請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44516
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張孟基 | |
dc.contributor.author | Chia-Ling Chang | en |
dc.contributor.author | 張嘉玲 | zh_TW |
dc.date.accessioned | 2021-06-15T03:02:24Z | - |
dc.date.available | 2019-12-30 | |
dc.date.copyright | 2009-08-03 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-30 | |
dc.identifier.citation | 戶刈義次。1963。作物學試驗法。東京農業技術學會印行。159-176。
方信秀。2008。過量表現 HvICE1 或 AtICE1 (Inducer of CBF Expression) 水稻轉殖株之分子鑑定及非生物逆境耐受性分析。國立台灣大學農藝學研究所碩士論文。 侯新龍。2004。水稻CDPK (calcium-dependent protein kinase)訊息傳遞路徑與缺水逆境、幼苗生長及種子發育間之關係的探討。行政院國家科學委員會專題研究計畫成果報告。 陳舜英、李玟諭、韓明琦、王義仲、簡慶德。2005。離層酸與激勃素對布氏稠李種子休眠與發芽的影響。臺灣林業科學。20: 227-237 郭書巧、黃驥、江燕、張紅生。2007。水稻 C2H2 型锌指蛋白基因 RZF71 的克隆與表達分析。遺傳。29: 607-613 趙雲洋。2007。水稻 OsMAPK3 基因於非生物性逆境及除草劑耐性之功能研究。國立台灣大學農藝學研究所博士論文。 趙雲洋、劉麗飛、 張孟基。2007a。離層酸誘導之OsMAPK3水稻轉殖株可提升巴拉刈之抗性。作物、環境與生物資訊。4: 185-200 趙雲洋、劉麗飛、 張孟基。2007b。抑制OsMAPK3 基因表現會降低水稻對高鹽與乾旱的耐受性。台灣農業化學與食品科學。45: 142-154 Agarwal P K, Agarwal P, Reddy M K, and Sopory S K (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports 25: 1263-1274 Ashraf M, Harris P J C (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16 Century K, Reuber T L, and Ratcliffe O J (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiology 147: 20-29 Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes. Biochemistry Journal 413: 217-226 Dat J, Vandenabeele S, Vranova´ E, Montagu M V, Inze´ D and Breusegem F V (2000) Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57: 779-795 Die´dhiou C J, Golldack D (2006) Salt-dependent regulation of chloride channel transcripts in rice. Plant Science 170: 793-800 Dey M, Complainville A, Charon C, Torrizo L, Kondorosi A, Crespi M, and Datta S (2004) Phytohormonal responses in enod40-overexpressing plants of Medicago truncatula and rice. Physiologia Plantarum 120: 132-139 Dubouzet1 J G, Sakuma1 Y, Ito Y, Kasuga M, Dubouzet E G, Miura1 S, Seki M, Kazuo Shinozaki, and Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal 33: 751-763 Fu S F, Chou W C, Huang D D, and Huang H J (2002) Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant and Cell Physiology 43: 958-963 Gutha L R, Reddy A R (2008) Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Molecular Biology 68:533-555 Hung W C, Huang D D, Yeh C M, and Huang J H (2005) Reactive oxygen species, calcium and serine/threonine phosphatase are required for copper-induced MAP kinase gene OsMAPK2, expression in rice. Plant Growth Regulation 45: 233-241 Jonak C, Okrész L, Bögre L, and Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signaling. Cell Signaling and Gene Regulation 5: 415-424 Kandoth P K, Ranf S, Pancholi S S, Jayanty S, Walla M D, Miller W, Howe G A, Lincoln D E, and Stratmann J W (2008) Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proceedings of the National Academy of Sciences 104: 12205-12210 Kim J B, Kang J Y, and Kim S Y (2004) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnology Journal 2: 459-466 Klaus A, Heribert H (2004) Reactive oxygen species metabolism, oxidative stress, and signal transduction. Annual Review of Plant Physiology 55: 373-99 Kovtun Y, Chiu W L, Tena G, and Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395: 716-720 Kovtun Y, Chiu W L, Tena G, and Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences 97: 2940-2945 Lee T.M., H.S. Lur , C. Chu (1993) Roles of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. I. Endogenous abscisic acid levels. Plant, Cell & Environment 16: 481-490. Lee S C, Lee M Y, Kim S J, Jun S H, An G, and Kim S R (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L). Molecules and Cells 19: 212-218 Leung J, Orfanidi S, Chefdor F, Me´szaros T, Bolte S, Bolte S, Mizoguchi T, Shinozaki K, Giraudat J, and Bo¨gre L (2006) Antagonistic interaction between MAP kinase and protein phosphatase 2C in stress recovery. Plant Science 171: 596-606 Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell 10: 1391-406 Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. The Plant Cell 16: 3386-3399 Mayra R, Eduardo C and Orlando B H (2005) Molecular aspects of abiotic stress in plants. Biotecnología Aplicada 22:1-10 Mattanaa M, Biazzia E, Consonnib R, Locatellia F, Vanninic C, Proverad S and Coraggioa I (2005) Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. Physiologia Plantarum 125: 212-223 Nakashima K, Ito Y, and Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and Grasses Plant Physiology 149: 88-95 Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, and Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal 51: 617-630 Oh S J, Song S I, Kim Y S, Jang H J, Kim S Y, Kim M, Kim Y K, Nahm B H, and Kim J K (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology 138: 341-351 Rajinder S D, Wandekayi M (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany 32: 79-91 Reyna N S, Yang Y (2006) Molecular analysis of the Rice MAP Kinase gene family in relation to Magnaporthe grisea. infection. Molecular Plant-Microbe Interactions 19: 530-540 Richard T (1996) Regulation of transcription by MAP kinase cascades. Current Opinion in Cell Biology 8: 205-215 Rohila J S, Jain R K, and Ray Wu (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Science 163: 525-532 Rohila J S, Yang Y (2007) Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. Journal of Integrative Plant Biology 49: 751-759 Sandalio L M, Rodríguez-Serrano M, Romero-Puertas M C, and Del Río L A (2008) Imaging of reactive oxygen species and nitric oxide in vivo in plant tissues. Methods in enzymology 440: 397-409 Schweighofer A, Meskiene I (2008) Regulation of stress hormones jasmonates and ethylene by MAPK pathways in plants. Molecular Biosystems 4: 799-803 Shinozaki1 K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58: 221-227 Song D F, Han N, Bian H W , and Zhu M (2005) Analysis of cbf1 flanking sequences in transgenic tobacco by TAIL-PCR. Acta Agronomica Sinica 31: 1377-1379 Steven N, Radhika D and John H (2002) Hydrogen peroxide signaling. Current Opinion in Plant Biology 5: 388-395 Su J, Hirji R, Zhang L, He C, Selvaraj G, and Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. Journal of Experimental Botany 57:1129-1135 Su J, Shen Q, Ho T H, and Wu R (1998) Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiology 117: 913-922 Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Science 166: 941-948 Teale W, Paponov I, Tietz O, and Palme K (2005) Phytohormones and signal transduction pathways in plants. Endocrinology 10: 137-147 Tsuyoshi M, Kazuya l, and Kazuo S (1997) Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends in Biotechnology 15: 15-19 Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signaling & Behavior 3: 135-138 Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, and Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. The Plant Journal 37: 115-127 Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Molinari HB, Marur CJ, and Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology 164: 1367-1376 Verslues P E, Zhu J K (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochemical Society Transactions 33: 375-379 Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology 16: 123-132 Wang W, Vinocur B, and Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14 Xing Y, Jia W, and Zhang J (2007) AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. Journal of Experimental Botany 58: 2969-2981 Xiang Y, Tang N, Du H, Ye H, and Xiong L (2008) Characterization of OsbZIP23 as a key player of bZIP transcription factor family for conferring ABA sensitivity and salinity and drought tolerance in rice. Plant Physiology 148: 1938-1952 Xing Y, Jia W, Zhang J (2009) AtMKK1 and AtMPK6 are involved in abscisic acid and sugar signaling in Arabidopsis seed germination. Plant Molecular Biology 70: 725-736 Yamakawa H, Katou S, Seo S, Mitsuhara I, Kamada H, and Ohashi Y (2004) Plant MAPK phosphatase interacts with calmodulins. Journal of Biological Chemistry 279: 928-936 Zhang A, Jiang M, Zhang J, Tan M, and Hu X (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiology 141: 475-487 Zong X J, Li D P, Gu L K, Li D Q, Liu L X, and Hu X L (2009) Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 229: 485-495 Zhu J K (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Physiology 53: 247-73 Zhu J K (2003) Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6: 441-44 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44516 | - |
dc.description.abstract | 乾旱與高鹽逆境會影響水稻之生長與產量。了解水稻對乾旱及高鹽之耐受機制並提升其耐受性至為重要。先前研究指出大量表現 OsMAPK3 (Mitogen-Activated Protein Kinase) 可提昇轉殖水稻對逆境之耐受性,但其作用機制仍不清楚。本論文針對OsMAPK3轉殖水稻進行分子鑑定、生理、微陣列基因表現及real-time PCR分析等,以期闡明 OsMAPK3 與水稻乾旱與鹽逆境之關係。首先我們確認轉基因之插入位點及OMAPK3轉殖水稻之同型結合株。由活體 H2O2 螢光染色顯示在乾旱與鹽分逆境下轉殖株 H2O2 含量比非轉殖株少;正常生長下,轉殖水稻之光合作用效率、氣孔導度及水分利用效率皆會提高。利用微陣列晶片分析轉植株與非轉殖株間基因表現差異,顯示正常生長下轉殖水稻即能誘導逆境相關基因之表現而提升植株之耐受性。此些基因包括調節滲透物質海藻糖合成基因 TPPA;清除活化氧族相關酵素基因GR1、GR3、CatA 及 CatC;乾旱、鹽分逆境相關的轉錄因子 OsDREB1B、OsDREB2A、OsMyb4、OsZFP252及OsNAC6;離子通道蛋白基因 ClC-a、NHX 及對乾旱反應基因 DHN1等。此外亦發現 OsMAPK3 轉殖水稻種子之發芽率比非轉殖株低,對ABA過度敏感。正常生長下轉殖株之內生 ABA 含量增加。轉殖水稻中受 ABA 誘導的標地基因Rab16A 表現量提高,顯示 OsMAPK3 可能參與 ABA 合成或 ABA 傳遞路徑進而改變植株對 ABA 的敏感性。綜合上述, OsMAPK3 水稻轉殖株之所以有較高的逆境耐受性,可歸因於植株本身較高之抗氧化活性、光合作用與水分利用效率、誘導乾旱與鹽份逆境相關基因之表現,及改變植株對ABA之敏感度所致。 | zh_TW |
dc.description.abstract | Drought and salt stresses can affect rice growth and productivity. It is important to understand the mechanism and develop drought and salt tolerant rice. Previous study showed that overexpression of OsMAPK3 (Mitogen-Activated Protein Kinase) in rice can increase its stress tolerance. However, the detail action and mechanism remains to be solved. To further reveal the role of OsMAPK3 in rice drought and salt stress tolerance, in this study we conducted molecular characterization, physiology, microarray and real-time PCR analysis in OsMAPK3 overexpression transgenic rice. First, we determined transgene integration site and identified homozygous OsMAPK3 line. Then, in vivo H2O2 fluorescence staining image indicated that the amount of H2O2 in transgenic rice was lower then that of wild type under stress. Under normal growth conditions, the OsMAPK3 overexpressing rice displayed higher photosynthesis rate, stomata conductance and water use efficiency (WUE). By comparison of gene expression profile difference between transgenic and non-transgenic rice with microarray, we were able to confirm that several abiotic-stress related genes that known to increase drought and salt tolerance had already been induced in transgenic rice. These genes included osmolyte-adjustment related gene TPPA, antioxidative enzymes related gene GR1, GR3, CatA and CatC, drought and salt induced transcription factors OsDREB1B, OsDREB2A, OsMyb4, OsZFP252 and OsNAC6, ion channel related protein ClC-a, NHX and downstream drought responsive gene DHN1 etc. In addition, the OsMAPK3 transgenic rice was hypersensitive to ABA with lower seeds germination rate. Under normal growth, OsMAPK3 transgenic rice contains higher content of endogenous ABA and increased gene expression of ABA-responsive gene OsRab16A. This result indicated that OsMAPK3 may participate in ABA biosynthesis or signal transduction pathway then alter the sensitivity of transgenic rice to ABA. Taken together, overexpression of OsMAPK3 in rice could increase its drought and salt stress tolerance because of higher antioxidant activity, photosynthesis and water use efficiency, induction of stress-related gene expression and alteration of ABA sensitivy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:02:24Z (GMT). No. of bitstreams: 1 ntu-98-R96621111-1.pdf: 1918788 bytes, checksum: 688e7cae9989e23a6edc782bd9ff85bd (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目 錄
圖表與附錄目錄.... i 縮寫字對照........ ii 中文摘要. 1 英文摘要. 2 壹、前言. 4 貳、前人研究...... 6 1. 乾旱與鹽害對於水稻產量之影響..... 6 2. 植物對乾旱與鹽害逆境耐受性的生理機制...... 6 3. Mitogen-Activated Protein Kinase (MAPK) 與植物逆境耐受性....... 7 3.1 MAPKs 訊息傳遞的方式與組成...... 8 3.2 MAPKs 在植物體的功能... 8 3.2.1 MAPKs 在植物體參與植物細胞分裂 8 3.2.2 MAPKs 在植物體參與荷爾蒙調控.. 9 3.2.3 MAPKs 參與植物生物及非生物逆境訊息傳遞. 9 3.3 不同水稻 OsMAPKs 之功能 10 3.4 水稻 OsMAPK3 基因的生理功能研究. 11 4. 非生物逆境下之訊息傳遞及其相關基因表現.... 11 5. 以基因工程方式提昇水稻對非生物逆境之耐受性 13 6. 以體學 (-omics) 之研究方式瞭解植物逆境耐受性....... 13 7. 研究目的與實驗架構...... 14 參、材料與方法.... 17 1.試驗材料........ 17 1.1 TNG67 水稻種子....... 17 1.2 OsMAPK3 過量表現之轉殖水稻.... 17 2. 水稻生長條件及不同非生物逆境與荷爾蒙之處理 17 2.1 水稻種子催芽.. 17 2.2 低溫、乾旱、高鹽及 ABA 等非生物逆境與荷爾蒙之處理. 18 3. 水稻轉殖株之分子鑑定.... 18 3.1 以 TAIL – PCR 方式鑑定轉殖基因插入位置.. 18 3.1.1 水稻葉片 DNA 萃取.... 18 3.1.2 DNA 洋菜瓊脂膠體電泳分析...... 19 3.1.3 TAIL – PCR. 19 3.2 PCR-based genotyping 分析....... 20 3.3 水稻轉殖株基因表現分析. 20 3.3.1 水稻 RNA 萃取........ 20 3.3.2 RNA 瓊脂凝膠電泳分析. 21 3.3.3 RNase Free DNase I 處理....... 21 3.3.4 反轉錄反應.. 22 3.3.5 即時同步 PCR (Real-time PCR) 之基因表現分析..... 22 4. 水稻轉殖株生理分析...... 23 4.1 水稻種子發芽率測定..... 23 4.2 活體 H2O2 螢光染色之觀察....... 23 4.3 測定光合作用與水分利用效率...... 23 4.4 植物荷爾蒙 ABA 含量測定......... 24 5. 轉殖與非轉殖水稻之 Microarray 基因表現分析 24 6. 統計分析....... 25 肆、實驗結果...... 26 1. 水稻於逆境下之 OsMAPK3 基因表現.. 26 2. OsMAPK3 水稻轉殖株之分子鑑定..... 26 2.1 以 TAIL – PCR 釣取轉殖基因插入位點之側翼序列並決定插入位置..... 26 2.2 以 PCR-based genotyping 決定轉殖水稻之基因型...... 27 2.3 轉殖水稻中外來轉入基因 OsMAPK3 表現之鑑定 27 2.4 OsMAPK3 轉殖水稻對外加 ABA 之基因表現.... 28 3. OsMAPK3 水稻轉殖株之生理分析..... 28 3.1 OsMAPK3 水稻轉殖株種子之發芽情形與發芽率. 28 3.2 轉殖水稻具有較高的水分利用效率.. 28 3.3 轉殖水稻於高鹽及乾旱處理後累積較少的 H2O2......... 29 3.4 轉殖水稻 ABA 含量較非轉殖水稻高. 29 4. OsMAPK3 水稻轉殖株中乾旱及鹽逆境相關基因之表現分析. 29 4.1 利用微陣列晶片分析轉植株與非轉殖株於正常情況下基因表現差異....... 29 4.2 正常生長情況下轉殖水稻與非轉殖水稻乾旱及鹽逆境相關基因之表現..... 30 4.3 逆境情況下轉殖水稻與非轉殖水稻乾旱及鹽逆境相關基因之表現....... 31 5. OsMAPK3 過量表現影響轉殖水稻之 ABA 生合成及反應.... 32 伍、討論. 33 1. 受 ABA 誘導之 OsMAPK3 轉殖水稻為何在正常生長下會持續性大量表現OsMAPK3 基因?........ 33 2. 過量表現 OsMAPK3 水稻轉殖株為何會對 ABA 呈現過度敏感反應?...... 34 3. OsMAPK3 與 ABA 生合成或訊息調控之間可能關係........ 35 4. 為何轉入 OsMAPK3 水稻會具較高耐旱及耐鹽性?......... 36 5. OsMAPK3 影響水稻非生物逆境耐受性之可能作用模式..... 37 6. 未來展望....... 37 陸、參考文獻...... 39 | |
dc.language.iso | zh-TW | |
dc.title | 過量表現 Mitogen-Activated Protein Kinase (OsMAPK3)
水稻轉殖株之耐旱與耐鹽生理機制及基因表現分析 | zh_TW |
dc.title | Physiological Mechanism and Gene Expression Profile Analysis in Mitogen-Activated Protein Kinase (OsMAPK3)
Over-expression Transgenic Rice (Oryza sativa L.) under Drought and Salt Stresses | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 朱鈞,侯新龍,洪傳揚,張英? | |
dc.subject.keyword | 非生物逆境,轉基因水稻,ABA,MAPK, | zh_TW |
dc.subject.keyword | abiotic stress,transgenic rice,ABA,MAPK, | en |
dc.relation.page | 70 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 1.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。