請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44474
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡克銓 | |
dc.contributor.author | Yu-Chyun Lien | en |
dc.contributor.author | 連育群 | zh_TW |
dc.date.accessioned | 2021-06-15T02:59:48Z | - |
dc.date.available | 2009-08-03 | |
dc.date.copyright | 2009-08-03 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-31 | |
dc.identifier.citation | [1] AISC (2005a), “Seismic Provisions for Steel Buildings”, AISC/ANSI Standard 341-05, American Institute of Steel Construction, Chicago, IL.
[2] AISC (2005b), “Specification for Structural Steel Buildings”, AISC/ANSI Standard 360-05, American Institute of Steel Construction, Chicago, IL. [3] Astaneh-Asl, A. (1998), “Seismic Behavior and Design of Gusset Plates”, Steel TIPS Report, Structural Steel Education Council, Moraga, CA, December. [4] Canney, N., Lehman, D.E. and Roeder, C.W., “Performance of Concentrically Braced Frames under Cyclic Loading”. [5] Chen, C.H., Lai, J.W. and Mahin, S.A., “Numerical Modeling and Performance Assessment of Concentrically Braced Steel Frames”, Proceedings, ASCE SEI 2008 Structures Congress, Vancouver, Canada. [6] Chen, C.H., Lai, J.W. and Mahin, S.A. (2008), 'Seismic Performance Assessment of Concentrically Braced Steel Frame Buildings', 14WCEE [7] Cochran, M.L., Honeck, W.C. (2004), “Design of Special Concentric Braced Frames (With Comments on Ordinary Concentric Braced Frames)”, Steel TIPS Report, Structural Steel Education Council, Moraga, CA, May. [8] Elghazouli, A.Y. (2003), “Seismic Design Procedures for Concentrically Braced Frames”, Proceedings, Structures & Buildinga 156 Issue SB4, pp. 381-394. [9] El-Tawil, S., Mikesell, T., and Kunnath, S. K., “Effect of local details and yield ratio on behavior of FR steel connections.” Journal of Structural Engineering, ASCE, 123(1), 79-87, 2000. [10] Lehman, D.E. and Roeder, C.W. (2008), “Improved Seismic Design of Concentrically Braced Frames and Gusset Plate Connections”, Proceedings, Structures Congress, ASCE, Vancouver. [11] Lehman, D.E., Roeder, C.W. ,Herman, D., Johnson, S. and Kotulka, B. (2008), “Improved Seismic Performance of Gusset Plate Connections”, Journal of Structural Engineering, ASCE, Vol. 134, No. 6, June 1, pp. 890-901. [12] Mahin, S.A., and Uriz, P. (2003), “Seismic Performance Assessment of Special Concentrically Braced Steel Frames”, Proceedings, the International Workshop on Steel and Concrete Composite Construction (IWSCCC-2003), Taipei, Taiwan, October, Vol. 1, pp. 1-13. [13] Mahin, S.A. and Uriz, P. (2004), “Performance-Based Seismic Design of Steel Braced Frame Buildings”, Proceedings, 3rd International Conference on Earthquake Engineering, Nanjing, China, October, pp. 26-32. [14] Moon, J., Yoon, K.Y., Han, T.S. and Lee, H.E. (2008), “Out of Plane Buckling and Design of X-bracing Systems with Discontinuous Diagonals”, Journal of Constructional Steel Research, Volume 64, Issue 3, March 2008, Pages 285-294. [15] Muir, L. S. (2008), “Deign Compact Gussets with the Uniform Force Method”, Engineering Journal, First Quarter. [16] Mullin, D. T. and Cheng, J.J. R. (2004), “Ductile Gusset Plates-Tests and Analyses”, NASCC 2004 Pacific Structural Steel Conference. [17] Powell, J., Clark, K., Tsai, K.C., Roeder, C.W. and Lehman, D.E. (2008), “Test of a Full Scale Concentrically Braced Frame with Multi-Story X-bracing”, Proceedings, Fifth International Workshop on Connections in Steel Structures, Amsterdam, The Netherlands, pp. 167-176. [18] Tremblay, R., Archambault, M.H. and Filiatrault, A. (2003), “Seismic Response of Concentrically Braced Steel Frames Made with Rectangular Hollow Bracing Members”, Journal of Structural Engineering, 129(12), 1626-1636. [19] Roeder, C.W., Lehman, D.E., Johnson, S., Herman, D. and Yoo, J.H. (2006), “Seismic Performance of SCBF Braced Frame Gusset Plate Connections”, 4th International Conference on Earthquake Engineering Taipei, Taiwan, Paper No. 80. [20] Roeder, C.W., Lehman, D.E. and Yoo, J.H. (2005), “Improved Seismic Design of Steel Frame Connections”, Steel Structures, Vol. 5, pp. 141-153. [21] Shaback, B. and Brown, T. (2003), “Behavior of Square Hollow Structural Steel Braces with End Connections under Reversed Cyclic Axial Loading”, Can. J. Civ. Eng. 30: pp. 745-753. [22] Thornton, W.A. (2001), “Seismic Design of Connections in Concentrically Braced Frames”, Civil Engineering Corporation, Roswell, Georgia, USA. [23] Tremblay, R. and Merzouq, S. (2004), 'Dual Buckling Restrained Braced Steel Frames for Enhanced Seismic Response', Passive Control Symposium 2004, November 15-16, Yokohama,Japan. [24] Tremblay, R. (2008) “Influence of Brace Slenderness on the Fracture Life of Rectangular Tubular Steel Bracing Members Subjected to Seismic Inelastic Loading” , Proceedings, Structures Congress, ASCE, Vancouver. [25] Uriz, P. and Mahin, S.A. (2004), “Seismic Performance Assessment of Concentrically Braced Steel Frames”, 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada Paper No. 1639. [26] Uriz, P., Filippou, F.C. and Mahin, S.A. (2008), “Model for Cyclic Inelastic Buckling of Steel Braces”, Journal of Structural Engineering, 134(4), 619-628. [27] Uriz, P., Mahin, S.A., 'Physical Modeling and Seismic Vulnerability Assessment of Concentrically Braced Steel Frames'. [28] Whitmore, R.E. (1952), “Experimental Investigation of Stresses in Gusset Plate”, University of Tennessee Engineering Experiment Station Bulletin No. 16, May. [29] Yoo, J.H., Lehman, D.E., Roeder, C.W. (2008), “Influence of Connection Design Parameters on the Seismic Performance of Braced Frames”, Journal of Constructional Steel Research Vol. 64, pp. 607–623. [30] Yoo, J.H., Roeder, C.W. and Lehman, D.E. (2008), “Analytical Performance Simulation of Special Concentrically Braced Frames”, Journal of Structural Engineering, Vol. 134, No. 6, pp. 881–889. [31] Yoo, J.H., Roeder, C.W. and Lehman, D.E. (2004) “Performance-Based Seismic Design of Braced-Frame Gusset Plate Connections”, Connections in Steel Structures V – Amsterdam. [32] Yoo, J.H., Roeder, C.W. and Lehman, D.E., (2009) “Simulated Behavior of Multi-story X-brace Frames”, Engineering Structures Vol. 31, pp. 182-197. [33] 內政部營建署 (2007),「鋼構造建築物鋼結構設計技術規範」。 [34] 陳誠直、賴建霖、林克強(2008),「鋼骨箱型柱內橫隔板電熱熔渣銲接之有限元素分析」,第五屆海峽兩岸及香港鋼結構技術研討會。 [35] 蔡青宜 (2008),「實尺寸兩層樓特殊同心斜撐鋼構架試驗與分析研究」,國立台灣大學工學院土木工程學系碩士論文,蔡克銓教授指導。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44474 | - |
dc.description.abstract | 為抵抗地震,特殊同心斜撐構架藉由斜撐構件受拉降伏與受壓挫屈進行消能行為,而傳統斜撐與接合板設計將使斜撐挫屈方向朝面外變形,而由先前研究顯示此面外變形量可能高達40公分,容易對包覆斜撐之牆面造成破壞,甚至對建築內使用空間之人員以及器物之安全產生威脅。本研究透過連接板的作用將斜撐挫屈方向轉變為朝面內變形,並進行兩層樓實尺寸構架之試驗以觀察斜撐面內挫屈變形之行為反應,並利用有限元素分析軟體ABAQUS建立有限元素模型模擬試體反應。希望能建立一套含斜撐面內挫屈之構架設計程序,並以有限元素模型分析輔助研究,以便降低進行實驗所需的時間與金錢成本。
本研究所採試體之構架系統採用先前曾在國家地震中心測試過三次TCBF與一次BRBF之梁柱構架,僅將斜撐與接合板拆卸更換。試體高6.66公尺,寬6.7公尺,斜撐排列形式為大X形,斜撐尺寸為H175x175x11x7.5,與第二次TCBF試驗採用之斜撐相同,但本研究因需配置額外的連接板而使得斜撐長度略短,接合板則採用規範建議之UFM進行設計,與第二次TCBF橢圓形凹折設計不同。試驗藉由千斤頂在頂樓樓板中央施力,進行反覆側推測試。 此次試驗發現東側兩支斜撐先後發生挫屈後,西邊兩支斜撐相隔甚久才發生挫屈,造成前述東側兩支斜撐挫屈處之非線性應變過大,提早在出現局部挫屈現象後而有細微裂縫發展,最後導致斜撐較面外挫屈之TCBF之H型斜撐更早破裂而整體結構壽命較斜撐面外挫屈構架更短。推測其原因可能在於斜撐長度較短,韌性變形行為較差。因此尋求改良設計之方法,另以平衡設計的觀點容許接合板及連接板與斜撐共同進入非彈性階段但確保最終破壞僅發生在斜撐構件,以便提升整體系統的韌性,也能對連接板及接合板進行較經濟之設計,本研究也探討如何使得斜撐長度增長,以便能發展出較佳的挫屈行為。另以generalized UFM進行接合板設計,結果可以設計出矩形接合板而不受傳統UFM限制,且節省切割成本。最後考慮將連接板與接合板相連之淨斷面問題從連接板移至相接之十字截面中,斜撐與連接板在工廠進行精密焊接而兩端各保留5公分之空隙以方便現地組裝,如此可以省去貼板且對斜撐柔度分佈與挫屈行為有正面幫助。進行這一連串改良設計後,希望能由下次試驗中證實斜撐面內挫屈變形之SCBF的較好設計方法。 | zh_TW |
dc.description.abstract | For resisting earthquakes, the special concentrically braced frames dissipate energy by the braces yielding tension and buckling in compression. The tradition design of connection of gusset plates and braces make the braces buckle out-of-plane. The out-of-plane deformation can become 40cm in previous tests. The buckled braces probably damage the wall covering the braces even people or equipment nearby. The research transfer the braces buckling direction into in-plane by the knife plates, and test in a two story real size fame specimen to investigate the responses of the braces buckling in-plate. Then build a FEM model by ABAQUS to simulate the responses of specimen. Hope to establish a design procedure of frames in braces buckling in-plane. And use FEM model instead of real size test to reduce the cost of time and money.
The specimen in this research have been used for 3 TCBF tests and a BRBF test. Only changed the gusset plates and braces, and kept the frame remain. The specimen is 6.66m tall and 6.7m wide. The arrangement of braces is X type. The braces is H175x175x11x7.5, same as the second test of TCBF. Because of additional knife plates, the braces length in this test is a little shorter than the second TCBF test. The gusset plate design use the UFM instead of ellipse bending design method. The actuator act on the middle of roof slab to proceed cyclic test. In this test, the two braces in east side buckled in sequence, then the two braces in west buckled after a long time. Large nonlinear strain happened on the local buckling area of the two east braces. Lead to the in-plane buckling braces fractured earlier than the second test of TCBF. The reason may be the shorter brace length result in poor ductile deformation behavior. In research of a improved design method, the concept of balance design is used to allow the knife plates, gusset plates and braces develop non-elastic behavior but make sure the fracture only happen in the braces. The balance design not only improves the system ductility but also the economy of gusset plates and knife plates. The research improve the braces buckling behavior by elongate the braces. Design the rectangular shape gusset plates using generalized UFM to break the shape restrain of original UFM and reduce the cutting cost. Consider to move the net section issue from the connection of braces and knife plates to the cross section of knife plates and gusset plates. The weld of braces and knife plates is accomplished precisely in the factory and keep 5cm slot in each end for fabricating. So we can save the cover plates and take advantage of uniform distribution of flexibility in braces and buckling behavior. After series of improve design, hope to demonstrate the better design method of the braces buckling in-plane in next tests. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:59:48Z (GMT). No. of bitstreams: 1 ntu-98-R96521202-1.pdf: 23454984 bytes, checksum: aff2b60b22e7b495ff0414c7310ee77f (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌 謝 ii 中文摘要 iii 英文摘要 v 目 錄 vii 圖 目 錄 x 表 目 錄 xiv 照片目錄 xv 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的與內容 1 1.4 論文架構 2 第二章 相關研究回顧 3 2.1 連接板設計之參考研究 3 2.2 兩層樓TCBF試驗 12 2.3 三層樓TCBF試驗 14 第三章 兩層樓WF斜撐SCBF實驗計畫 15 3.1 試體設計 15 3.1.1 梁柱設計檢核 15 3.1.2 連接板設計 18 3.1.3 試體材料強度試驗結果 19 3.2 實驗安排 20 3.2.1 柱底修復補強 20 3.2.2 斜撐裝設 20 3.2.3 側撐系統 20 3.2.4 量測系統 21 3.2.5 加載方式 23 3.3 實驗過程 23 3.4 實驗結果 24 3.5 斜撐面內與面外挫屈變形比較 26 第四章 兩層樓WF斜撐SCBF試驗與分析比較 28 4.1 有限元素模型分析 28 4.1.1有限元素模型建立程序 28 4.1.2 行為指標(應力三軸度,等效塑性應變,破裂指數) 32 4.2 試體反應與分析比較 33 第五章 兩層樓WF斜撐SCBF構架耐震性能設計與分析 35 5.1 前言 35 5.2 β參數平衡設計方法介紹 36 5.3 Generalized UFM介紹 37 5.4 接合板與連接板相接設計 39 5.5 採平衡設計之兩層樓構架有限元素模型分析與試驗比較 40 第六章 結論與建議 42 6.1結論 42 6.2建議 43 參考文獻 44 | |
dc.language.iso | zh-TW | |
dc.title | 斜撐面內挫屈之特殊同心斜撐構架耐震行為研究 | zh_TW |
dc.title | Seismic Responses of Special Concentrically Braced Frame With In-Plane Buckling Brace | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周中哲,陳誠直 | |
dc.subject.keyword | 特殊同心斜撐構架,斜撐挫屈,有限元素分析, | zh_TW |
dc.subject.keyword | SCBF,brace buckle,FEM analysis, | en |
dc.relation.page | 110 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 22.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。