Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44481
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任
dc.contributor.authorChi-Kang Lien
dc.contributor.author李季剛zh_TW
dc.date.accessioned2021-06-15T03:00:14Z-
dc.date.available2009-08-03
dc.date.copyright2009-08-03
dc.date.issued2009
dc.date.submitted2009-07-31
dc.identifier.citation[1] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-
Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner,
H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G.
Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt,
B. Loh, G. Sasser, and D. Collins, “High-power truncatedinverted-
pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes
exhibiting > 50% external quantum efficiency,” Applied Physics
Letters, vol. 75, no. 16, pp. 2365–2367, 1999.
[2] N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J. W.
Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and
N. Moll, “1.4x efficiency improvement in transparent-substrate
(AlxGa1−x)0.5In0.5P light-emitting diodes with thin (<= 2000
angstrom) active regions,” Applied Physics Letters, vol. 74, no. 15,
pp. 2230–2232, 1999.
[3] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada,
and T. Mukai, “Ultra-high efficiency white light emitting diodes,”
Japanese Journal Of Applied Physics Part 2-Letters & Express
Letters, vol. 45, no. 37-41, pp. L1084–L1086, 2006.
[4] N. C. Chen, C. M. Lin, Y. K. Yang, C. Shen, T. W. Wang, and
M. C. Wu, “Measurement of Junction Temperature in a Nitride
Light-Emitting Diode,” Japanese Journal Of Applied Physics,
vol. 47, no. 12, pp. 8779–8782, 2008.
[5] [Online]. Available: http://www.materialsnet.com.tw/DocView.a
spx?id=6996
[6] S. Figge, T. Bottcher, D. Hommel, C. Zellweger, and M. Ilegems,
“Heat generation and dissipation in GaN-based light emitting devices,”
Physica Status Solidi A-Applied Research, vol. 200, no. 1,
pp. 83–86, 2003.
[7] B. F. Fan, H. Wu, Y. Zhao, Y. L. Xian, and G. Wang, “Study of
phosphor thermal-isolated packaging technologies for high-power
white light-emitting diodes,” IEEE Photonics Technology Letters,
vol. 19, no. 13-16, pp. 1121–1123, 2007.
[8] R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S.Wuu, and
H. I. Lin, “Improved thermal management of GaN/sapphire lightemitting
diodes embedded in reflective heat spreaders,” Applied
Physics Letters, vol. 93, no. 11, p. 111907, 2008.
[9] E. F. Schubert, Light-Emitting Diodes. CAMBRIDGE, 2006.
[10] Y. W. Cheng, H. H. Chen, M. Y. Ke, C. P. Chen, and J. J.
Huang, “Effect of selective ion-implanted p-GaN on the junction
temperature of GaN-based light emitting diodes,” Optics Communications,
vol. 282, no. 5, pp. 835–838, 2009.
[11] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination
rates in nitrides from first principles,” Applied Physics
Letters, vol. 94, no. 19, p. 191109, 2009.
[12] J. Singh, Electronic and Optoelectronic Properties of semiconductor
Structure. CAMBRIDGE, 2007.
[13] J. R. Grandusky, V. Jindal, N. Tripathi, F. Shahedipour-Sandvik,
H. Lu, E. B. Kaminsky, and R. Melkote, “Identification of subsurface
damage in freestanding HVPE GaN substrates and its influence
on epitaxial growth of GaN epilayers,” Journal Of Crystal
Growth, vol. 307, pp. 309–314, 2007.
[14] Y. J. Sun, T. J. Yu, Z. Z. Chen, X. N. Kang, S. L. Qi, M. G. Li,
G. J. Lian, S. Huang, R. S. Xie, and G. Y. Zhang, “Properties
of GaN-based light-emitting diode thin film chips fabricated by
laser lift-off and transferred to Cu,” Semiconductor Science And
Technology, vol. 23, no. 12, p. 125022, 2008.
[15] R. W. Chuang, A. Q. Zou, H. P. Lee, Z. J. Dong, F. F. Xiong, and
R. Shih, “Contact resistance of InGaN/GaN light emitting diodes
grown on the production model multi-wafer MOVPE reactor,”
Mrs Internet Journal Of Nitride Semiconductor Research, vol. 4,
pp. art. no.–G6.42, 1999.
[16] A. Karouta, M. J. Kappers, M. C. J. C. M. Kramer, and B. Jacobs,
“Enhancement of p-GaN conductivity using PECVD SiOx,”
Electrochemical And Solid State Letters, vol. 8, no. 7, pp. G170–
G171, 2005.
[17] J. Jin, The Finite Element Method in Electromagnetics. John
Wiley, 2002.
[18] [Online]. Available: http://geuz.org/gmsh/
[19] J. T. Oden, Finite Elements of Nolinear Continua. New York:
McGraw-Hill, 1972.
[20] J. C. H. Darrell W. Pepper, The Finite Element Method, Basic
Concept and Applications. Taylor and Francis, 2005.
[21] S. G. Mikhlin, Variational Methods in Mathematical Physics.
New York: Macmillan, 1964.
[22] A. Gupta, M. Joshi, and V. Kumar, “WSMP: A high-performance
shared- and distributed-memory parallel sparse linear equation
solver,” Practical Applications Of Parallel Computing, vol. 12,
pp. 7–21, 2002.
[23] O. Schenk, K. Gartner,W. Fichtner, and A. Stricker, “PARDISO:
A high-performance serial and parallel sparse linear solver in semiconductor
device simulation,” Future Generation Computer Systems,
vol. 18, no. 1, pp. 69–78, 2001.
[24] Y. A. CENGEL, Heat Transfer, A Practical Approach. McGraw-
Hill, 2004.
[25] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method.
New York: McGraw-Hill, 1989.
[26] Y. R. Wu and J. Singh, “Transient study of self-heating effects in
AlGaN/GaN HFETs: Consequence of carrier velocities, temperature,
and device performance,” Journal Of Applied Physics, vol.
101, no. 11, p. 113712, 2007.
[27] Y. R. Wu, M. Singh, and J. Singh, “Device scaling physics and
channel velocities in AlGaN/GaN HFETs: Velocities and effective
gate length,” IEEE Transactions On Electron Devices, vol. 53,
no. 4, pp. 588–593, 2006.
[28] T. H. Lee, L. Kim, W. J. Hwang, C. C. Lee, and M. W. Shin,
“Thermal analysis of GaN-based LEDs using the finite element
method and unit temperature profile approach,” Physica Status
Solidi B-Basic Research, vol. 241, no. 12, pp. 2681–2684, 2004.
[29] N. C. Chen, Y. N.Wang, C. Y. Tseng, and Y. K. Yang, “Determination
of junction temperature in AlGaInP/GaAs light emitting
diodes by self-excited photoluminescence signal,” Applied Physics
Letters, vol. 89, no. 10, p. 101114, 2006.
[30] J. Senawiratne, W. Zhao, T. Detchprohm, A. Chatterjee, Y. Li,
M. Zhu, Y. Xia, J. L. Plawsky, and C. Wetzel, “Junction temperature
analysis in green light emitting diode dies on sapphire and
GaN substrates,” Physica Status Solidi, vol. 5, pp. 2247–2249,
2008.
[31] A. Chatterjee, J. Senawiratne, Y. Li, T. Detchprohm, M. Zhu, Y.
Xia, W. Zhao, J. L. Plawsky and C. Wetzel, “Junction Temperature
Simulation of Gallium Nitride Green Light Emitting Diodes
Using COMSOL,” COMSOL Conference in Boston, 2007.
[32] L. Q. Yang, J. Z. Hu, L. Kim, and M.W. Shin, “Thermal Analysis
of GaN-Based Light Emitting Diodes With Different Chip Sizes,”
IEEE Transactions On Device And Materials Reliability, vol. 8,
no. 3, pp. 571–575, 2008.
[33] H. M. Cho and H. J. Kim, “Metal-core printed circuit board with
alumina layer by aerosol deposition process,” IEEE Electron Device
Letters, vol. 29, no. 9, pp. 991–993, 2008.
[34] C. J. Weng, “Advanced thermal enhancement and management
of LED packages,” International Communications In Heat And
Mass Transfer, vol. 36, no. 3, pp. 245–248, 2009.
[35] H. T. Chen, Y. J. Lu, Y. L. Gao, H. B. Zhang, and Z. Chen,
“The performance of compact thermal models for LED package,”
Thermochimica Acta, vol. 488, no. 1-2, pp. 33–38, 2009.
[36] R. H. Horng, C. C. Chiang, Y. L. Tsai, C. P. Lin, K. Kan, H. I.
Lin, and D. S. Wuu, “Thermal Management Design from Chip
to Package for High Power InGaN/Sapphire LED Applications,”
Electrochemical And Solid State Letters, vol. 12, no. 6, pp. H222–
H225, 2009.
[37] S. J. Chang, W. S. Chen, S. C. Shei, T. K. Ko, C. F. Shen, Y. P.
Hsu, C. S. Chang, J. M. Tsai, W. C. Lai, and A. J. Lin, “Highly
reliable high-brightness GaN-based flip chip LEDs,” IEEE Transactions
On Advanced Packaging, vol. 30, pp. 752–757, 2007.
[38] B. F. Fan, H. Wu, Y. Zhao, Y. L. Xian, B. J. Zhang, and
G. Wang, “Thermal Study of High-Power Nitride-Based Flip-
Chip Light-Emitting Diodes,” IEEE Transactions On Electron
Devices, vol. 55, no. 12, pp. 3375–3382, 2008.
[39] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A.
Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames,
“High performance thin-film flip-chip InGaN-GaN light-emitting
diodes,” Applied Physics Letters, vol. 89, no. 7, p. 071109, 2006.
[40] M. V. Bogdanov, K. A. Bulashevich, I. Y. Evstratov, A. I. Zhmakin,
and S. Y. Karpov, “Coupled modeling of current spreading,
thermal effects and light extraction in III-nitride lightemitting
diodes,” Semiconductor Science And Technology, vol. 23,
no. 12, p. 125023, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44481-
dc.description.abstract氮化銦鎵/氮化鎵發光二極體提供了許多重要的發光元件給人類
生活上使用。這些元件在低注入功率下有著很高的效率以及生命
期,但是到目前為止,在高注入的情況下,整個元件的表現反而是
下降的。電流擴佈和熱的消散是在高注入下,表現下降的主要原
因。在本篇論文中,我們發展了一套三維有限元素法來檢驗熱的產
生與消散以及二維有限元素法之帕松和漂移-擴散方程來分析電流擴
佈。就我們所知,界面溫度在發光二極體裏扮演著很重要的角色,
它不只可以影響元件的效率,它還會影響出光的性質。因此,在本
篇論文裡會討論不同結構下的發光二極體晶片及封裝對散熱的影
響,以及藉由特別設計的發光二極體來改變電流流向。我們可以發
現在晶片或是封裝裡,使用較高熱導係數的材料會有著比較好的散
熱效果,特別是當這個材料靠近熱源區的時候。再者,當晶片與底
部散熱片間的材料層數越少時,散熱效果會變得更好。對於傳統發
光二極體和離子佈植發光二極體的改變電流方向的結果也會在本篇
論文裡呈現。我們的模擬結果顯示藉由元件的設計來調整電流流向
可以讓元件的表現變得更好。
zh_TW
dc.description.abstractInGaN/GaN LEDs offer important lighting devices for human livings. These devices have high efficiency and lifetimes at low injection power but so far show degradation under high injection conditions. Current spreading and heat dissipation are key reasons for degradation under high power operation. In this thesis, we have developed a three-dimensional (3-D) finite element method (FEM) to examine
the heat generation and dissipation and a two-dimensional (2D) Finite element Poisson and drift-diffusion solver for the analysis of current spreading. As we know, the junction temperature plays an important role to the performance of the LED, and it will influence the optical
performance. Therefore, the discussion of different structures for LED chips and packages will be considered in this thesis. We have examined how current flow can be altered by a careful design of the LEDs. We can find that higher thermal conductivity of the materials used in the
chip or package can lead to a better heat dissipation especially in it near the heat source region. Also, when the number of layers between the chip and bottom heat sink are becoming less, the effect of heat dissipation can be promoted. Results for a conventional LED and a LED with ion-implantation to improve current flow are also presented. Our simulations show that with better design of the current spreading can improve the device operation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:00:14Z (GMT). No. of bitstreams: 1
ntu-98-R96941104-1.pdf: 9204937 bytes, checksum: f453d74320005c23bd9741d834a96ef7 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審查表. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Mechanism of Heat Generation and Dissipation . . . . 3
1.3 Current Spreading Effect . . . . . . . . . . . . . . . . . 8
2 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . 11
2.1 Finite Element Method . . . . . . . . . . . . . . . . . . 11
2.2 3D Thermal Model . . . . . . . . . . . . . . . . . . . . 21
2.3 2D Poisson and Drift-Diffusion Model . . . . . . . . . . 32
3 Junction Temperature Calculations for Different LED Structure
Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 The Heat Dissipation of the LED Chip . . . . . . . . . 37
vi
3.1.1 Comparison with the Accuracy of our Boundary
Assumptions . . . . . . . . . . . . . . . . . . . . 38
3.1.2 The Discussion of Influential Factors to the Junction
Temperature . . . . . . . . . . . . . . . . . 48
3.1.3 The Discussion of Heatsource Position . . . . . 51
3.2 The Heat Dissipation of the LED Chip with Package . 54
4 The Discussion of Current Spreading Effect . . . . . . . . . . 62
4.1 The Conventional LED Chip . . . . . . . . . . . . . . . 62
4.2 The LED Chip with a TCO Layer . . . . . . . . . . . . 63
4.3 The LED Chip with a Ion-Implanted Structure . . . . 66
4.4 The LED Chip with a Fence-Shaped TCO Contact . . 71
5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 76
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
dc.language.isoen
dc.title以有限元素法分析高功率發光二極體的電性和散熱問題zh_TW
dc.titleElectronic and Thermal Analysis of High Power InGaN/GaN light Emitting Diodes with Finite Element
Methods
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋,蘇國棟,李允立,余沛慈
dc.subject.keyword氮化銦鎵,氮化鎵,高功率發光二極體,界面溫度,電流擴佈,帕松方程,飄移-擴散方程,有限元素法,zh_TW
dc.subject.keywordInGaN,GaN,high power LED,junction temperature,Poisson equation,drift-diffusion,current spreading,finite element method,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2009-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
8.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved