Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44599
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅楸善(Chiou-Shann Fuh)
dc.contributor.authorYi-Hung Chouen
dc.contributor.author周奕宏zh_TW
dc.date.accessioned2021-06-15T03:51:35Z-
dc.date.available2015-07-15
dc.date.copyright2010-07-15
dc.date.issued2010
dc.date.submitted2010-07-13
dc.identifier.citation[1] C. Y. Chong, “Image Noise Reduction with Frequency Analysis,” Master Thesis, Department of Computer Science and Information Engineering, National Taiwan University, 2008.
[2] Nokia & ST, “SMIA 1.0,” http://www.kminstrument.co.kr/admin%5Cdata%5Cupload%5CSMIA_Characterisation_Specification.pdf, 2010.
[3] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, Vol. I, Addison Wesley, Reading, MA, 1992.
[4] Skype, “Skype Hardware Certification Specification,” http://www.megaupload.com/?d=DCRMO1Q6, 2010.
[5] Y. H. Chou, “Video Flash,” http://www.csie.ntu.edu.tw/~fuh/gif/video%20flash.avi, 2010.
[6] Youtube, “Beast,” http://www.youtube.com/watch?v=QSkeB_WfemE, 2010.
[7] Y. Zhao and L. Yu, “A Video Quality Assessment Method,” http://www.megaupload.com/?d=M48G2ZYV, 2010.
[8] Wikipedia, “Signal-to-Noise Ratio,” http://en.wikipedia.org/wiki/Signal-to-noise_ratio, 2010.
[9] Wikipedia, “Wikipedia,” http://en.wikipedia.org/wiki/Wikipedia, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44599-
dc.description.abstract在一般視訊的雜訊量測,是採用擷取一張影像來代表這段影像。可是這並不是個十分合理的現象,因為每一秒就包含了30張的影像。而量測一連串的影像雜訊,更是必需要考慮同一像素的時間關聯性。基於一般影像的雜訊量測使用噪訊比,我們提出的方法是一個有考慮到時間的噪訊比量測方法。
在很多雜訊處理的演算法都有很多取捨,我們更需要一個好的測量的基準。因此這篇論文提出了一些雜訊的量測方法並提供了一種新的測量方式。
zh_TW
dc.description.abstractWhen we need to analyze video images, we sometimes capture one still image. But the video is 30 FPS (Frame per Second). But using only one static image to represent this video is unreasonable. Moreover, we must consider the impact of temporal noise. Our method is based on SNR (Signal-to-Noise Ratio) with time relevance of each pixel.
Many noise reduction algorithms have many trade-offs. We need a good measurement method. Therefore this thesis proposes some noise measurement methods and provides one new measurement mode.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:51:35Z (GMT). No. of bitstreams: 1
ntu-99-R97944037-1.pdf: 2748029 bytes, checksum: af3b824146b807170b2d96b9a2dba2e3 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
誌 謝 ii
摘 要 iii
Abstract iv
Content v
Figure Content viii
Table Content ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Noise in Static Image 2
1.2.1 Fixed Pattern Noise 2
1.2.2 Banding Noise 2
1.2.3 Random Noise 3
1.3 Static Image Noise Characteristics 3
1.4 Noise in Video 5
Chapter 2 Previous Noise Measurements 8
2.1 Description 8
2.2 Related Works 8
2.3 Normal SNR (Signal-to-Noise Ratio) 10
2.3.1 Description 10
2.3.2 Formula 10
2.3.3 Pseudo-code 11
2.4 Column Noise 12
2.4.1 Description 12
2.4.2 Formula 12
2.4.3 Pseudo-code 12
2.5 Row Noise 13
2.5.1 Description 13
2.5.2 Formula 13
2.5.3 Pseudo-code 13
2.6 Frame-to-Frame Flicker (FFF) 14
2.6.1 Description 14
2.6.2 Formula 14
2.6.3 Pseudo-code 14
2.7 Temporal Noise 15
2.7.1 Description 15
2.7.2 Formula 15
2.7.3 Pseudo-code 15
2.8 Signal-to-Noise Ratio 16
2.8.1 Description 16
2.8.2 Formula 16
2.8.3 Pseudo-code 16
Chapter 3 Our Method VSNR 17
3.1 Description 17
3.2 Our Method 17
3.2.1 Scene 17
3.2.2 Record 18
3.2.3 Calculate 18
3.3 Formula of VSNR 19
3.4 VSNR Flow Chart 20
3.5 Pseudo code 21
3.6 Down Sample 21
Chapter 4 Experimental Result 23
4.1 Justify 24
4.1.1 Forecast 24
4.1.2 Experimental Result 25
4.2 Vote and Compare with SMIA Spatial SNR. 28
4.2.1 Forecast 28
4.2.2 Experimental Result 29
4.3 Flash Noise Measurement 34
4.3.1 Forecast 34
4.3.2 Experimental Result 34
4.4 Processing Time 39
4.5 Conclusion 40
Chapter 5 Future Work 41
Reference 42
dc.language.isoen
dc.subject時間噪訊比zh_TW
dc.subject雜訊zh_TW
dc.subject視訊雜訊zh_TW
dc.subject視訊雜訊量測zh_TW
dc.subject影像zh_TW
dc.subject噪訊比zh_TW
dc.subjectvideo noiseen
dc.subjectTemporal SNRen
dc.subjectSNRen
dc.subjectvideo noise measurementen
dc.subjectnoiseen
dc.title視訊影像雜訊分析與量測方法zh_TW
dc.titleVideo Image Noise Analysis and Measurement Methodsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇君誠,蔡育良,李恆寬
dc.subject.keyword雜訊,視訊雜訊,視訊雜訊量測,影像,噪訊比,時間噪訊比,zh_TW
dc.subject.keywordnoise,video noise,video noise measurement,SNR,Temporal SNR,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2010-07-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved