Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44488
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳仲瑄(Chung-Hsuan Chen)
dc.contributor.authorYu-Ling Changen
dc.contributor.author張瑜玲zh_TW
dc.date.accessioned2021-06-15T03:00:40Z-
dc.date.available2009-08-06
dc.date.copyright2009-08-06
dc.date.issued2009
dc.date.submitted2009-07-31
dc.identifier.citation(1) Michael, K.; Ute, B.; Ulrich, G. Mass Spectrom. Rev. 1991, 10, 335-357.
(2) Koichi, T.; Hiroaki, W.; Yutaka, I.; Satoshi, A.; Yoshikazu, Y.; Tamio, Y.; T., M. Rapid Commun. Mass Spectrom. 1988, 2, 151-153.
(3) Pfeffer, S. R.; Rothman, J. E. Ann. Rev. Biochem. 1987, 56, 829-852.
(4) David J, H. Rapid Commun. Mass Spectrom. 1993, 7, 614-619.
(5) Toshifumi, T.; Yanet, T.; Akihiro, N.; Ken-ichi, Y.; Hiroyuki, F.; Masafumi, F.; Yasutsugu, S. Rapid Commun. Mass Spectrom. 1996, 10, 637-640.
(6) Yoshino, K.-i.; Takao, T.; Murata, H.; Shimonishi, Y. Anal. Chem. 1995, 67, 4028-4031.
(7) Klein, A.; Lebreton, A.; Lemoine, J.; Perini, J.-M.; Roussel, P.; Michalski, J.-C. Clin Chem 1998, 44, 2422-2428.
(8) Nien-Yeen, H.; Wen-Bin, Y.; Chi-Huey, W.; Yuan-Chuan, L.; Reiko T, L.; Yi-Sheng, W.; Chung-Hsuan, C. Rapid Commun. Mass Spectrom. 2007, 21, 2137-2146.
(9) Irene, S.-B.; Roman, U.; Thomas, H.; Andreas, R.; Igor, L. Rapid Commun. Mass Spectrom. 2008, 22, 2961-2970.
(10) Hoffmann, E. d.; Stroobant, V. Mass Spectrometry : principles and applications (2nd), 2001.
(11) Posthumus, M. A.; Kistemaker, P. G.; Meuzelaar, H. L. C.; Ten Noever de Brauw, M. C. Anal. Chem. 1978, 50, 985-991.
(12) Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299-2301.
(13) Paul, G.; University of Bristol 2004.
(14) Bahr, U.; Karas, M.; Hillenkamp, F. J. Anal. Chem. USSR 1994, 66, 783-791.
(15) Knochenmuss, R. The Analyst 2006, 131, 966-986.
(16) Van Breemen, R. B.; Snow, M.; Cotter, R. J. Inter. J. Mass Spectrom. and Ion Phys. 1983, 49, 35-50.
(17) Bernhard, S.; Dieter, K.; Raimund, K.; Ernst, J. Rapid Commun. Mass Spectrom. 1992, 6, 105-108.
(18) Piyadasa, C. K. G.; Hakansson, P.; Ariyaratne, T. R. Rapid Commun. Mass Spectrom. 1999, 13, 620-624.
(19) John, J. L.; University of Washington, 1997.
(20) Mamyrin, B. A.; Karataev, V. I.; Shmikk, D. V.; Zagulin, V. A. Sov. Phys. JETP 1973, 37, 45.
(21) Zeleny, J. Phys. Rev 1917, 10, 1.
(22) Malcolm, D.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. J. Chem. Phys 1968, 49, 2240-2249.
(23) Mack, L. L.; Kralik, P.; Rheude, A.; Dole, M. J. Chem. Phys 1970, 52, 4977-4986.
(24) Wong, S. F.; Meng, C. K.; Fenn, J. B. J. Phys. Chem. 1988, 92, 546-550.
(25) Fenn, J.; Mann, M.; Meng, C.; Wong, S.; Whitehouse, C. Science 1989, 246, 64-71.
(26) Bruins, A. P.; Covey, T. R.; Henion, J. D. Anal. Chem. 1987, 59, 2642-2646.
(27) Olivares, J. A.; Nguyen, N. T.; Yonker, C. R.; Smith, R. D. Anal. Chem. 1987, 59, 1230-1232.
(28) Wilm, M.; Mann, M. Anal. Chem. 1996, 68, 1-8.
(29) Andrew, J. L.; Jimmy, E.; David, M. S.; Edwin, C.; Gregory, J. M.; David, R. M.; Barbara, M. G.; John, R. Y. I. Nat. Biotechnol. 1999, 17, 676-682.
(30) Paul, G.; University of Bristol, 2004.
(31) Figeys, D.; The Ottawa Institute of Systems Biology University of Ottawa, 2005.
(32) Dole, D.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. Chem. Phys. 1968.
(33) Ribarne, J. V.; Thornson, B. A. J. Chem. Phys 1976, 64, 15.
(34) Rollgen, F. W.; Bramer-Weger, E.; Fering, L. B. J. Phys. Colloques 1987, 48, C6-253-C256-256.
(35) John, F. J. T. Mass Spectrom. Rev. 1991, 10, 3-52.
(36) Takashi, N.; Mitsuo, T. Rapid Commun. Mass Spectrom. 2006, 20, 376-382.
(37) David, J. H. J. Am. Soc. Mass Spectrom. 2000, 11, 900-915.
(38) David J. Harvey Rapid Commun. Mass Spectrom. 2000, 14, 862-871.
(39) Okamoto, M.; Takahashi, K.-i.; Doi, T.; Takimoto, Y. Anal. Chem. 1997, 69, 2919-2926.
(40) Sarah, H.; Joanne, C.; Richard, T.; James, L.; Robert, B.; Robert, B.; Patrick, C. Rapid Commun. Mass Spectrom. 2001, 15, 1141-1151.
(41) Seveno, M.; Cabrera, G.; Triguero, A.; Burel, C.; Leprince, J.; Rihouey, C.; Vezina, L.-P.; D'Aoust, M.-A.; Rudd, P. M.; Royle, L.; Dwek, R. A.; Harvey, D. J.; Lerouge, P.; Cremata, J. A.; Bardor, M. Anal. Biochem. 2008, 379, 66-72.
(42) Cox, K. M.; Sterling, J. D.; Regan, J. T.; Gasdaska, J. R.; Frantz, K. K.; Peele, C. G.; Black, A.; Passmore, D.; Moldovan-Loomis, C.; Srinivasan, M.; Cuison, S.; Cardarelli, P. M.; Dickey, L. F. Nat Biotech 2006, 24, 1591-1597.
(43) Jerome, L.; Marion, C.-M.; Muriel, B.; Jean-Claude, M.; Loic, F.; Patrice, L. Rapid Commun. Mass Spectrom. 2000, 14, 100-104.
(44) David J. Harvey Mass Spectrom. Rev. 1999, 18, 349-450.
(45) Lynn, A. G.; Jeannine, D.; Paul, V.; David, J. H.; Bruno, D. Rapid Commun. Mass Spectrom. 2002, 16, 192-200.
(46) Janet, L. S.; Douglas, R. M.; Colin, L. R.; Ching, M. T. Green Chem. 2000, 2, 123.
(47) Peter, W.; Wilhelm, K. Ange. Chem. 2000, 39, 3772-3789.
(48) Ford, W. T. Anal. Chem. 2002, 47, 1125-1126.
(49) Jonathan, G.; Huddleston; Robin, D. R. Chem. Commun. 1998, 1765.
(50) Armstrong, D. W.; Zhang, L.-K.; He, L.; Gross, M. L. Anal. Chem. 2001, 73, 3679-3686.
(51) Mank, M.; Stahl, B.; Boehm, G. Anal. Chem. 2004, 76, 2938-2950.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44488-
dc.description.abstract在質譜儀的應用上,基質輔助雷射脫附游離法及電噴灑游離法是現階段常用來研究蛋白質或核酸等生物分子的分析工具。此外,由於生物科技的快速發展,醣類分子在生物體內的重要性也逐漸受到重視。研究發現,細胞與細胞間的辨識作用,蛋白質功能的正確與否,以及許多與代謝相關的疾病,都受其表面修飾之醣分子所影響。發展快速且正確分析醣類分子的方法越見重要性。但由於醣類本身質子吸附能力較蛋白質或核酸等生物分子來的低,導致醣類在質譜儀中離子化效率較差,增加偵測醣類分子的困難性。
為了增進醣類分子在質譜儀中的偵測效率,透過還原胺化的方式,於寡醣分子Maltoheptose (DP7)上修飾胜肽片段Bradykinin,利用質子吸附能力較高的胜肽片段提高醣類的游離效率。發現在基質輔助雷射脫附游離質譜儀中可增強訊號強度,同時偵測極限可由原先 54.6±14.9 fmol降低至 1.2±0.6 fmol;而在電噴灑質譜儀中則是可增強訊號強度最多8倍。
另一方面,也是利用還原胺化的方式,在寡醣分子DP7上修飾2-amino-1-naphthalensulfonic acid (ANS)或7-amino-1,3-naphthalendisulfonic acid (A13S)。在基質輔助雷射脫附游離質譜儀之負電模式下,藉由ANS / A13S易失去氫離子而帶負電的特性,使原先在負電下無法偵測之醣類分子,偵測極限可達 3.9±1.6 fmol / 2.7±0.9 fmol,此實驗數據優於前人所發表之60fmol;而在電噴灑質譜儀中,DP7-ANS與DP7-A13S之訊號強度最多可為DP7之9倍與13倍。

此外,研究發現,以離子液體DHBB (2,5-dihydroxybenzoic acid butylamine)為基質輔助雷射脫附游離法之基質使用,可偵測大的醣類分子。
將此觀念延伸至電噴灑游離質譜儀中,使用DHBB或CHCA-B (α-cyano-4-hydroxycinnamic acids butylamine)兩種離子液體進行分析多醣分子Pullulans (PL6K / 10K)之實驗。發現加入離子液體後,可改善醣類分子之訊雜比並增強訊號強度。分析圖譜可知,在正電模式下偵測時,正電荷由離子液體中之[butylamine+H]+所提供;同理在負電模式下,帶負電的[DHB-H]-或[CHCA-H]-也會吸附並增加醣類分子之游離效率;且電荷之來源完全由離子液體所提供,簡化醣類分子因鈉離子或鉀離子吸附而帶電的可能性,幫助回推多醣分子之分子量。
本實驗透過兩種不同的策略:針對醣類分子修飾胜肽片段或是特定基團,及將離子液體應用於電噴灑質譜儀中,皆可增加醣類在質譜儀的偵測效率,降低偵測極限或增強訊號強度,改善訊雜比。
zh_TW
dc.description.abstractMatrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) were successfully developed as the soft ionization techniques for biomolecules, such as proteins and nucleotides. The benefit of MALDI-mass spectrometry (MS) for analysis of polymers is predominantly from the formation of singly charged molecular ions that lead to simple mass spectra for polymer distribution analysis. In view of the increasing biological importance of saccharides associated with cell-cell recognition, protein targeting and metabolic diseases, oligosaccharides and their glycoconjugate research attracted more attention lately. But the ionization efficiency of saccharides is low compared with other biomolecules due to the low proton affinity of carbohydrates. In order to detect oligosaccharides, we utilized the reductive amination processes to produce glycopeptides (DP7-BK) and derivatives of oligosaccharides with 2-amino-1-naphthalensulfonic acid (DP7-ANS) or 7-amino-1, 3-naphthalendisulfonic acid (DP7-A13S). In our study, modifications were found to improve the detection limit of MALDI mass spectrometry.
In MALDI-MS, the detection limit of DP7-BK 1~9 is 1.2±0.6 fmol which is better than 54.6±14.9 fmol of DP7. The detection limits of DP7-ANS and DP7-A13S are 3.9±1.6 fmol and 2.7±0.9 fmol in negative ion mode. In ESI-MS, the signal intensity of DP7-BK 1~9 is 8 times higher than that of DP7 and the signal intensities of DP7-ANS and DP7-A13S in negative ion mode are 9 times and 13 times higher than that of DP7, respectively.
Ionic liquid (IL) has been used as the matrix to increase ionization efficiency of polysaccharides in MALDI-MS. In this work, we applied IL in ESI-MS. The ionic liquid used are 2, 5-dihydroxybenzoic acid butylamine (DHBB) and α-cyano-4-hydroxycinnamic acids butylamine (CHCA-B). The signal to noise ratios (S / N) of polysaccharides PL6K / 10K are better in positive ion mode. Ion attachments from ionic liquid to polysaccharides are observed. This is the first time that addition of ionic compounds allows us to predict ionic adducts in ESI-MS.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:00:40Z (GMT). No. of bitstreams: 1
ntu-98-R96223212-1.pdf: 1692036 bytes, checksum: 3c241f2de06c3b205e1a9e5ef685b5b9 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
Abstract in Chinese……………………………………………………………………. 2
Abstract………………………………………………………………………………... 4
Chapter 1
A. Introduction…………………………………………………………………...16
B. The background of matrix-assisted laser desorption / ionization mass spectrometry (MALDI-MS)…………………………………………………...19
1. History of MALDI-TOF…………………………………..………………21
2. The sample preparation and the matrices of MALDI……………………..22
3. Ion formation mechanisms in MALDI……………………………………26
4. Time-of-flight mass analyzer……………………………………………...31
C. The background of electrospray ionization mass spectrometry (ESI-MS)…...36
1. History of ESI-MS………………...………………………………………37
2. The principle and mechanism of ESI……………………………………..39
3. Ion trap mass analyzer…………………………………………………….42
D. The modification of oligosaccharides…………………………………………44
1. Peptides modification…………………………...………………………...44
2. Aromatic compounds modification……………………….……………....45
E. Ionic liquid (IL)……………………………………………………………….48
1. The application in MALDI-MS…………………………………………..48
2. Ionic liquid in ESI-MS………...…………………………………………. 50
F. The purpose of the thesis……………………………………………………...51
Chapter 2: Experimental methods and materials
A. Experimental samples
1. The reagents to modify oligosaccharides: peptides and aromatic compounds………………………………………………………………..53
2. Reductive amination………………………………………………………54
3. Polysaccharides and ionic liquid………….……………………………... 55
B. MALDI-TOF MS
1. Instrumentation…………………………………………………………...58
2. Matrix preparation………………………………………….……………. 58
3. The standard of mass calibration………………………………………….59
C. ESI - ion trap MS
1. Instrumentation…………………………………………………………...60
2. The sample preparation…………………………………………………...60
Chapter 3: Results and discussion
A. Modified oligosaccharides in MALDI-MS
1. Oligosaccharides were attached to peptides
(1) The detection limit for various matrices……………………...…….. 61
(2) The effects of peptides length and amino acid sequences…………... 64
2. The oligosaccharides are attached to amino-1-naphthalensulfonic acid….70
B. Modified oligosaccharides in ESI-MS
1. Oligosaccharides were attached to peptide sequences
(1) The results of specific target mass setting (Target Mass: 1150Da)….75
(2) The results of non-specific target mass setting………………………81
2. Oligosaccharides are attached to amino-1-naphthalensulfonic acid
(1) DP7-ANS (2-amino-1-naphthalensulfonic acid, M.W=1358Da).........86
(2) DP7-A13S (7-amino-1,3-naphthalendisulfonic acid, M.W=1438Da)..89
C. The application of ionic liquid for carbohydrates analysis in ESI-MS
1. DP7 (M.W=1153Da) was analyzed preliminaries in positive mode
(1) 1nmol/μl DHBB addition……………………………………..……..93
(2) 5nmol/μl CHCA-B addition………………………………………....95
2. Ionic liquid (IL) are applied to Pullulans whose average molecular weights are 5900Da (PL6K) and 9600Da (PL10K).
(1) The detection in positive mode…………………………………….96
(2) The detection in negative mode…………………………………...100
Chapter 4: Conclusions……………………………………………………………....104
References…………………………………………………………………………...106
Tables………………………………………………………………………………..109

Figure contents
Figure 1: The structure of mass spectrometry…………………………………….........20
Figure 2: A schematic diagram of the mechanism of MALDI………………………...23
Figure 3: The two-step model of ion formation in UV-MALDI………………………27
Figure 4: The pooling reactions of matrix excited states……………………………....28
Figure 5: Example of the time-depended evolution of a MALDI sample in the
photoionization / pooling model…………………………………………….29
Figure 6: The sketch of the major processes proposed in cluster models of MALDI…30
Figure 7: The linear / reflectrons time-of-flight mass analyzer………………………...34
Figure 8: A schematic of the mechanism of ion formation in ESI…………………….39
Figure 9: The droplets shrink during electrospray ionization process…………………40
Figure 10: The ion trap mass analyzer…………………………………………………42
Figure 11: The unit maltotriose of polysaccharides pullulans…………………………56
Figure 12: IL α-cyano-4-hydroxycinnamic acid butylamine salt (CHCA-B)…………57
Figure 13: IL 2, 5-dihydroxybenzoic acid butylamine (DHBB)……………………....57
Figure 14: The detection limit of DP7 and DP7-BK 1~9, the matrix is THAP/DHB....63
Figure 15: The mixture of DP7 and DP-BK, THAP as the matrix…………………….65
Figure 16: The mixture of DP7 and DP-BK, CHCA as the matrix……………………67
Figure 17: The mixture of DP7 and DP-BK, DHB as the matrix……………………...68
Figure 18: The detection limit of DP7-ANS and DP7-A13S, DHB as the matrix……..72
Figure 19: The detection limit of DP7-ANS and DP7-A13S, 3-AQ as the matrix…….73
Figure 20: The structure of 3-aminoquinoline (3-AQ)…………………………………73
Figure 21: The mixture of DP7 and DP-BK in ESI-MS, 100fmol/μl…………………..77
Figure 22: The mixture of DP7 and DP-BK in ESI-MS, 250fmol/μl…………………..78
Figure 23: The mixture of DP7 and DP-BK in ESI-MS, 500fmol/μl…………………..79
Figure 24: The mixture of DP7 and DP-BK in ESI-MS, 1pmol/μl…………………….80
Figure 25: The sum of DP7-BK 1~9 signal intensity is 3.14 times higher than DP7,
100fmol/μl……………………………………………………………….....82
Figure 26: The sum of DP7-BK 1~9 signal intensity is 3.68 times higher than DP7,
250fmol/μl………………………………………………………………….83
Figure 27: The sum of DP7-BK 1~9 signal intensity is 4.25 times higher than DP7,
500fmol/μl………………………………………………………………….84
Figure 28: The sum of DP7-BK 1~9 signal intensity is 4.75 times higher than DP7,
1pmol/μl…………………………………………………………………....85
Figure 29: The mixture of DP7 and DP7-ANS in ESI-MS, the target mass setting is
1150Da, 100fmol/μl ~ 5pmol/μl……………………………………………87
Figure 30: The signal intensity of DP7 and DP7-ANS for 100fmol/μl ~ 5pmol/μl……88
Figure 31: The mixture of DP7 and DP7-A13S in ESI-MS, the target mass setting is
1150Da, 100fmol/μl ~ 5pmol/μl……………………………………………90
Figure 32: The signal intensity of DP7 and DP7-A13S for 100fmol/μl ~ 5pmol/μl…..91
Figure 33: DP7 (upper) and the addition of 1nmol/μl DHBB (down) in ESI-MS….. ...94
Figure 34: DP7 (upper) and the addition of 5nmol/μl CHCA-B (down) in ESI-MS…..95
Figure 35: PL6K (upper), PL6K + DHBB (middle) and PL6K + CHCA-B (down) in
positive mode for ESI-MS………………………………………………….97
Figure 36: PL10K (upper), PL10K + DHBB (middle) and PL10K + CHCA-B (down)
in positive mode for ESI-MS……………………………………………….98
Figure 37: PL6K (upper), PL6K + DHBB (middle) and PL6K + CHCA-B (down) in
negative mode for ESI-MS………………………………………………..100
Figure 38: PL10K (upper), PL10K + DHBB (middle) and PL10K + CHCA-B (down)
in negative mode for ESI-MS……………………………………………..101

Table contents
Table 1: The structures of different matrices…………………………………………109
Table 2: Peptide or aromatic compounds are attached to DP7……………………….110
Table 3: The detection limit of DP7, DP7-BK 1~9, DP7-ANS and DP7-A13S for
different matrices…………………………………………………………....111
Table 4: The m/z of DP7 and DP-BK 1~3, DP7-BK 1~5, DP7-BK 1~7, DP7-BK 2~9
and DP7-BK 1~9 in ESI-MS……………………………………………….. 112
dc.language.isoen
dc.subject醣類的修飾zh_TW
dc.subject離子液體zh_TW
dc.subject電噴灑游離質譜儀zh_TW
dc.subject基質輔助雷射脫附游離質譜儀zh_TW
dc.subject醣類偵測極限zh_TW
dc.subject7-amino-1en
dc.subjectMALDI-MSen
dc.subjectESI-MSen
dc.subjectionic liquid (IL)en
dc.subjectdetection limit of oligosaccharidesen
dc.subjectglycopeptidesen
dc.subject2-amino-1-naphthalensulfonic aciden
dc.subject3-naphthalendisulfonic aciden
dc.title利用新的化學方法增進醣類分子在質譜儀中的偵測效率zh_TW
dc.titleNovel chemical methods to improve detection efficiency of saccharides in mass spectrometryen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee方俊民(Jim-Min Fang),王亦生(Yi-Sheng Wang)
dc.subject.keyword基質輔助雷射脫附游離質譜儀,電噴灑游離質譜儀,離子液體,醣類偵測極限,醣類的修飾,zh_TW
dc.subject.keywordMALDI-MS,ESI-MS,ionic liquid (IL),detection limit of oligosaccharides,glycopeptides,2-amino-1-naphthalensulfonic acid,7-amino-1,3-naphthalendisulfonic acid,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2009-07-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved