Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44504
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐濟泰(Jih-Tay Hsu)
dc.contributor.authorWei-Lei Wangen
dc.contributor.author王瑋蕾zh_TW
dc.date.accessioned2021-06-15T03:01:39Z-
dc.date.available2014-08-20
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citationAhmer, B. M., J. van Reeuwijk, C. D. Timmers, P. J. Valentine, and F. Heffron. 1998. Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J. Bacteriol. 180:1185–1193.
Ahmer, B. M. 2004. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol. Microbiol. 52: 933-945.
Axelsson, L., and A. Holck. 1995. The genes involved in production of and immunity to sakacin a, a bacteriocin from Lactobacillus sake LB706. J. Bacteriol. 177: 2125-2137.
Babb, K., K. von Lackum, R. L. Wattier, S. P. Riley, and B. Stevenson. 2005. Synthesis of autoinducer 2 by the lyme disease spirochete, Borrelia burgdorferi. J. Bacteriol. 187: 3079-3087.
Bainton, N. J., P. Stead, S. R. Chhabra, B. W. Bycroft, G. P. Salmond, and G. S. Stewart. 1992. N-(3-oxohexanoyl)-l-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem. J. 288 ( Pt 3): 997-1004.
Balestrino., D., J. A. Haagensen, C. Rich, and C. Forestier. 2005. Characterization of type 2 quprun sensing in Klebsiella pneumonia and relationship with biofilm formation. J. Bacteriol. 187: 2870-2880.
Barefoot, S.F., Y. R. Chen, T. A. Hughes, A. B. Bodine, M. Y. Shearer, and M. D. Hughes. 1994. Identification and purification of a protein that induces production of the Lactobacillus acidophilus bacteriocin lactacin B. Appl. Environ. Microbiol. 60(10):3522-3528.
Bassler, B. L., M. Wright, R. E. Showalter, and M. R. Silverman. 1993. Intercellular signalling in Vibrio harveyi: Sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9: 773-786.
Bassler, B. L., E. P. Greenberg, and A. M. Stevens. 1997. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 179: 4043-4045.
Bassler, B. L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2:582-587.
Bassler, B. L., and R. Losick. 2006. Bacterially speaking. Cell. 125: 237-246.
Berg, R. D. 1996. The indigenous gastrointestinal microflora. Trends. Microbiol. 4: 430-435.
Bowden, G. H., and Y. H. Li. 1997. Nutritional influences on biofilm development. Adv. Dent. Res. 11: 81-99.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brandl, M. T., W. G. Miller, A. H. Bates, and R. E. Mandrell. 2005. Production of autoinducer 2 in salmonella enterica serovar thompson contributes to its fitness in chickens but not on cilantro leaf surfaces. Appl. Environ. Microbiol. 71: 2653-2662.
Brurberg, M. B., I. F. Nes, and V. G. Eijsink. 1997. Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol. Microbiol. 26: 347-360.
Cao, J. G., and E. A. Meighen. 1989. Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J. Biol. Chem. 264: 21670-21676.
Chan, W. W. and B. A. Dehority. 1999. Production of Ruminococcus flavefaciens growth inhibitor(s) by Ruminococcus albus. Anim. Feed Sci. and Technol. 77: 61-71.
Chen, J., and P. Weimer. 2001. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiology 147: 21-30.
Chen, X., S. Schauder, N. Potier, A. Van Dorsselaer, I. Pelczer, B. L. Bassler, and F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545-549.
Craig, W. M., G. A. Broderick, and D. B. Ricker. 1987. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J. Nutr. 117: 56-62.
Davies, D. G. M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and
E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295-298.
Dehority, B. A. and H. W. Scott. 1967. Extent of cellulose and hemicellulose digestion in arious forages by pure cultures of rumen bacteria. J. Dairy Sci. 50: 1136-1141.
Dehority, B. A.. 2003. Rumen Microbiology. Nottingham University Press. 3rd. 177-208.
de Keersmaecker, S. C., K. Sonck, and J. Vanderleyden. 2006. Let Luxs speak up in AI-2 signaling. Trends Microbiol. 14: 114-119.
de Kievit, T. R., R. Gillis, S. Marx, C. Brown, and B. H. Iglewski. 2001. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: Their role and expression patterns. Appl. Environ. Microbiol. 67: 1865-1873.
de Kievit, T. R., and B. H. Iglewski. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68: 4839-4849.
de Vos, W. M., M. Kleerebezem, and O. P. Kuipers. 1997. Expression systems for industrial gram-positive bacteria with low guanine and cytosine content. Curr. Opin. Biotechnol. 8: 547-553.
de Vos, W. M., O. P. Kuipers, J. R. van der Meer, and R. J. Siezen. 1995. Maturation pathway of nisin and other lantibiotics: Post-translationally modified antimicrobial peptides exported by gram-positive bacteria. Mol Microbiol 17: 427-437.
Diep, D. B., L. S. Havarstein, J. Nissen-Meyer, and I. F. Nes. 1994. The gene encoding plantaricin a, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl. Environ. Microbiol. 60: 160-166.
Diep, D. B., L. S. Havarstein, and I. F. Nes. 1995. A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol. Microbiol. 18: 631-639.
Diep, D. B., L. S. Havarstein, and I. F. Nes. 1996. Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J. Bacteriol. 178: 4472-4483.
Diep, D. B., L. Axelsson, C. Grefsli, and I. F. Nes. 2000. The synthesis of the bacteriocin sakacin a is a temperature-sensitive process regulated by a pheromone peptide through a three-component regulatory system. Microbiology 146 ( Pt 9): 2155-2160.
Diggle, S. P., S. A. Crusz, and M. Camara. 2007. Quorum sensing. Curr. Biol. 17: R907-910.
Dunny, G. M., and B. A. Leonard. 1997. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 51: 527-564.
Eijsink, V. G., M. B. Brurberg, P. H. Middelhoven, and I. F. Nes. 1996. Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J. Bacteriol. 178: 2232-2237.
Eijsink, V. G., L. Axelsson, D. B. Diep, L. S. Havarstein, H. Holo, and I. F. Nes. 2002. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81: 639-654.
Engelke, G. Z. Gutowski-Eckel, P. Kiesau, K. Siegers, M. Hammelmann, and K. D. Entian. 1994. Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl. Environ. Microbiol. 60: 814-825.
Ennahar, S., T. Sashihara, K. Sonomoto, and A. Ishizaki. 2000. Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS Microbiol. Rev. 24: 85-106.
Erickson, D. L., V.L. Nsereko, D.P. Morgavi, L.B. Selinger, L.M. Rode, and K.A. Beauchemin. 2002. Evidence of quorum sensing in the rumen ecosystem: Detection of n-acyl homoserine lactone autoinducers in ruminal contents. Can. J. Microbiol. 48: 374-378.
Fondevila, M., and B. A. Dehority. 1996. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages. J. Anim. Sci. 74: 678-684.
Fong, K. P., W. O. Chung, R. J. Lamont, and D. R. Demuth. 2001. Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect. Immun. 69: 7625-7634.
Franz, C. M., M. E. Stiles, and M. J. van Belkum. 2000. Simple method to identify bacteriocin induction peptides and to auto-induce bacteriocin production at low cell density. FEMS Microbiol. Lett. 186: 181-185.
Fuqua, C., S. C. Winans, and E. P. Greenberg. 1996. Census and consensus in bacterial ecosystems: The LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50: 727-751.
Fuqua, C., M. R. Parsek, and E. P. Greenberg. 2001. Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annu Rev Genet 35: 439-468.
Geis, A., J. Singh, and M. Teuber. 1983. Potential of lactic Streptococci to produce bacteriocin. Appl. Environ. Microbiol. 45: 205-211.
Gorenc, G., F. Lukáš and G. Avguštin. 2007. Examination of AI-2 quorum sensing system in Prevotella bryantii and Prevotella ruminicola-like system by using bioluminiscence assay. Acta agriculturae Slovenica. 90: 107–113.
Greenberg, E. P., J. W. Hastings, and S. Ulitzur. 1979. Induction of luciferase synthesis in Beneckes harveyi by other marine bacteria. Arch. Mivrobiol. 120:87-91.
Groleau, D., and C. W. Forsberg. 1981. Cellulolytic activity of the rumen bacterium Bacteroides succinogenes. Can. J Microbiol. 27: 517-530.
Guder, A., I. Wiedemann, and H. G. Sahl. 2000. Posttranslationally modified bacteriocins--the lantibiotics. Biopolymers 55: 62-73.
Gutowski-Eckel, Z., C. Klein, K. Siegers, K. Bohm, M. Hammelmann, and K. D. Entian.1994. Growth phase-dependent regulation and membrane localization of SpaB, a protein involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 60: 1-11.
Han, X.G. and C.P. Lu. 2008. In vitro biosynthesis of autoinducer 2 of Steptococcus suis Serotype 2 using recombinant LuxS and Pfs. Enzyme and Microb. Techno. 44: 40-45.
Hillman, J. D. 2002. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Van Leeuwenhoek 82: 361-366.
Ibrahim, M. A. Guillot, F. Wessner, F. Algaron, C. Besset, P. Courtin, R. Gardan, and V. Monnet. 2007. Control of the transcription of a short gene encoding a cyclic peptide in Streptococcus thermophilus: A new quorum-sensing system? J. Bacteriol. 189: 8844-8854.
Jack, R. W., and G. Jung. 2000. Lantibiotics and microcins: Polypeptides with unusual chemical diversity. Curr. Opin. Chem. Biol. 4: 310-317.
Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59: 171-200.
James, C. E., Y. Hasegawa, Y. Park, V. Yeung, G. D. Tribble, M. Kuboniwa, D. R. Demuth, and R. J. Lamont. 2006. LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis. Infect. Immun. 74: 3834-3844.
Kalmokoff, M. L.and R. M. Teather. Isolation and characterization of a bacteriocin (Butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens. Appl. Environ. Microbiol. 63: 394-402.
Kamra, D. N.. 2005. Rumen microbial ecosystem. Curr. Sci. 89: 124-135.
Kaper, J. B., and V. Sperandio. 2005. Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect. Immun. 73: 3197-3209.
Kendall, M. M., and V. Sperandio. 2007. Quorum sensing by enteric pathogens. Curr. Opin. Gastroenterol. 23: 10-15.
Khmel, I. A., A. S. Belik, Yu. V. Zaitseva, and N. N. Danilova. 2008. Quorum Sensing and Communication in Bacteria. Moscow University Biological Sciences Bulletin. 63: 25-31.
Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85.
Kleerebezem, M., O. P. Kuipers, W. M. de Vos, M. E. Stiles, and L. E. Quadri. 2001. A two-component signal-transduction cascade in Carnobacterium piscicola LV17b: Two signaling peptides and one sensor-transmitter. Peptides 22: 1597-1601.
Kleerebezem, M., and L. E. Quadri. 2001. Peptide pheromone-dependent regulation of antimicrobial peptide production in gram-positive bacteria: A case of multicellular behavior. Peptides 22: 1579-1596.
Klein, C., C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59: 296-303.
Koike, S., and Y. Kobayashi. 2001. Development and use of competitive pcr assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204: 361-366.
Krause, D. O. S. E. Denman, R. I. Mackie, M. Morrison, A. L. Rae, G. T. Attwood, and C. S. McSweeney. 2003. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27: 663-693.
Kreth, J., J. Merritt, W. Shi, and F. Qi. 2005. Co-ordinated bacteriocin production and competence development: A possible mechanism for taking up DNA from neighbouring species. Mol. Microbiol. 57: 392-404.
Kuipers, O. P., M. M. Beerthuyzen, R. J. Siezen, and W. M. De Vos. 1993. Characterization of the nisin gene cluster nisabtcipr of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur. J. Biochem. 216: 281-291.
Kuipers, O. P., M. M. Beerthuyzen, P. G. de Ruyter, E. J. Luesink, and W. M. de Vos. 1995. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27299-27304.
Li, L., R. Zhou, T. Li, M. Kang, Y. Wan, Z. Xu, and H. Chen. 2008. Enhanced biofilm formation and reduced virulence of Actinobacillus pleuropneumoniae luxs mutant. Microb. Pathog. 45: 192-200.
Li, Y. H., N. Tang, M. B. Aspiras, P. C. Lau, J. H. Lee, R. P. Ellen, and D. G. Cvitkovitch. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184: 2699-2708.
Lupp, C., and E. G. Ruby. 2004. Vibrio fischeri LuxS and AinS: Comparative study of two signal synthases. J. Bacteriol. 186: 3873-3881.
Lyon, G. J., and R. P. Novick. 2004. Peptide signaling in Staphylococcus aureus and other gram-positive bacteria. Peptides 25: 1389-1403.
Magnuson, R., J. Solomon, and A. D. Grossman. 1994. Biochemical and genetic characterization of a competence pheromone from Bacillu. subtilis. Cell 77: 207-216.
Maldonado, A., J. L. Ruiz-Barba, and R. Jimenez-Diaz. 2003. Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl. Environ. Microbiol. 69: 383-389.
Maldonado, A., R. Jimenez-Diaz, and J. L. Ruiz-Barba. 2004a. Induction of plantaricin production in lactobacillus plantarum nc8 after coculture with specific gram-positive bacteria is mediated by an autoinduction mechanism. J. Bacteriol .186: 1556-1564.
Maldonado, A., J. L. Ruiz-Barba, and R. Jimenez-Diaz. 2004b. Production of plantaricin NC8 by Lactobacillus plantarum nc8 is induced in the presence of different types of gram-positive bacteria. Arch. Microbiol. 181: 8-16.
Marketon, M. M., M. R. Gronquist, A. Eberhard, and J. E. Gonzalez. 2002. Characterization of the Sinorhizobium meliloti SinR/SinI locus and the production of novel N-acyl homoserine lactones. J. Bacteriol. 184: 5686-5695.
McAllister, T. A., H. D. Bae, G. A. Jones, and K. J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72: 3004-3018.
McAuliffe, O., R. P. Ross, and C. Hill. 2001. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25: 285-308.
McDaniel, T. K., K. G. Jarvis, M. S. Donnenberg, and J. B. Kaper. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. U S A 92: 1664-1668.
Merritt, J., J. Kreth, W. Shi, and F. Qi. 2005. LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol. Microbiol. 57: 960-969.
Merritt, J., F. Qi, S. D. Goodman, M. H. Anderson, and W. Shi. 2003. Mutation of LuxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71: 1972-1979.
Michael, B., J. N. Smith, S. Swift, F. Heffron, and B. M. Ahmer. 2001. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J. Bacteriol. 183: 5733-5742.
Michael J. F. and B. L. Bassler. 2003. Interspecies communication in bacteria. J. Clin. Invest. 112: 1291–1299.
Michiko E. T. and Bassler, B. L.. 2003. Chemical communication among bacteria. PNAS. 100: 14549-14554.
Miller, M. B., and B. L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199.
Miller, S. T., K. B. Xavier, S. R. Campagna, M. E. Taga, M. F. Semmelhack, B. L. Bassler, and F. M. Hughson. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15: 677-687.
Miron, J., D. Ben-Ghedalia, and M. Morrison. 2001. Invited review: Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84: 1294-1309.
Mitsumori, M. , L. Xu, H. Kajikawa, M. Kurihara, K. Tajima, J. Hai, and A. Takenaka. 2003. Possible quorum sensing in the rumen microbial community: Detection of quorum-sensing signal molecules from rumen bacteria. FEMS Microbiol. Lett. 219: 47-52.
Nealson, K. H., and J. W. Hastings. 1979. Bacterial bioluminescence: Its control and ecological significance. Microbiol. Rev. 43: 496-518.
Nes, I. F., D. B. Diep, L. S. Havarstein, M. B. Brurberg, V. Eijsink, and Holo, H.
1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 113-128.
Nilsen, T., I. F. Nes, and H. Holo. 1998. An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J. Bacteriol. 180: 1848-1854.
O'Keeffe, T., C. Hill, and R. P. Ross. 1999. Characterization and heterologous expression of the genes encoding enterocin a production, immunity, and regulation in Enterococcus faecium DPC1146. Appl. Environ. Microbiol. 65: 1506-1515.
Odenyo, A. A., R. I. Mackie, D. A. Stahl, and B. A. White. 1994a. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: Development of probes for Ruminococcus species and evidence for bacteriocin production. Appl. Environ. Microbiol. 60: 3688-3696.
Odenyo, A. A., R. I. Mackie, D. A. Stahl, and B. A. White. 1994b. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: Pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl. Environ. Microbiol. 60: 3697-3703.
Passador, L., J. M. Cook, M. J. Gambello, L. Rust, and B. H. Iglewski. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260: 1127-1130.
Pierson, L. S., 3rd, D. W. Wood, and E. A. Pierson. 1998. Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol. 36: 207-225.
Piper, K. R., S. Beck von Bodman, and S. K. Farrand. 1993. Conjugation factor of Agrobacterium tumefaciens regulates ti plasmid transfer by autoinduction. Nature 362: 448-450.
Prouty, A. M., W. H. Schwesinger, and J. S. Gunn. 2002. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect. Immun. 70: 2640-2649.
Qin, X., K. V. Singh, G. M. Weinstock, and B. E. Murray. 2000. Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect. Immun. 68: 2579-2586.
Quadri, L. E., M. Kleerebezem, O. P. Kuipers, W. M. de Vos, K. L. Roy, J. C. Vederas, and M. E. Stiles. 1997a. Characterization of a locus from Carnobacterium piscicola LV17b involved in bacteriocin production and immunity: Evidence for global inducer-mediated transcriptional regulation. J. Bacteriol. 179: 6163-6171.
Quadri, L. E., L. Z. Yan, M. E. Stiles, and J. C. Vederas. 1997b. Effect of amino acid substitutions on the activity of carnobacteriocin B2. Overproduction of the antimicrobial peptide, its engineered variants, and its precursor in Escherichia coli. J. Biol. Chem. 272: 3384-3388.
Quadri, L. E. 2002. Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. Antonie Van Leeuwenhoek 82: 133-145.
Raffa, R. B., J. R. Iannuzzo, D. R. Levine, K. K. Saeid, R. C. Schwartz, N. T. Sucic, O. D. Terleckyj, and J. M. Young. 2005. Bacterial communication ('Quorum sensing') via ligands and receptors: A novel pharmacologic target for the design of antibiotic drugs. J. Pharmacol. Exp. Ther. 312: 417-423.
Ruiz-Barba, J. L., D. P. Cathcart, P. J. Warner, and R. Jimenez-Diaz. 1994. Use of Lactobacillus plantarum LPCO10, a bacteriocin producer, as a starter culture in spanish-style green olive fermentations. Appl. Environ. Microbiol. 60: 2059-2064.
Russell, J. B., and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Science 292: 1119-1122.
Saucier, L. and A. Poon, and M.E. Stiles. 1995. Induction of bacteriocin in Carnobacterium piscicola LV17. J. Appl. Bacteriol. 78:684–90.
Saucier, L., A. S. Paradkar, L. S. Frost, S. E. Jensen, and M. E. Stiles. 1997. Transcriptional analysis and regulation of carnobacteriocin production in Carnobacterium piscicola LV17. Gene 188: 271-277.
Schauder, S., and B. L. Bassler. 2001. The languages of bacteria. Genes Dev. 15: 1468-1480.
Schauder, S., K. Shokat, M. G. Surette, and B. L. Bassler. 2001. The LuxS family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41: 463-476.
Schnell, N., K. D. Entian, U. Schneider, F. Gotz, H. Zahner, R. Kellner, and G. Jung. 1988. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333: 276-278.
Shi, Y., C. L. Odt, and P. J. Weimer. 1997. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl. Environ. Microbiol. 63: 734-742.
Sip, A., W. Grajek, and P. Boyaval. 1998. Enhancement of bacteriocin production by Carnobacterium divergens AS7 in the presence of a bacteriocin-sensitive strain Carnobacterium piscicola. Int. J Food Microbiol. 42: 63-69.
Smith, J. N., and B. M. Ahmer. 2003. Detection of other microbial species by Salmonella: Expression of the SdiA regulon. J. Bacteriol. 185: 1357-1366.
Solomon, J. M., R. Magnuson, A. Srivastava, and A. D. Grossman. 1995. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev. 9: 547-558.
Sperandio, V., J. L. Mellies, W. Nguyen, S. Shin, and J. B. Kaper. 1999. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 96: 15196-15201.
Studer, S. V., M. J. Mandel, and E. G. Ruby. 2008. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J. Bacteriol. 190: 5915-5923.
Sturme, M. H., M. Kleerebezem, J. Nakayama, A. D. Akkermans, E. E. Vaugha, and W. M. de Vos. 2002. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81: 233-243.
Surette, M. G., and B. L. Bassler. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natl. Acad. Sci. U S A. 95: 7046-7050.
Surette, M. G., M. B. Miller, and B. L. Bassler. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. U. S. A. 96: 1639-1644.
Swift, S., M. K. Winson, P. F. Chan, N. J. Bainton, M. Birdsall, P. J. Reeves, C. E.
Chhabra, S. R. Rees, P. J. Hill, and J. P. Throup. 1993. A novel strategy for the isolation of LuxI homologues: Evidence for the widespread distribution of a LuxR:LuxI superfamily in enteric bacteria. Mol. Microbiol. 10: 511-520.
Swift, S., M. C. Rowe, and M. Kamath. 2008. Quorum sensing.
Sztajer, H., A. Lemme, R. Vilchez, S. Schulz, R. Geffers, C. Y. Yip, C. M. Levesque, D. G. Cvitkovitch, and I. Wagner-Dobler. 2008. Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation. J. Bacteriol. 190: 401-415.
Taga M.E. and B.L. Bassler. 2003. Chemical communication among bacteria. Proc. Natl. Acad. Sci. U. S. A. 100: (Suppl) 2:14549-54.
Tagg, J. R., A. S. Dajani, and L. W. Wannamaker. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40: 722-756.
van Gylswyk, N. O. 1990. Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets. FEMS Microbiology Ecology 73: 243-254
van Kraaij, C., E. Breukink, H. S. Rollema, R. J. Siezen, R. A. Demel, B. De Kruijff, O. P. Kuipers.1997. Influence of charge differences in the C-terminal part of nisin on antimicrobial activity and signaling capacity. Eur. J. Biochem. 247: 114-120.
van Kraaij, C., W. M. de Vos, R. J. Siezen, and O. P. Kuipers. 1999. Lantibiotics: Biosynthesis, mode of action and applications. Nat. Prod. Rep. 16: 575-587.
Whitehead, N. A., A. M. Barnard, H. Slater, N. J. Simpson, and G. P. Salmond. 2001. Quorum-sensing in gram-negative bacteria. FEMS Microbiol. Rev. 25: 365-404.
Williams, P., K. Winzer, W. C. Chan, and M. Camara. 2007. Look who's talking: Communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362: 1119-1134.
Xavier, K. B., and B. L. Bassler. 2003. LuxS quorum sensing: More than just a numbers game. Curr. Opin. Microbiol. 6:191-197.
Xavier, K. B., and B. L. Bassler. 2005. Regulation of uptake and processing of the quorum-sensing autoinducer ai-2 in Escherichia coli. J. Bacteriol. 187: 238-248.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44504-
dc.description.abstract數量感應 (Quorum sensing, QS)是細菌細胞之間溝通的過程。細菌利用小的化學分子在複雜的環境中感受族群密度,協調不同行為表現。這類訊號分子稱為自體誘導物,一旦濃度到達閾值,細菌即會反應而表現不同生理現象。反芻動物利用不同飼料的效率和瘤胃中高度多樣性的微生物生態有關。前人的研究指出,在體外培養情況下,兩株纖維分解菌 R. albus與 R. flavefaciens共培養時,纖維素消化率下降,當兩者共培養時,R. albus會產生細菌素抑制 R. flavefaciens生長。然而,R. albus 產生細菌素與數量感應機制關係的資訊非常少,因此,本試驗之目的為探討 R. albus 7產生細菌素之調控路徑。
為探討R. albus 7與 R. flavefaciens C94是否具有通用性之 LuxS數量感應系統,本試驗利用 Vibrio harveyi BB170生物冷光系統,測定 AI-2自體誘導物活性。R. albus 7的AI-2活性會在細菌指數生長晚期至平穩生長期達到最大值,在另一方面,R. flavefaciens C94在相同的 24小時培養過程,其 AI-2活性皆少於 R. albus 7的 1/5。當 R. albus 7與 R. flavefaciens C94共培養或是添加其上清液,R. albus 7產生細菌素之時間點皆較 R. albus 7單獨培養時提早 2小時產生。另外從 V. harveyi BB152上清液取得 AI-2,經8倍稀釋的上清液會刺激 R. albus 7產生最大細菌素活性,並且和添加 R. flavefaciens C94上清液時有相似的反應趨勢。進一步比較 4、10以及 24小時的 R. flavefaciens C94上清液,只有添加培養 24小時 R. flavefaciens C94上清液會誘導細菌素產生,但其 AI-2活性較 R. albus 7低,此項結果指出,培養 24小時之 R. flavefaciens C94上清液可能含有某些特定的誘導訊號胜肽,刺激 R. albus 7細菌素之表現。以 20、40以及 60%硫酸銨沉澱 R. flavefaciens C94 24小時上清液的蛋白質物質,利用 FPLC通過膠體過濾管柱進行純化。結果指出,R. flavefaciens C94會產生自體誘導胜肽,且具有誘導 R. albus 7細菌素表現,其胜肽分子量大約在 213至5380 Da之間。
綜上所述,R. albus 7細菌素的產生會受到 V. harveyi BB152所產生的 AI-2所誘導,除此之外,R. albus 7亦能反應由 R. flavefaciens C94產生的自體誘導胜肽,並產生細菌素。
zh_TW
dc.description.abstractQuorum sensing is a process of bacterial cell-cell communication that uses small molecules to coordinate diverse behaviors in response to population density. The small signal molecules are known as autoinducers, which will cause bacterial response once they reach a threshold level. The efficiency of ruminants to utilize wide variety of feeds is dependent on highly diversified rumen microbial ecosystem. Previous study showed that in vitro cellulose digestion decreased when two major cellulolytic bacteria, Ruminococcus albus and R. flavefaciens were cocultured. R. albus produced bacteriocin to inhibit the growth of R. flavefaciens when they were cocultured. There is not available information about the relationship between quorum sensing and bacteriocin production in R. albus. The purpose of this study is to study the regulation route(s) of bacteriocin production by R. albus.
To investigate whether R. albus 7 and R. flavefaciens C94 possess universal LuxS quorum sensing system, we used Vibrio harveyi BB170 bioluminescence assay to test the presence of AI-2 autoinducer. AI-2 reached a maximal activity in late-exponential to early stationary phase of R. albus 7, whereas R. flavefaciens C94 produced less than 1/5 AI-2 activity of R. albus 7 during the same 24 hr incubation period. Furthermore, when R. albus 7 was cocultured with R. flavefaciens C94 or its supernatant, bacteriocin production occurred one hour earlier than R. albus cultured alone. By applying AI-2 obtained from V. harveyi BB152 supernatant, it was found that eight times diluted supernatant stimulated the highest bacteriocin activity and had a similar response pattern as with R. flavefaciens C94 supernatant. Comparing 4, 10, and 24 hr supernatants from R. flavefaciens C94, only the 24 hr supernatant could induce bacteriocin production. But, the AI-2 level was very low in this supernatant compared to the AI-2 level produced by R. albus 7 itself. These results suggested that 24 hr supernatant probably contained certain inducing signal peptide which could stimulate R. albus 7. The proteinaceous material from R. flavefaciens C94 24 hr supernatant was precipitated in sequence with 20, 40, and 60% ammonium sulfate, and purified by size exclusion using FPLC. The result showed that R. flavefaciens C94 had autuinducing peptide with molecular weight between 213 to 5380 Da which could induce bacteriocin production by R. albus 7.
In conclusion, bacteriocin production by R. albus 7 could be induced by AI-2 from V. harveyi BB152. In addition, R. albus 7 also can react to the specific autoinducer peptide from R. flavefaciens C94 and produce bacteriocin.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:01:39Z (GMT). No. of bitstreams: 1
ntu-98-R96626008-1.pdf: 2942238 bytes, checksum: eab466e31b465ec8f3d53c38a45f5b12 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目 錄
頁次
中文摘要………………………………….………………………………i
英文摘要………………………………………………………………...iii
表次………………………………………………………………………v
圖次……………………………………………………………………...vi
第一章、文獻檢討………………………………………..………………1
壹、數量感應………………………………………………………..…………………1
一、 定義……………………………………………..………………………………1
二、 數量感應之分類………………………………..………………………………2
貳、動物腸道與瘤胃環境所存在之數量感應……………………..…………………9
一、動物腸道環境……………………………………………………………………9
二、腸道病原菌之數量感應…………………………………………………………9
三、瘤胃環境……………………………………………..…………………………11
四、瘤胃細菌之數量感應………………………………..…………………………11
參、數量感應與細菌素之關係………………………………………………………13
一、乳酸菌細菌素………………………………………..…………………………13
二、細菌素與纖維分解菌競爭現象之關係……………..…………………………15
第二章 確認 R. albus 7與 R. flavefaciens C94之抑制現象以及兩者
是否產生 AI -2訊號分子……………….……………………17
壹、材料方法…………………………………………………………………………17
一、R. albus 7與 R. flavefaciens C94之抑制現象………..……………..…………17
(一) 材料…………………………………………………..………………...……17
(二) 試驗方法……………………………………………..……………...………20
二、檢測 luxS以及 AI-2活性……………………………………………………..22
(一) 材料……………………………………………………..…………...………22
(二) 試驗方法………………………………………………..…………...………23
貳、結果與討論………………………………………………………………………26
一、R. albus 7與 R. flavefaciens C94之抑制現象……………………..…………26
二、檢測 luxS以及 AI-2活性……………………………………………..………27
第三章 R. flavefaciens對 R. albus產生細菌素之影響路徑…...……31
壹、材料方法…………………………………………………………………………31
貳、結果討論…………………………………………………………………………33
第四章 V. harveyi BB152產生之AI-2訊號分子對 R. albus 7產生細 菌素之影響…………..……………………………......………37
壹、材料方法…………………………………………………………………………37
貳 結果討論…………………………………………………………………………39
第五章 不同細胞密度 R. flavefaciens C94之上清液對 R. albus 7產生細菌素之影響…………………..………………..…………47
壹、材料方法…………………………………………………………………………47
貳 結果討論…………………………………………………………………………49
第六章 檢測R. flavefaciens上清液中可能存在的自體誘導多胜肽...54
壹、材料方法…………………………………………………………………………54
貳 結果討論…………………………………………………………………………57
結論……………………………………………………………..………66
參考文獻……………………………………………………..…………67
dc.language.isozh-TW
dc.title瘤胃纖維分解細菌R. albus 7 細菌素生產之調控zh_TW
dc.titleRegulation of bacteriocin production by Ruminococcus albus 7en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉?睿,王翰聰,陳靜宜
dc.subject.keyword數量感應, 自體誘導物, 細菌素, 自體誘導胜&#32957,zh_TW
dc.subject.keywordQuorum sensing, Autoinducers, Bacteriocin, Autoinducing peptide,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2009-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
2.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved