請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44481
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳育任 | |
dc.contributor.author | Chi-Kang Li | en |
dc.contributor.author | 李季剛 | zh_TW |
dc.date.accessioned | 2021-06-15T03:00:14Z | - |
dc.date.available | 2009-08-03 | |
dc.date.copyright | 2009-08-03 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-31 | |
dc.identifier.citation | [1] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-
Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncatedinverted- pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Applied Physics Letters, vol. 75, no. 16, pp. 2365–2367, 1999. [2] N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J. W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1−x)0.5In0.5P light-emitting diodes with thin (<= 2000 angstrom) active regions,” Applied Physics Letters, vol. 74, no. 15, pp. 2230–2232, 1999. [3] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Mukai, “Ultra-high efficiency white light emitting diodes,” Japanese Journal Of Applied Physics Part 2-Letters & Express Letters, vol. 45, no. 37-41, pp. L1084–L1086, 2006. [4] N. C. Chen, C. M. Lin, Y. K. Yang, C. Shen, T. W. Wang, and M. C. Wu, “Measurement of Junction Temperature in a Nitride Light-Emitting Diode,” Japanese Journal Of Applied Physics, vol. 47, no. 12, pp. 8779–8782, 2008. [5] [Online]. Available: http://www.materialsnet.com.tw/DocView.a spx?id=6996 [6] S. Figge, T. Bottcher, D. Hommel, C. Zellweger, and M. Ilegems, “Heat generation and dissipation in GaN-based light emitting devices,” Physica Status Solidi A-Applied Research, vol. 200, no. 1, pp. 83–86, 2003. [7] B. F. Fan, H. Wu, Y. Zhao, Y. L. Xian, and G. Wang, “Study of phosphor thermal-isolated packaging technologies for high-power white light-emitting diodes,” IEEE Photonics Technology Letters, vol. 19, no. 13-16, pp. 1121–1123, 2007. [8] R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S.Wuu, and H. I. Lin, “Improved thermal management of GaN/sapphire lightemitting diodes embedded in reflective heat spreaders,” Applied Physics Letters, vol. 93, no. 11, p. 111907, 2008. [9] E. F. Schubert, Light-Emitting Diodes. CAMBRIDGE, 2006. [10] Y. W. Cheng, H. H. Chen, M. Y. Ke, C. P. Chen, and J. J. Huang, “Effect of selective ion-implanted p-GaN on the junction temperature of GaN-based light emitting diodes,” Optics Communications, vol. 282, no. 5, pp. 835–838, 2009. [11] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Applied Physics Letters, vol. 94, no. 19, p. 191109, 2009. [12] J. Singh, Electronic and Optoelectronic Properties of semiconductor Structure. CAMBRIDGE, 2007. [13] J. R. Grandusky, V. Jindal, N. Tripathi, F. Shahedipour-Sandvik, H. Lu, E. B. Kaminsky, and R. Melkote, “Identification of subsurface damage in freestanding HVPE GaN substrates and its influence on epitaxial growth of GaN epilayers,” Journal Of Crystal Growth, vol. 307, pp. 309–314, 2007. [14] Y. J. Sun, T. J. Yu, Z. Z. Chen, X. N. Kang, S. L. Qi, M. G. Li, G. J. Lian, S. Huang, R. S. Xie, and G. Y. Zhang, “Properties of GaN-based light-emitting diode thin film chips fabricated by laser lift-off and transferred to Cu,” Semiconductor Science And Technology, vol. 23, no. 12, p. 125022, 2008. [15] R. W. Chuang, A. Q. Zou, H. P. Lee, Z. J. Dong, F. F. Xiong, and R. Shih, “Contact resistance of InGaN/GaN light emitting diodes grown on the production model multi-wafer MOVPE reactor,” Mrs Internet Journal Of Nitride Semiconductor Research, vol. 4, pp. art. no.–G6.42, 1999. [16] A. Karouta, M. J. Kappers, M. C. J. C. M. Kramer, and B. Jacobs, “Enhancement of p-GaN conductivity using PECVD SiOx,” Electrochemical And Solid State Letters, vol. 8, no. 7, pp. G170– G171, 2005. [17] J. Jin, The Finite Element Method in Electromagnetics. John Wiley, 2002. [18] [Online]. Available: http://geuz.org/gmsh/ [19] J. T. Oden, Finite Elements of Nolinear Continua. New York: McGraw-Hill, 1972. [20] J. C. H. Darrell W. Pepper, The Finite Element Method, Basic Concept and Applications. Taylor and Francis, 2005. [21] S. G. Mikhlin, Variational Methods in Mathematical Physics. New York: Macmillan, 1964. [22] A. Gupta, M. Joshi, and V. Kumar, “WSMP: A high-performance shared- and distributed-memory parallel sparse linear equation solver,” Practical Applications Of Parallel Computing, vol. 12, pp. 7–21, 2002. [23] O. Schenk, K. Gartner,W. Fichtner, and A. Stricker, “PARDISO: A high-performance serial and parallel sparse linear solver in semiconductor device simulation,” Future Generation Computer Systems, vol. 18, no. 1, pp. 69–78, 2001. [24] Y. A. CENGEL, Heat Transfer, A Practical Approach. McGraw- Hill, 2004. [25] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method. New York: McGraw-Hill, 1989. [26] Y. R. Wu and J. Singh, “Transient study of self-heating effects in AlGaN/GaN HFETs: Consequence of carrier velocities, temperature, and device performance,” Journal Of Applied Physics, vol. 101, no. 11, p. 113712, 2007. [27] Y. R. Wu, M. Singh, and J. Singh, “Device scaling physics and channel velocities in AlGaN/GaN HFETs: Velocities and effective gate length,” IEEE Transactions On Electron Devices, vol. 53, no. 4, pp. 588–593, 2006. [28] T. H. Lee, L. Kim, W. J. Hwang, C. C. Lee, and M. W. Shin, “Thermal analysis of GaN-based LEDs using the finite element method and unit temperature profile approach,” Physica Status Solidi B-Basic Research, vol. 241, no. 12, pp. 2681–2684, 2004. [29] N. C. Chen, Y. N.Wang, C. Y. Tseng, and Y. K. Yang, “Determination of junction temperature in AlGaInP/GaAs light emitting diodes by self-excited photoluminescence signal,” Applied Physics Letters, vol. 89, no. 10, p. 101114, 2006. [30] J. Senawiratne, W. Zhao, T. Detchprohm, A. Chatterjee, Y. Li, M. Zhu, Y. Xia, J. L. Plawsky, and C. Wetzel, “Junction temperature analysis in green light emitting diode dies on sapphire and GaN substrates,” Physica Status Solidi, vol. 5, pp. 2247–2249, 2008. [31] A. Chatterjee, J. Senawiratne, Y. Li, T. Detchprohm, M. Zhu, Y. Xia, W. Zhao, J. L. Plawsky and C. Wetzel, “Junction Temperature Simulation of Gallium Nitride Green Light Emitting Diodes Using COMSOL,” COMSOL Conference in Boston, 2007. [32] L. Q. Yang, J. Z. Hu, L. Kim, and M.W. Shin, “Thermal Analysis of GaN-Based Light Emitting Diodes With Different Chip Sizes,” IEEE Transactions On Device And Materials Reliability, vol. 8, no. 3, pp. 571–575, 2008. [33] H. M. Cho and H. J. Kim, “Metal-core printed circuit board with alumina layer by aerosol deposition process,” IEEE Electron Device Letters, vol. 29, no. 9, pp. 991–993, 2008. [34] C. J. Weng, “Advanced thermal enhancement and management of LED packages,” International Communications In Heat And Mass Transfer, vol. 36, no. 3, pp. 245–248, 2009. [35] H. T. Chen, Y. J. Lu, Y. L. Gao, H. B. Zhang, and Z. Chen, “The performance of compact thermal models for LED package,” Thermochimica Acta, vol. 488, no. 1-2, pp. 33–38, 2009. [36] R. H. Horng, C. C. Chiang, Y. L. Tsai, C. P. Lin, K. Kan, H. I. Lin, and D. S. Wuu, “Thermal Management Design from Chip to Package for High Power InGaN/Sapphire LED Applications,” Electrochemical And Solid State Letters, vol. 12, no. 6, pp. H222– H225, 2009. [37] S. J. Chang, W. S. Chen, S. C. Shei, T. K. Ko, C. F. Shen, Y. P. Hsu, C. S. Chang, J. M. Tsai, W. C. Lai, and A. J. Lin, “Highly reliable high-brightness GaN-based flip chip LEDs,” IEEE Transactions On Advanced Packaging, vol. 30, pp. 752–757, 2007. [38] B. F. Fan, H. Wu, Y. Zhao, Y. L. Xian, B. J. Zhang, and G. Wang, “Thermal Study of High-Power Nitride-Based Flip- Chip Light-Emitting Diodes,” IEEE Transactions On Electron Devices, vol. 55, no. 12, pp. 3375–3382, 2008. [39] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN-GaN light-emitting diodes,” Applied Physics Letters, vol. 89, no. 7, p. 071109, 2006. [40] M. V. Bogdanov, K. A. Bulashevich, I. Y. Evstratov, A. I. Zhmakin, and S. Y. Karpov, “Coupled modeling of current spreading, thermal effects and light extraction in III-nitride lightemitting diodes,” Semiconductor Science And Technology, vol. 23, no. 12, p. 125023, 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44481 | - |
dc.description.abstract | 氮化銦鎵/氮化鎵發光二極體提供了許多重要的發光元件給人類
生活上使用。這些元件在低注入功率下有著很高的效率以及生命 期,但是到目前為止,在高注入的情況下,整個元件的表現反而是 下降的。電流擴佈和熱的消散是在高注入下,表現下降的主要原 因。在本篇論文中,我們發展了一套三維有限元素法來檢驗熱的產 生與消散以及二維有限元素法之帕松和漂移-擴散方程來分析電流擴 佈。就我們所知,界面溫度在發光二極體裏扮演著很重要的角色, 它不只可以影響元件的效率,它還會影響出光的性質。因此,在本 篇論文裡會討論不同結構下的發光二極體晶片及封裝對散熱的影 響,以及藉由特別設計的發光二極體來改變電流流向。我們可以發 現在晶片或是封裝裡,使用較高熱導係數的材料會有著比較好的散 熱效果,特別是當這個材料靠近熱源區的時候。再者,當晶片與底 部散熱片間的材料層數越少時,散熱效果會變得更好。對於傳統發 光二極體和離子佈植發光二極體的改變電流方向的結果也會在本篇 論文裡呈現。我們的模擬結果顯示藉由元件的設計來調整電流流向 可以讓元件的表現變得更好。 | zh_TW |
dc.description.abstract | InGaN/GaN LEDs offer important lighting devices for human livings. These devices have high efficiency and lifetimes at low injection power but so far show degradation under high injection conditions. Current spreading and heat dissipation are key reasons for degradation under high power operation. In this thesis, we have developed a three-dimensional (3-D) finite element method (FEM) to examine
the heat generation and dissipation and a two-dimensional (2D) Finite element Poisson and drift-diffusion solver for the analysis of current spreading. As we know, the junction temperature plays an important role to the performance of the LED, and it will influence the optical performance. Therefore, the discussion of different structures for LED chips and packages will be considered in this thesis. We have examined how current flow can be altered by a careful design of the LEDs. We can find that higher thermal conductivity of the materials used in the chip or package can lead to a better heat dissipation especially in it near the heat source region. Also, when the number of layers between the chip and bottom heat sink are becoming less, the effect of heat dissipation can be promoted. Results for a conventional LED and a LED with ion-implantation to improve current flow are also presented. Our simulations show that with better design of the current spreading can improve the device operation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:00:14Z (GMT). No. of bitstreams: 1 ntu-98-R96941104-1.pdf: 9204937 bytes, checksum: f453d74320005c23bd9741d834a96ef7 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審查表. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Mechanism of Heat Generation and Dissipation . . . . 3 1.3 Current Spreading Effect . . . . . . . . . . . . . . . . . 8 2 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . 11 2.1 Finite Element Method . . . . . . . . . . . . . . . . . . 11 2.2 3D Thermal Model . . . . . . . . . . . . . . . . . . . . 21 2.3 2D Poisson and Drift-Diffusion Model . . . . . . . . . . 32 3 Junction Temperature Calculations for Different LED Structure Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 The Heat Dissipation of the LED Chip . . . . . . . . . 37 vi 3.1.1 Comparison with the Accuracy of our Boundary Assumptions . . . . . . . . . . . . . . . . . . . . 38 3.1.2 The Discussion of Influential Factors to the Junction Temperature . . . . . . . . . . . . . . . . . 48 3.1.3 The Discussion of Heatsource Position . . . . . 51 3.2 The Heat Dissipation of the LED Chip with Package . 54 4 The Discussion of Current Spreading Effect . . . . . . . . . . 62 4.1 The Conventional LED Chip . . . . . . . . . . . . . . . 62 4.2 The LED Chip with a TCO Layer . . . . . . . . . . . . 63 4.3 The LED Chip with a Ion-Implanted Structure . . . . 66 4.4 The LED Chip with a Fence-Shaped TCO Contact . . 71 5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 76 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 | |
dc.language.iso | en | |
dc.title | 以有限元素法分析高功率發光二極體的電性和散熱問題 | zh_TW |
dc.title | Electronic and Thermal Analysis of High Power InGaN/GaN light Emitting Diodes with Finite Element
Methods | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃建璋,蘇國棟,李允立,余沛慈 | |
dc.subject.keyword | 氮化銦鎵,氮化鎵,高功率發光二極體,界面溫度,電流擴佈,帕松方程,飄移-擴散方程,有限元素法, | zh_TW |
dc.subject.keyword | InGaN,GaN,high power LED,junction temperature,Poisson equation,drift-diffusion,current spreading,finite element method, | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-31 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 8.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。