.1 dS . m-1 treatment, plants were not seriously nutrient defficient and the fruit quality was great as other treatments. Lowering the nutrient solution concentration also decreased fertilizer costs and has been noticed in rational fertilization practices and sustainable agriculture. In this research, higher nutrient solution EC (3.6 dS . m-1) did not cause significant reduction of yield and quality. Oriental melon might be classified as moderate salt tolerant plant. In the following year, the experiment of EC treatments (1.6, 2.5, and 5.5 dS . m-1) of ‘Jill’ was conducted. Significant reduction of vegetative growth, fruit yield, and quality was only in 5.5 dS . m-1 treatment. Moreover, increase the EC of nutrient solution to was futile for ameliorating fruit quality of oriental melon. The result of leaf elements analysis could be used for the establishment of leaf element sufficiency range of oriental melons. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:52:01Z (GMT). No. of bitstreams: 1 ntu-100-R97628124-1.pdf: 1265739 bytes, checksum: a4067c165b9b2bf9721f60fc3f54031a (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄
致謝 i 摘要 ii Abstract iii 目錄 iv 圖表目錄 vii 壹、 前言 1 貳、 前人研究 3 一、 東方甜瓜及栽培環境 3 二、 作物之無土栽培 4 (一) 無土栽培技術之發展 4 (二) 臺灣之介質耕栽培 5 三、 甜瓜設施養液栽培之養分管理 6 四、 鹽分或施肥量(fertilizer level)及鈉鹽逆境對作物生理生長之影響 7 五、 合理化施肥 11 參、 材料與方法 15 一、 試驗材料 15 二、 春作籃耕栽培試驗 (2009年) 15 (一) 試驗材料與地點 15 (二) 栽培管理 15 三、 夏作籃耕試驗 (2009年) 19 (一) 試驗材料與地點 19 (二) 植株栽培管理 19 (三) 養液濃度試驗 20 四、 夏作籃耕試驗 (2010年) 23 (一) 試驗材料 23 (二) 栽培管理 23 (三) 養液濃度試驗 24 五、 葉片元素分析 27 (一) 凱氏氮分析 (Kjedahl nitrogen) 27 (二) 礦物元素 (鉀、鈣、鎂、鐵、錳、鋅、磷) 測定前處理—灰化 28 (三) 磷的測定 (鉬藍法, molybdenum blue method) 29 (四) 鉀元素的測定 30 (五) 鈣元素之測定 31 (六) 鎂元素之測定 32 (七) 鐵、錳、鋅元素之測定 33 肆、 試驗結果 34 一、 春作籃耕栽培試驗 (2009年) 34 (一) 植株營養生長與生殖生長 34 (二) 果實品質性狀 34 二、 農業試驗所2009夏作試驗 36 (一) 栽培養液濃度對東方甜瓜營養生長之影響 36 (二) 栽培養液濃度對東方甜瓜果實品質之影響 40 (三) 栽培養液之濃度對東方甜瓜葉片元素含量之影響 43 三、 農業試驗所2010夏作試驗 51 (一) 養液濃度對介質 EC 值之影響 51 (二) 養液濃度對東方甜瓜‘嘉玉’營養生長之影響 53 (二) 栽培養液濃度對東方甜瓜‘嘉玉’產量及果實品質之影響 58 (三) 栽培養液之濃度對東方甜瓜‘嘉玉’葉片元素含量之影響 62 伍、 討論 66 一、 春作籃耕栽培試驗 (2009年) 66 二、 夏作籃耕試驗 (2009年) 68 (一) 葉片生長 68 (二) 果實外觀及品質 70 (三) 葉片元素 71 陸、 結論 77 參考文獻 78 附錄 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | 葉片元素分析 | zh_TW |
| dc.subject | 鹽分逆境 | zh_TW |
| dc.subject | 合理化施肥 | zh_TW |
| dc.subject | 電導度 | zh_TW |
| dc.subject | 足量範圍 | zh_TW |
| dc.subject | sufficiency range | en |
| dc.subject | leaf element analysis | en |
| dc.subject | salinity stress | en |
| dc.subject | electrical conductivity | en |
| dc.subject | rational fertilization | en |
| dc.title | 栽培養液濃度對東方甜瓜果實品質之影響 | zh_TW |
| dc.title | The Effect of Nutrient Solution Concentrations
on the Fruit Quality of Oriental Melons | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 羅筱鳳(Hsiao-Feng Lo) | |
| dc.contributor.oralexamcommittee | 鍾仁賜(Ren-Shih Chung),張有明(You-Ming Chang) | |
| dc.subject.keyword | 電導度,鹽分逆境,合理化施肥,葉片元素分析,足量範圍, | zh_TW |
| dc.subject.keyword | electrical conductivity,salinity stress,rational fertilization,leaf element analysis,sufficiency range, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
