請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44505
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 湯志永 | |
dc.contributor.author | Ting-Ting Lee | en |
dc.contributor.author | 李婷婷 | zh_TW |
dc.date.accessioned | 2021-06-15T03:01:43Z | - |
dc.date.available | 2009-09-15 | |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-30 | |
dc.identifier.citation | Adrian RH, Bryant SH (1974) On the repetitive discharge in myotonic muscle fibres. J Physiol 240:505-515.
Ambudkar IS (2007) Trafficking of TRP channels: determinants of channel function. Handb Exp Pharmacol:541-557. Bauer CK, Steinmeyer K, Schwarz JR, Jentsch TJ (1991) Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA. Proc Natl Acad Sci U S A 88:11052-11056. Becker PE (1979) Heterozygote manifestation in recessive generalized myotonia. Hum Genet 46:325-329. Bedford MT, Richard S (2005) Arginine methylation an emerging regulator of protein function. Mol Cell 18:263-272. Cannon SC (2000) Spectrum of sodium channel disturbances in the nondystrophic myotonias and periodic paralyses. Kidney Int 57:772-779. Carr G, Simmons N, Sayer J (2003) A role for CBS domain 2 in trafficking of chloride channel CLC-5. Biochem Biophys Res Commun 310:600-605. Chen TY (2005) Structure and function of clc channels. Annu Rev Physiol 67:809-839. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79-87. Ciechanover A (2007) Intracellular protein degradation from a vague idea through the lysosome and the ubiquitin-proteasome system and on to human diseases and drug targeting: Nobel Lecture, December 8, 2004. Ann N Y Acad Sci 1116:1-28. Deymeer F, Lehmann-Horn F, Serdaroglu P, Cakirkaya S, Benz S, Rudel R, Ozdemir C (1999) Electrical myotonia in heterozygous carriers of recessive myotonia congenita. Muscle Nerve 22:123-125. Duno M, Colding-Jorgensen E, Grunnet M, Jespersen T, Vissing J, Schwartz M (2004) Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype. Eur J Hum Genet 12:738-743. Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108-112. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287-294. Estevez R, Pusch M, Ferrer-Costa C, Orozco M, Jentsch TJ (2004) Functional and structural conservation of CBS domains from CLC chloride channels. J Physiol 557:363-378. Fahlke C, Beck CL, George AL, Jr. (1997) A mutation in autosomal dominant myotonia congenita affects pore properties of the muscle chloride channel. Proc Natl Acad Sci U S A 94:2729-2734. Gaxiola RA, Yuan DS, Klausner RD, Fink GR (1998) The yeast CLC chloride channel functions in cation homeostasis. Proc Natl Acad Sci U S A 95:4046-4050. George AL, Jr. (2005) Inherited disorders of voltage-gated sodium channels. J Clin Invest 115:1990-1999. George AL, Jr., Sloan-Brown K, Fenichel GM, Mitchell GA, Spiegel R, Pascuzzi RM (1994) Nonsense and missense mutations of the muscle chloride channel gene in patients with myotonia congenita. Hum Mol Genet 3:2071-2072. Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L, Dolmetsch R (2006) The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127:591-606. Grasso G, Rizzarelli E, Spoto G (2009) The proteolytic activity of insulin-degrading enzyme: a mass spectrometry study. J Mass Spectrom 44:735-741. Gronemeier M, Condie A, Prosser J, Steinmeyer K, Jentsch TJ, Jockusch H (1994) Nonsense and missense mutations in the muscular chloride channel gene Clc-1 of myotonic mice. J Biol Chem 269:5963-5967. Grunder S, Thiemann A, Pusch M, Jentsch TJ (1992) Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360:759-762. Hakulinen E, Thomsen J (1994) [The man behind the syndrome: Julius Thomsen. He himself suffered of a type of myotonia]. Lakartidningen 91:3178-3180. Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger, Matthew P. Scott, Anthony Bretscher, Ploegh H (2007) Molecular Cell Biology Sixth Edition. He G, Qing H, Tong Y, Cai F, Ishiura S, Song W (2007) Degradation of nicastrin involves both proteasome and lysosome. J Neurochem 101:982-992. Hendriks G, Koudijs M, van Balkom BW, Oorschot V, Klumperman J, Deen PM, van der Sluijs P (2004) Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem 279:2975-2983. Hoffman EP, Lehmann-Horn F, Rudel R (1995) Overexcited or inactive: ion channels in muscle disease. Cell 80:681-686. Holecek M, Muthny T, Kovarik M, Sispera L (2006) Proteasome inhibitor MG-132 enhances whole-body protein turnover in rat. Biochem Biophys Res Commun 345:38-42. Horak M, Chang K, Wenthold RJ (2008) Masking of the endoplasmic reticulum retention signals during assembly of the NMDA receptor. J Neurosci 28:3500-3509. Horlings CG, Drost G, Bloem BR, Trip J, Pieterse AJ, van Engelen BG, Allum JH (2009) Trunk sway analysis to quantify the warm-up phenomenon in myotonia congenita patients. J Neurol Neurosurg Psychiatry 80:207-212. Hsueh CH, Chen WP, Lin JL, Liu YB, Su MJ, Lai LP (2008) Functional studies on three novel HCNH2 mutations in Taiwan: identification of distinct mechanisms of channel defect and dissociation between glycosylation defect and assembly defect. Biochem Biophys Res Commun 373:572-578. Hudson AJ, Ebers GC, Bulman DE (1995) The skeletal muscle sodium and chloride channel diseases. Brain 118 ( Pt 2):547-563. Iyer R, Iverson TM, Accardi A, Miller C (2002) A biological role for prokaryotic ClC chloride channels. Nature 419:715-718. Jeng CJ, Sun MC, Chen YW, Tang CY (2008) Dominant-negative effects of episodic ataxia type 2 mutations involve disruption of membrane trafficking of human P/Q-type Ca2+ channels. J Cell Physiol 214:422-433. Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348:510-514. Jentsch TJ, Maritzen T, Zdebik AA (2005) Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J Clin Invest 115:2039-2046. Jentsch TJ, Lorenz C, Pusch M, Steinmeyer K (1995) Myotonias due to CLC-1 chloride channel mutations. Soc Gen Physiol Ser 50:149-159. Jentsch TJ, Friedrich T, Schriever A, Yamada H (1999) The CLC chloride channel family. Pflugers Arch 437:783-795. Johnson D, Bennett ES (2008) Gating of the shaker potassium channel is modulated differentially by N-glycosylation and sialic acids. Pflugers Arch 456:393-405. Jurkat-Rott K, Lehmann-Horn F (2005) Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest 115:2000-2009. Kass RS (2005) The channelopathies: novel insights into molecular and genetic mechanisms of human disease. J Clin Invest 115:1986-1989. Kawano S, Kuruma A, Hirayama Y, Hiraoka M (1999) Anion permeability and conduction of adenine nucleotides through a chloride channel in cardiac sarcoplasmic reticulum. J Biol Chem 274:2085-2092. Kelley LP, Kinsella BT (2003) The role of N-linked glycosylation in determining the surface expression, G protein interaction and effector coupling of the alpha (alpha) isoform of the human thromboxane A(2) receptor. Biochim Biophys Acta 1621:192-203. Koch MC, Ricker K, Otto M, Wolf F, Zoll B, Lorenz C, Steinmeyer K, Jentsch TJ (1993) Evidence for genetic homogeneity in autosomal recessive generalised myotonia (Becker). J Med Genet 30:914-917. Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, Zoll B, Lehmann-Horn F, Grzeschik KH, Jentsch TJ (1992) The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257:797-800. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205-215. Koty PP, Pegoraro E, Hobson G, Marks HG, Turel A, Flagler D, Cadaldini M, Angelini C, Hoffman EP (1996) Myotonia and the muscle chloride channel: dominant mutations show variable penetrance and founder effect. Neurology 47:963-968. Kubisch C, Schmidt-Rose T, Fontaine B, Bretag AH, Jentsch TJ (1998) ClC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence. Hum Mol Genet 7:1753-1760. Kuchenbecker M, Schu B, Kurz L, Rudel R (2001) Topology of the human skeletal muscle chloride channel hClC-1 probed with hydrophilic epitope insertion. Pflugers Arch 443:280-288. Le Drevo MA, Benz N, Kerbiriou M, Giroux-Metges MA, Pennec JP, Trouve P, Ferec C (2008) Annexin A5 increases the cell surface expression and the chloride channel function of the DeltaF508-cystic fibrosis transmembrane regulator. Biochim Biophys Acta 1782:605-614. Lehmann-Horn F, Mailander V, Heine R, George AL (1995) Myotonia levior is a chloride channel disorder. Hum Mol Genet 4:1397-1402. Lewin B (2004) GENES VIII. Li W, Xu YJ, Zhang ZX (2004) [Detection of the mRNA level of the subunits of amiloride-sensitive Na+ channel in human bronchial epithelium cells from patients with chronic obstructive pulmonary disease]. Zhonghua Jie He He Hu Xi Za Zhi 27:533-536. Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger, Matthew P. Scott, Anthony Bretscher, Ploegh H (2007) Molecular Cell Biology Sixth Edition. Logigian EL, Blood CL, Dilek N, Martens WB, Moxley RTt, Wiegner AW, Thornton CA, Moxley RT, 3rd (2005) Quantitative analysis of the 'warm-up' phenomenon in myotonic dystrophy type 1. Muscle Nerve 32:35-42. Lorenz C, Meyer-Kleine C, Steinmeyer K, Koch MC, Jentsch TJ (1994) Genomic organization of the human muscle chloride channel CIC-1 and analysis of novel mutations leading to Becker-type myotonia. Hum Mol Genet 3:941-946. Ludewig U, Pusch M, Jentsch TJ (1996) Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature 383:340-343. Ludewig U, Jentsch TJ, Pusch M (1997) Inward rectification in ClC-0 chloride channels caused by mutations in several protein regions. J Gen Physiol 110:165-171. Ludwig M, Doroszewicz J, Seyberth HW, Bokenkamp A, Balluch B, Nuutinen M, Utsch B, Waldegger S (2005) Functional evaluation of Dent's disease-causing mutations: implications for ClC-5 channel trafficking and internalization. Hum Genet 117:228-237. Maduke M, Pheasant DJ, Miller C (1999) High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J Gen Physiol 114:713-722. Mailander V, Heine R, Deymeer F, Lehmann-Horn F (1996) Novel muscle chloride channel mutations and their effects on heterozygous carriers. Am J Hum Genet 58:317-324. Marthinet E, Bloc A, Oka Y, Tanizawa Y, Wehrle-Haller B, Bancila V, Dubuis JM, Philippe J, Schwitzgebel VM (2005) Severe congenital hyperinsulinism caused by a mutation in the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium channel impairing trafficking and function. J Clin Endocrinol Metab 90:5401-5406. McBride AE, Cook JT, Stemmler EA, Rutledge KL, McGrath KA, Rubens JA (2005) Arginine methylation of yeast mRNA-binding protein Npl3 directly affects its function, nuclear export, and intranuclear protein interactions. J Biol Chem 280:30888-30898. McKeown L, Burnham MP, Hodson C, Jones OT (2008) Identification of an evolutionarily conserved extracellular threonine residue critical for surface expression and its potential coupling of adjacent voltage-sensing and gating domains in voltage-gated potassium channels. J Biol Chem 283:30421-30432. Meisler MH, Kearney JA (2005) Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 115:2010-2017. Meyer S, Dutzler R (2006) Crystal structure of the cytoplasmic domain of the chloride channel ClC-0. Structure 14:299-307. Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC (1995) Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet 57:1325-1334. Middleton RE, Pheasant DJ, Miller C (1996) Homodimeric architecture of a ClC-type chloride ion channel. Nature 383:337-340. Miller C (1982) Open-state substructure of single chloride channels from Torpedo electroplax. Philos Trans R Soc Lond B Biol Sci 299:401-411. Miller C, White MM (1984) Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci U S A 81:2772-2775. Moss AJ, Kass RS (2005) Long QT syndrome: from channels to cardiac arrhythmias. J Clin Invest 115:2018-2024. Nadella KS, Saji M, Jacob NK, Pavel E, Ringel MD, Kirschner LS (2009) Regulation of actin function by protein kinase A-mediated phosphorylation of Limk1. EMBO Rep 10:599-605. Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119-147. Pager CT, Craft WW, Jr., Patch J, Dutch RE (2006) A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 346:251-257. Papponen H, Nissinen M, Kaisto T, Myllyla VV, Myllyla R, Metsikko K (2008) F413C and A531V but not R894X myotonia congenita mutations cause defective endoplasmic reticulum export of the muscle-specific chloride channel CLC-1. Muscle Nerve 37:317-325. Pena-Munzenmayer G, Catalan M, Cornejo I, Figueroa CD, Melvin JE, Niemeyer MI, Cid LP, Sepulveda FV (2005) Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. J Cell Sci 118:4243-4252. Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ (2000) ClC-5 Cl- -channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408:369-373. Plassart-Schiess E, Gervais A, Eymard B, Lagueny A, Pouget J, Warter JM, Fardeau M, Jentsch TJ, Fontaine B (1998) Novel muscle chloride channel (CLCN1) mutations in myotonia congenita with various modes of inheritance including incomplete dominance and penetrance. Neurology 50:1176-1179. Purdy MD, Wiener MC (2000) Expression, purification, and initial structural characterization of YadQ, a bacterial homolog of mammalian ClC chloride channel proteins. FEBS Lett 466:26-28. Pusch M (2002) Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat 19:423-434. Pusch M, Ludewig U, Jentsch TJ (1997) Temperature dependence of fast and slow gating relaxations of ClC-0 chloride channels. J Gen Physiol 109:105-116. Pusch M, Steinmeyer K, Koch MC, Jentsch TJ (1995a) Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel. Neuron 15:1455-1463. Pusch M, Ludewig U, Rehfeldt A, Jentsch TJ (1995b) Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature 373:527-531. Roden DM, Viswanathan PC (2005) Genetics of acquired long QT syndrome. J Clin Invest 115:2025-2032. Rodriguez P, Mitton B, Waggoner JR, Kranias EG (2006) Identification of a novel phosphorylation site in protein phosphatase inhibitor-1 as a negative regulator of cardiac function. J Biol Chem 281:38599-38608. Roger A. Gorski, A. J. Hudspeth, iversen LL, Iversen SD, Jessell TM, Kandel ER, Krakauer J, Kupfermann I, Laterra J (2000) Principles of Neural Science Forth Edition. Rudel R (1990) The myotonic mouse--a realistic model for the study of human recessive generalized myotonia. Trends Neurosci 13:1-3. Rychkov GY, Pusch M, Roberts ML, Jentsch TJ, Bretag AH (1998) Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions. J Gen Physiol 111:653-665. Rychkov GY, Pusch M, Astill DS, Roberts ML, Jentsch TJ, Bretag AH (1996) Concentration and pH dependence of skeletal muscle chloride channel ClC-1. J Physiol 497 ( Pt 2):423-435. Saviane C, Conti F, Pusch M (1999) The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J Gen Physiol 113:457-468. Schmidt JW, Catterall WA (1987) Palmitylation, sulfation, and glycosylation of the alpha subunit of the sodium channel. Role of post-translational modifications in channel assembly. J Biol Chem 262:13713-13723. Schmidt-Rose T, Jentsch TJ (1997) Transmembrane topology of a CLC chloride channel. Proc Natl Acad Sci U S A 94:7633-7638. Schmieder S, Bogliolo S, Ehrenfeld J (2007) N-glycosylation of the Xenopus laevis ClC-5 protein plays a role in cell surface expression, affecting transport activity at the plasma membrane. J Cell Physiol 210:479-488. Schriever AM, Friedrich T, Pusch M, Jentsch TJ (1999) CLC chloride channels in Caenorhabditis elegans. J Biol Chem 274:34238-34244. Schroder E, Byse M, Satin J (2009) L-type calcium channel C terminus autoregulates transcription. Circ Res 104:1373-1381. Schwappach B, Stobrawa S, Hechenberger M, Steinmeyer K, Jentsch TJ (1998) Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p. J Biol Chem 273:15110-15118. Simon DB et al. (1997) Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet 17:171-178. Steinmeyer K, Lorenz C, Pusch M, Koch MC, Jentsch TJ (1994) Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J 13:737-743. Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bosl MR, Ruether K, Jahn H, Draguhn A, Jahn R, Jentsch TJ (2001) Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29:185-196. Struyk AF, Scoggan KA, Bulman DE, Cannon SC (2000) The human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation. J Neurosci 20:8610-8617. Sun L, Trausch-Azar JS, Ciechanover A, Schwartz AL (2005) Ubiquitin-proteasome-mediated degradation, intracellular localization, and protein synthesis of MyoD and Id1 during muscle differentiation. J Biol Chem 280:26448-26456. Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent's disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937-2945. Watanabe I, Zhu J, Recio-Pinto E, Thornhill WB (2004) Glycosylation affects the protein stability and cell surface expression of Kv1.4 but Not Kv1.1 potassium channels. A pore region determinant dictates the effect of glycosylation on trafficking. J Biol Chem 279:8879-8885. Wheeler DG, Barrett CF, Groth RD, Safa P, Tsien RW (2008) CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling. J Cell Biol 183:849-863. Wheeler TM, Lueck JD, Swanson MS, Dirksen RT, Thornton CA (2007) Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J Clin Invest 117:3952-3957. Wollnik B, Kubisch C, Steinmeyer K, Pusch M (1997) Identification of functionally important regions of the muscular chloride channel CIC-1 by analysis of recessive and dominant myotonic mutations. Hum Mol Genet 6:805-811. Xu Q, Cheng HW, He HQ, Liu ZR, He M, Yang HT, Zhou ZL, Ji YH (2008) Deglycosylation altered the gating properties of rNav1.3: glycosylation/deglycosylation homeostasis probably complicates the functional regulation of voltage-gated sodium channel. Neurosci Bull 24:283-287. Yusef YR, Zuniga L, Catalan M, Niemeyer MI, Cid LP, Sepulveda FV (2006) Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain. J Physiol 572:173-181. Zhang J, Bendahhou S, Sanguinetti MC, Ptacek LJ (2000) Functional consequences of chloride channel gene (CLCN1) mutations causing myotonia congenita. Neurology 54:937-942. Zhang J, George AL, Jr., Griggs RC, Fouad GT, Roberts J, Kwiecinski H, Connolly AM, Ptacek LJ (1996) Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita. Neurology 47:993-998. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44505 | - |
dc.description.abstract | 先天性肌肉強直症是一種會影響骨骼肌舒張的神經肌肉遺傳疾病,這是由於負責轉錄骨骼肌上人類肌肉第一型氯離子通道的CLCN1基因突變造成的結果。人類肌肉第一型氯離子通道(簡稱為hClC-1),其功能主要為調節骨骼肌細胞膜的興奮性。
前人的研究指出一些與先天性肌肉強直症相關的突變會改變hClC-1通道的電位依賴性,然而除了藉由影響離子通道的門閥開關比例之外,其他由於基因突變造成hClC-1通道的缺失也可能為先天性肌肉強直症的致病機轉的成因。本篇研究想探討的主題即是這些與先天性肌肉強直症相關的突變,是否影響了hClC-1通道蛋白之生成以及於細胞中的分布型態。 首先,我們將正常型及突變型的hClC-1通道位於細胞內的N端接上可供特定抗體辨認的Flag epitope,轉殖後的HEK293T細胞利用穿膜式免疫螢光染色以及共軛焦雷射螢光顯微鏡技術分別觀察並比較其分布型態。由觀察結果發現,正常型的hClC-1通道主要分布於細胞膜上,而Y261C、R338Q以及P480T三種突變型則明顯滯留於細胞質中。在進一步的實驗中,我們直接在hClC-1上位於細胞膜外的D12-D13 linker區段上插入了小片段的Myc epitope,並且利用非穿膜式免疫螢光染色方式來加以證實hClC1位於細胞膜上的分布。另外為了釐清這些突變是否會影響hClC-1通道蛋白質的生成量或者藉由影響轉譯後修飾作用影響蛋白質成熟程度,我們也利用西方墨點法做進一步的分析比較。由實驗結果發現, Y150C, P480T 與A531V這三組突變型的蛋白質表現總量相對於正成型hClC-1有明顯偏低的現象。研究中同時發現A531V突變型hClC-1其蛋白質成熟程度比正常型hClC-1低。 本研究中證實與先天性肌肉強直症相關之突變會影響hClC-1蛋白質的表現總量與蛋白質分布型態,為先天性肌肉強直症的致病機轉提供一個新的方向。 | zh_TW |
dc.description.abstract | Myotonia congenita is a neuromuscular disorder that affects skeletal muscle relaxation. The disorder is caused by mutations in the gene CLCN1 which encodes the human ClC-1 chloride channels (hClC-1) . hClC-1 channels regulate the membrane excitability of skeletal muscles.
Previous studies indicate that several mutations alter the voltage dependence of hClC-1 channels. Besides changing the gating property of the Cl- channel, other defects in mutant hClC1 channels may also contribute to the mechanism of myotonia congenita. In this study, we want to investigate whether these myotonia congenita-related mutations affect the biogenesis and the subcellular localization of hClC-1 channels. By using immunofluorescence staining and confocal microscopy, we first compared the membrane localization patterns of Flag-tagged wild-type hClC-1 channels with those for mutants in HEK293T cells. While wild-type hClC-1 channels displayed surface localization, Y261C, R338Q and P480T showed a significant cytoplasmic retention pattern. To further confirm the proteins surface expression pattern, we also applied extracellular c-myc-tagging at D12-D13 linker for surface labeling under non-permeabilized configuration. Furthermore, we utilized Western blotting analysis to determine if these myotonia congenita related mutants affect the protein expression amount or the maturation level. In our results, we discovered that Y150C, P480T and A531V cause a decrease of total protein expression level. We also found out that the ratio of protein maturation level of A531V is significant lower than wild type. In this study, we show that myotonia congenita-related mutations influence the biogenesis and the subcellular localization of hClC-1 channels. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:01:43Z (GMT). No. of bitstreams: 1 ntu-98-R96441014-1.pdf: 51737296 bytes, checksum: e958eb7eaf0e26911db372df59164637 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 誌謝...............................................................................................................................................................i
目錄.............................................................................................................................................................iii 圖次..............................................................................................................................................................v 表次.............................................................................................................................................................vi 中文摘要..................................................................................................................................................vii 英文摘要................................................................................................................................................viii 第一章 Introduction 導論 1.1 Ion channel......................................................................................................................1 1.2 Chloride channel............................................................................................................1 1.3 The CLC family.............................................................................................................2 1.4 Channelopathies.............................................................................................................3 1.5 CLCN1 gene.....................................................................................................................4 1.6 Myotonia congenita......................................................................................................4 1.7 Review of myotonia congenita related hClC-1 work........................................6 1.8 Process of protein synthesis......................................................................................7 1.9 Process of protein degradation.................................................................................8 1.10 Aim of the study.........................................................................................................8 第二章 Materials and methods 材料與方法 2.1 cDNA clone ..................................................................................................................10 2.2 Transformation and plasmid DNA extraction.................................................10 2.3 Site-directed mutagenesis.........................................................................................11 2.4 Epitope tagging...........................................................................................................13 2.5 Cell culture....................................................................................................................16 2.6 Transfection..................................................................................................................16 2.7 Immunofluorescence staining.................................................................................18 2.8 Confocal microscopy..................................................................................................19 2.9 Production of monoclonal antibody from ascites fluid.................................20 2.10 Protein extraction.....................................................................................................21 2.11 Western blotting.......................................................................................................22 2.12 Inhibition of proteasome by MG-132 treatment............................................24 2.13 Fluorescence-activated cell sorting(FACS)流式細胞儀.......................25 2.14 Data analysis 資料分析........................................................................................26 第三章 Results 結果 3.1 hClC-1蛋白質可以表現於HEK293T細胞.........................................................28 3.2 Y261C、R338Q與P480T造成hClC-1呈現細胞質滯留分布........................28 3.3 專一性辨識分布於細胞膜表面之hClC-1訊號................................................29 3.4 Y261C、R338Q與P480T降低hClC-1分布至細胞膜程度.............................30 3.5 Y150C、P480T與A531V降低hClC-1蛋白質表現總量.................................30 3.6 A531V降低hClC-1蛋白質成熟程度....................................................................31 3.7 A531V降低hClC-1蛋白質表現量並非透過蛋白質酶體降解途徑...........31 第四章 Discussion 討論 4.1 先天性肌肉強直症相關突變改變hClC1運輸分布之可能原因.................33 4.2 先天性肌肉強直症相關突變降低hClC-1蛋白質表現量之可能原因......33 4.3 先天性肌肉強直症相關突變改變hClC-1蛋白質成熟程度可能造成 的影響............................................................................................................................34 4.4 推測研究中突變型hClC-1之致病機轉................................................................35 4.5 實驗不足處...................................................................................................................36 4.6 後續實驗設計..............................................................................................................36 結論..........................................................................................................................................37 參考文獻..................................................................................................................................................66 | |
dc.language.iso | zh-TW | |
dc.title | 先天性肌肉強直症相關之突變對於人類肌肉第一型 氯離子通道蛋白質生合成之影響 | zh_TW |
dc.title | Effects of Myotonia Congenita Related Mutations on the Biosynthesis of Human ClC-1 Chloride Channels | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王淑美,鄭瓊娟,陳淑靜 | |
dc.subject.keyword | 人類肌肉第一型氯離子通道,先天性肌肉強直症,共軛焦螢光顯微鏡,西方墨點法, | zh_TW |
dc.subject.keyword | hClC-1,myotonia congenita,confocal microscopy,Western blotting, | en |
dc.relation.page | 77 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生理學研究所 | zh_TW |
顯示於系所單位: | 生理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 50.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。