Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44537
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡文聰(Andrew M. Wo)
dc.contributor.authorYu-Cheng Panen
dc.contributor.author潘宇誠zh_TW
dc.date.accessioned2021-06-15T03:03:42Z-
dc.date.available2012-08-03
dc.date.copyright2009-08-03
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citation[1] Amadori, A., Rossi, E., Zamarchi, R., Carli, P., Pastorelli, D. and Jirillo, A. Circulating and Disseminated Tumor Cells in the Clinical Management of Breast Cancer Patients: Unanswered Questions. Oncology, 2009, 76(6), 375-386.
[2] Paterlini-Brechot, P. and Benali, N.L. Circulating tumor cells (CTC) detection: Clinical impact and future directions. Cancer Letters, 2007, 253(2), 180-204.
[3] Fehm, T., Braun, S., Muller, V., Janni, W., Gebauer, G., Marth, C., Schindlbeck, C., Wallwiener, D., Borgen, E., Naume, B., Pantel, K. and Solomayer, E. A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer, 2006, 107(5), 885-892.
[4] Hayes, D.F., Cristofanilli, M., Budd, G.T., Ellis, M.J., Stopeck, A., Miller, M.C., Matera, J., Allard, W.J., Doyle, G.V. and Terstappen, L. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Amer Assoc Cancer Research, 2006, 4218-4224.
[5] Tkaczuk, K.H.R., Goloubeva, O., Tait, N.S., Feldman, F., Tan, M., Lum, Z.P., Lesko, S.A., Van Echo, D.A. and Ts'o, P.O.P. The significance of circulating epithelial cells in Breast Cancer patients by a novel negative selection method. Breast Cancer Research and Treatment, 2008, 111(2), 355-364.
[6] Seppo, A., Frisova, V., Ichetovkin, I., Kim, Y.M., Evan, M.I., Antsaklis, A., Nicolaides, K.H., Tafas, R., Tsipouras, P. and Kilpatrick, M.W. Detection of circulating fetal cells utilizing automated microscopy: potential for noninvasive prenatal diagnosis of chromosomal aneuploidies. Prenatal Diagnosis, 2008, 28(9), 815-821.
[7] Geifman-Holtzman, O. and Berman, J.O. Prenatal diagnosis: update on invasive versus noninvasive fetal diagnostic testing from maternal blood. Expert Review of Molecular Diagnostics, 2008, 8(6), 727-751.
[8] Bianchi, D.W. and Hanson, J. Sharpening the Tools: A summary of a National Institutes of Health workshop on new technologies for detection of fetal cells in maternal blood for early prenatal diagnosis. Journal of Maternal-Fetal & Neonatal Medicine, 2006, 19(4), 199-207.
[9] Kilpatrick, M.W., Tafas, T., Evans, M.I., Jackson, L.G., Antsaklis, A., Brambati, B. and Tsipouras, P. Automated detection of rare fetal cells in maternal blood: Eliminating the false-positive XY signals in XX pregnancies. American Journal of Obstetrics and Gynecology, 2004, 190(6), 1571-1578.
[10] Rosenberg, R., Gertler, R., Friederichs, J., Fuehrer, K., Dahm, M., Phelps, R., Thorban, S., Nekarda, H. and Siewert, J.R. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry, 2002, 49(4), 150-158.
[11] Pinzani, P., Salvadori, B., Simi, L., Bianchi, S., Distante, V., Cataliotti, L., Pazzagli, M. and Orlando, C. Isolation by size of epithelial tumor cells in peripheral blood of patients with breast cancer: correlation with real-time reverse transcriptase-polymerase chain reaction results and feasibility of molecular analysis by laser microdissection. Human Pathology, 2006, 37(6), 711-718.
[12] Cheng, X., Gupta, A., Chen, C., Tompkins, R.G., Rodriguez, W. and Toner, M. Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics. 2009, 9(10), 1357-1364.
[13] Nagrath, S., Sequist, L.V., Maheswaran, S., Bell, D.W., Irimia, D., Ulkus, L., Smith, M.R., Kwak, E.L., Digumarthy, S., Muzikansky, A., Ryan, P., Balis, U.J., Tompkins, R.G., Haber, D.A. and Toner, M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007, 450(7173), 1235-U1210.
[14] Talasaz, A.H., Powell, A.A., Huber, D.E., Berbee, J.G., Roh, K.H., Yu, W., Xiao, W.Z., Davis, M.M., Pease, R.F., Mindrinos, M.N., Jeffrey, S.S. and Davis, R.W. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(10), 3970-3975.
[15] Yang, L.Y., Lang, J.C., Balasubramanian, P., Jatana, K.R., Schuller, D., Agrawal, A., Zborowski, M. and Chalmers, J.J. Optimization of an Enrichment Process for Circulating Tumor Cells From the Blood of Head and Neck Cancer Patients Through Depletion of Normal Cells. Biotechnology and Bioengineering, 2009, 102(2), 521-534.
[16] Kennedy, D.J., Todd, P., Logan, S., Becker, M., Papas, K.K. and Moore, L.R. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets. Journal of Magnetism and Magnetic Materials, 2007, 311(1), 388-395.
[17] Liu, C.X., Stakenborg, T., Peeters, S. and Lagae, L. Cell manipulation with magnetic particles toward microfluidic cytometry. Journal of Applied Physics, 2009, 105(10), 11.
[18] West, J., Becker, M., Tombrink, S. and Manz, A. Micro total analysis systems: Latest achievements. Analytical Chemistry, 2008, 80(12), 4403-4419.
[19] Hu, X.Y., Bessette, P.H., Qian, J.R., Meinhart, C.D., Daugherty, P.S. and Soh, H.T. Marker-specific sorting of rare cells using dielectrophoresis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(44), 15757-15761.
[20] Osterfeld, S.J., Yu, H., Gaster, R.S., Caramuta, S., Xu, L., Han, S.J., Hall, D.A., Wilson, R.J., Sun, S.H., White, R.L., Davis, R.W., Pourmand, N. and Wang, S.X. Multiplex protein assays based on real-time magnetic nanotag sensing. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(52), 20637-20640.
[21] Mehes, G., Witt, A., Kubista, E. and Ambros, P.F. Circulating breast cancer cells are frequently apoptotic. American Journal of Pathology, 2001, 159(1), 17-20.
[22] Galbavy, S. and Kuliffay, P. Laser scanning cytornetry (LSC) in pathology - a perspective tool for the future? Bratislava Medical Journal-Bratislavske Lekarske Listy, 2008, 109(1), 3-7.
[23] Hsieh, H.B., Marrinucci, D., Bethel, K., Curry, D.N., Humphrey, M., Krivacic, R.T., Kroener, J., Kroener, L., Ladanyi, A., Lazarus, N., Kuhn, P., Bruce, R.H. and Nieva, J. High speed detection of circulating tumor cells. Biosensors & Bioelectronics, 2006, 21(10), 1893-1899.
[24] Martin, V.M., Siewert, C., Scharl, A., Harms, T., Heinze, R., Ohl, S., Radbruch, A., Miltenyi, S. and Schmitz, J. Immunomagnetic enrichment of disseminated epithelial tumor cells from peripheral blood by MACS. Experimental Hematology, 1998, 26(3), 252-264.[
[25] Zoval, J.V. and Madou, M.J. Centrifuge-based fluidic platforms. Proceedings of the Ieee, 2004, 92(1), 140-153.
[26] Ducree, J., Haeberle, S., Lutz, S., Pausch, S., von Stetten, F. and Zengerle, R. The centrifugal microfluidic bio-disk platform. Iop Publishing Ltd, 2007, S103-S115.
[27] Haeberle, S., Brenner, T., Zengerle, R. and Ducree, J. Centrifugal extraction of plasma from whole blood on a rotating disk. Lab on a Chip, 2006, 6(6), 776-781.
[28] Morais, S., Carrascosa, J., Mira, D., Puchades, R. and Maquieira, A. Microimmunoanalysis on standard compact discs to determine low abundant compounds. Analytical Chemistry, 2007, 79(20), 7628-7635.
[29] Lee, B.S., Lee, J.N., Park, J.M., Lee, J.G., Kim, S., Cho, Y.K. and Ko, C. A fully automated immunoassay from whole blood on a disc. Lab on a Chip, 2009, 9(11), 1548-1555.
[30] Lu, C.M., Xie, Y.B., Yang, Y., Cheng, M.M.C., Koh, C.G., Bai, Y.L. and Lee, L.J. New valve and bonding designs for microfluidic biochips containing proteins. Analytical Chemistry, 2007, 79(3), 994-1001.
[31] Andersson, P., Jesson, G., Kylberg, G., Ekstrand, G. and Thorsen, G. Parallel nanoliter microfluidic analysis system. Analytical Chemistry, 2007, 79(11), 4022-4030.
[32] McCloskey, K.E., Chalmers, J.J. and Zborowski, M. Magnetic cell separation: Characterization of magnetophoretic mobility. Analytical Chemistry, 2003, 75(24), 6868-6874.
[33] Liu, K.T. Microfluidic Device for Rapid Medium Exchange for Cellular Electrophysiology Study. Institute of Applied Mechanics, National Taiwan Unicersity, 2007, Master.
[34] Michael Berger, Judith Casteling, Richard Huang, Manish Shah and Robert H. Austin. Design of microfabricate magnetic cell separation. Electrophoresis, 2001, 22, 3883-3892.
[35] American type culture collection(ATCC) http://www.atcc.org/Default.aspx?base.
[36] 國家衛生研究院細胞庫-實驗方法http://w3.nhri.org.tw/cellbank//c/c_1.htm. (食品工業發展研究所 生物資源保存及研究中心.
[37] Harris, D.C. Propagtion of uncertainty. Exploring Chemical Analysis, pp. 59-61 (W.H. Freeman and Company, New York, 2005).
[38] Young, B.R.M.D.F. Reynolds Number. Fundamentals of Fluid Mechanics, 404 (John Wiley & Sons, Inc, Ames, 2002).
[39] White, F.M. Stokes' solution for an Immersed Sphere. Viscous Fluid Flow, 178-181 (Science Typographers, Inc., New York, 1991).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44537-
dc.description.abstract在臨床研究中,血液中的特定稀少細胞可以當作醫生診斷治療病人的參考資料,例如:病情診斷、治療過程的監視、評估治療效果。而稀少細胞在血液中的濃度大約為十億分之一(ppb),因此如何快速且廉價的分離和偵測血液中稀少細胞為醫學上很重要的挑戰。
本研究提供一個具有微流體結構的碟片設計,利用免疫磁力分離法和離心力來完成稀少細胞分離,並透過螢光顯微鏡來辨識細胞。但由於病人的血液取得不易,前期研究使用細胞株進行實驗,以人類乳腺癌細胞株(MCF7)模擬血液中之稀少癌細胞,及淋巴球癌細胞細胞株(Jurkat Clone E6-1,簡稱:Jurkat)模擬血液中之白血球(表示血液中的大量的細胞)。MCF7與Anti-CD326-PE 和 Anti-PE BD magnetic beads 進行結合,使其能被磁鐵所抓取,並發出紅色螢光。Calcein-AM則用來標定Jurkat,使其發出綠色螢光。
將少量MCF7和大量Jurkat混合成300μl的細胞混合液,並注入微流體碟片中。接著放上多環磁鐵,靜置兩分鐘。經過旋轉碟片,MCF7被磁力留在內圈,Jurkat 和溶液被離心力排除到碟片外圓。最後利用螢光顯微鏡直接計算碟片上被分離的MCF數量。
實驗結果顯示,在跨越三個不同數量級的Jurkat (106、107、108)中,各加入少量的MCF7 (10+、100+、300+) 混合,均有 80%的MCF7可以在微流體碟片中穩定地被檢測到。證明此微流體碟片具有穩定的分離效果和良好的靈敏度。整個實驗過程包括細胞分離和細胞偵測,所需要的時間大約是30分鐘。細胞分離過程較簡單、低成本,而細胞損失仍然在可接受的範圍內。所以這個微流碟片將可以用來偵測目前有明顯特定免疫性質的細胞。例如:偵測癌症病人血液中的癌細胞(簡稱:CTCs)、母親血液中的胎兒細胞等。多了這些診斷資料,醫生可以為病人量身訂做適合的治療方法,並減少檢查過程中的風險。
zh_TW
dc.description.abstractIn clinical studies, concentration of specific rare cells in the blood can serve a variety of purposes, e.g. disease diagnostics, evaluation of treatment efficacy, and disease prognosis. With the ratio of rare cells to whole blood cells in the range of one per billion (ppb), detection and separation of rare cells from whole blood via quick and inexpensive methods present important challenges in medicine.
This thesis presents a proof-of-concept study via a compact disk (CD)-based microfluidic platform to separate and detect rare cells in blood. The disk platform utilized immuno-beads and a multi-stage magnet to separate rare cells. Detection of rare cells was performed in the disk with. The transfer force of liquid translation was centrifugal force via adjusting the rotational speed. The blood of patients was inconveniently obtained, so the cell lines were used in the preliminary experiments. The MCF7 were used to simulate the circulating tumor cells (CTCs) as target and stained with anti-CD326-PE antibodies and anti-PE BD magnetic beads. Jurkat Clone E6-1 was used to simulate the large number of cells in human blood, such as leukocyte, erythrocyte, and other cells. In order to identify with MCF7, Jurkat were labeled with Calcein-AM.
The 300μl cell mixture containing few MCF7 and great number of Jurkat was injected into the microfluidic disk. And then the multi-stage magnet was put at the top of disk for two minutes. After rotation, the MCF7 was captured at the top of inlet reservoir, and Jurkat and solution were depleted to outer rim. The captured MCF7 in mircofluidic disk were detected with a fluorescence microscope.
Results indicate that while small amount of MCF7 cells (10+、100+、300+) mixed into three different amount of Jurkat cells (106, 107, 108), the yield of detecting MCF7 were approximately 80%. The yield of MCF7 is independent of the number of Jurkat, and the microfluidic disk has well sensitivity (one in 107). The compact disk performs separation and enumeration of rare cells within roughly 30 minutes with relative ease and low cost at an acceptable level of cell loss.
The microfluidic disk should be readily applied to separate and detect many rare cells with distinct immunological features, such as CTCs in cancer patients’ blood, the fetal cells in maternal blood, and endothelial cells in human blood. According to more information of diagnosis, doctor would make the personal treatment for patients. And the microfluidic disk could reduce the risk of assays.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:03:42Z (GMT). No. of bitstreams: 1
ntu-98-R96543079-1.pdf: 2788711 bytes, checksum: c2a40a41f17f73b1ec6cf4cbb8ee0569 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents序言和謝辭 1
研究分工說明 2
目錄 4
圖目錄 5
表目錄 6
中文摘要 7
Abstract 9
Chapter 1. Introduction 11
1.1. Clinical importance of rare cells 11
1.2. Conventional technology 12
1.2.1 Separation methods 12
1.2.2 Detection methods 14
1.2.3 Commercial products 15
1.3. Mcrofluidics 15
1.4. Lab on a compact disk 16
1.5. Development of microfluidic disk 17
Chapter 2. Design and Fabrication of the Microfluidic Disk 20
2.1. Disk design 20
2.2. Multi-stage magnet design 23
2.3. Disk fabrication 25
Chapter 3. Material and Method 28
3.1. Material 28
3.1.1 Cell preparation 28
3.1.2 Cell stock quantification 31
3.2. Experimental approach 32
3.2.1 Cell separation 34
3.2.2 Observation of cells 35
3.2.3 Cell retrieval 36
Chapter 4. Experimental Results 38
4.1. Yield of detected cells 38
4.2. Sensitivity of microfluidic disk 42
4.3. Cell retrieval from disk 43
4.4. Distribution of cells on disk 45
4.5. Influence of rotational speed 50
Chapter 5. Conclusion and Future Work 53
Chapter 6. References 54
dc.language.isoen
dc.title以正篩選偵測稀少細胞之碟片微流系統zh_TW
dc.titleDetection of rare cells in a microfluidic disk system
via positive selection
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林璟宏(Jing-Hong Lin),江伯倫(Bor-Luen Chiang)
dc.subject.keyword稀少細胞,微流體,正篩選,碟片,離心力,zh_TW
dc.subject.keywordrare cell,microfluidics,positive selection,disk,centrifugal force,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2009-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
2.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved