請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44462
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葛煥彰 | |
dc.contributor.author | Tai-Cheng Li | en |
dc.contributor.author | 李泰成 | zh_TW |
dc.date.accessioned | 2021-06-15T02:59:04Z | - |
dc.date.available | 2009-08-15 | |
dc.date.copyright | 2009-08-11 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-31 | |
dc.identifier.citation | Bart, E., 1968. The slow unsteady settling of a fluid sphere toward a flat fluid interface. Chemical Engineering Science 23, 193-210.
Basset, A.B., 1961. A Treatise on Hydrodynamics, vol. 2. Dover, New York. Beavers, G.S., Joseph, D.D., 1967. Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics 30, 197-207. Brenner, H., 1971. Pressure drop due to the motion of neutrally buoyant particles in duct flows. II. Spherical droplets and bubbles. Industrial and Engineering Chemistry, Fundamentals 10, 537-542. Chang, Y.C., Keh, H.J., 2006. Slow motion of a slip spherical particle perpendicular to two plane walls. Journal of Fluids and Structures 22, 647-661. Chen, P.Y., Keh, H.J., 2003. Slow motion of a slip spherical particle parallel to one or two plane walls. Journal of the Chinese Institute of Chemical Engineers 34, 123-133. Chen, S.H., Keh, H.J., 1995. Axisymmetric motion of two spherical particles with slip surfaces. Journal of Colloid and Interface Science 171, 63-72. Coutanceau, M., Thizon, P., 1981. Wall effect on the bubble behaviour in highly viscous liquids. Journal of Fluid Mechanics 107, 339-373. Gluckman, M.J., Pfeffer, R., Weinbaum, S., 1971. A new technique for treating multi-particle slow viscous flow: axisymmetric flow past spheres and spheroids. Journal of Fluid Mechanics 50, 705-740. Hadamard, J.S., 1911. Mouvement permanent lent d’une sphere liquid et visqueuse dans un liquide visqueux. Comptes Rendus Hebdomadaires des Seances de V Academie des Sciences (Paris) 152, 1735-1738. Happel, J., Brenner, H., 1983. Low Reynolds Number Hydrodynamics. Nijhoff, Dordrecht, The Netherlands. Hetsroni, G., Haber, S., Wacholder, E., 1970. The flow fields in and around a droplet moving axially within a tube. Journal of Fluid Mechanics 41, 689-705. Hu, C.M., Zwanzig, R., 1974. Rotational friction coefficients for spheroids with the slipping boundary condition. Journal of Chemical Physics 60, 4354-4357. Hutchins, D.K., Harper, M.H., Felder, R.L., 1995. Slip correction measurements for solid spherical particles by modulated dynamic light scattering. Aerosol Science and Technology 22, 202-218. Keh, H.J., Chang, J.H., 1998. Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity. Chemical Engineering Science 53, 2365-2377. Keh, H.J., Chang, Y.C., 2007. Creeping motion of a slip spherical particle in a circular cylindrical pore. International Journal of Multiphase Flow 33, 726-741. Keh, H.J., Chen, P.Y., 2001. Slow motion of a droplet between two parallel plane walls. Chemical Engineering Science 56, 6863-6871. Kennard, E.H., 1938. Kinetic Theory of Gases. McGraw-Hill, New York. Lu, S.Y., Lee, C.T., 2002. Creeping motion of a spherical aerosol particle in a cylindrical pore. Chemical Engineering Science 57, 1479-1484. O’Brien, V., 1968. Form factors for deformed spheroids in Stokes flow. A.I.Ch.E. Journal 14, 870-875. Reed, L.D., Morrison, F.A., 1974. Particle interactions in viscous flow at small values of Knudsen number. Journal of Aerosol Science 5, 175-189. Rushton, E., Davies, G.A., 1973. The slow unsteady settling of two fluid spheres along their line of centres. Applied Scientific Research 28, 37-61. Rybczynski, W., 1911. Uber die fortschreitende bewegung einer flussigen kugel in einem zahenmedium. Bulletin of Academy of Science, Cracovie, Series A 1, 40-46. Saffman, P.G., 1971. On the boundary condition at the surface of a porous medium. Studies in Applied Mathematics 50, 93-101. Shapira, M., Haber, S., 1988. Low Reynolds number motion of a droplet between two parallel plates. International Journal of Multiphase Flow 14, 483-506. Sherif, H.H., Faltas, M.S., Saad, E.I., 2008. Slip at the surface of a sphere translating perpendicular to a plane wall in micropolar fluid. Zeitschrift fur Angewandte Mathematik und Physik 59, 293-312. Stokes, G.G., 1851. On the effect of the internal friction on the motion of pendulums. Transaction of the Cambridge Philosophy Society 9, 8-106. Tretheway, D.C., Meinhart, C.D., 2002. Apparent fluid slip at hydrophobic microchannel walls. Physics of Fluids 14, L9-L12. Wacholder, E., Weihs, D., 1972. Slow motion of a fluid sphere in the vicinity of another sphere or a plane boundary. Chemical Engineering Science, 27, 1817-1828. Willmott, G., 2008. Dynamics of a sphere with inhomogeneous slip boundary conditions in Stokes flow. Physical Review E 77, 055302-1-4. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44462 | - |
dc.description.abstract | 本文以半解析的方法,研究一球形液滴或一表面滑移之剛性球形粒子於一球形孔洞所包覆的黏性流體中,沿著連接它們中心的軸在擬穩態和Reynolds數很小情況下之緩流運動。為求解主導流場之Stokes方程式,需要建立一個包括粒子和孔洞相關兩個球座標系統之通解。以邊界取點法使通解滿足粒子表面和孔壁之邊界條件,在各種不同的粒子與孔洞半徑比值、粒子的相對位置、粒子的相對黏度或滑移係數,以及不同的孔壁滑移係數情形下,計算流體施加於粒子的阻力。當粒子與孔洞同心時,或粒子接近一曲度很小之孔壁時,我們得到的阻力結果分別與文獻中一球形粒子在同心的孔洞以及球形粒子靠近一平面的結果近乎相同。
如預期的,粒子所受到的阻力在所有情況下都是隨著粒子與孔洞半徑比值呈單調遞增的情況,而在粒子接觸孔壁時阻力會趨近於無窮大。一般而言,粒子所受之阻力會隨著其相對黏度的增加而增加或隨著表面滑移係數增加而遞減,不過在粒子與孔壁半徑比較大時有例外的情況發生。 | zh_TW |
dc.description.abstract | A semianalytical study for the creeping flow caused by a spherical fluid or solid particle with a slip surface translating in a viscous fluid within a spherical cavity along the line connecting their centers is presented in the quasisteady limit of small Reynolds number. To solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the fundamental solutions in the two spherical coordinate systems based on the particle and cavity respectively. The boundary conditions on the particle surface and cavity wall are satisfied by a collocation technique. Numerical results for the hydrodynamic drag force exerted on the particle are obtained with good convergence for various values of the ratio of particle-to-cavity radii, the relative location of the particle, the relative viscosity or slip coefficient of the particle, and the slip coefficient of the cavity wall. In the limits of the motions of a spherical particle in a concentric cavity and near a cavity wall with a small curvature, our drag results are in good agreement with the available solutions in the literature.
As expected, the boundary-corrected drag force exerted on the particle for all cases is a monotonic increasing function of the ratio of particle-to-cavity radii, and becomes infinite in the touching limit. For a specified ratio of particle-to-cavity radii, the drag force is minimal when the particle is situated at the cavity center and increases monotonically to infinity in the limit when it is located extremely away from the cavity center. The drag force acting on the particle in general increases with an increase in its relative viscosity or with a decrease in its slip coefficient for a given configuration, but there are exceptions when the ratio of particle-to-cavity radii is large. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:59:04Z (GMT). No. of bitstreams: 1 ntu-98-R96524016-1.pdf: 497040 bytes, checksum: 2d92cd628575dbcc3bc238353af2ecf9 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Chapter 1 Introduction......1
Chapter 2 Motion of a Spherical Fluid Droplet in a Spherical Cavity......5 2.1 Analysis......5 2.2 Results and discussion......9 Chapter 3 Motion of a Slip Solid Sphere in a Spherical Cavity......17 3.1 Analysis......17 3.2 Results and discussion......19 Chapter 4 Concluding Remarks......27 Notation......29 References......31 Appendix A Definitions of Functions Appearing in Chapters 2 and 3......33 Appendix B Computer Programs......35 Biographical Sketch......47 | |
dc.language.iso | en | |
dc.title | 表面滑移球形粒子在非同心球形孔洞中之緩流運動 | zh_TW |
dc.title | Slow Motion of a Slip Spherical Particle in a Nonconcentric Spherical Cavity | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曹恒光,詹正雄 | |
dc.subject.keyword | 滑移,球形粒子,孔洞,緩流, | zh_TW |
dc.subject.keyword | slip,spherical particle,cavity,slow motion, | en |
dc.relation.page | 47 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 485.39 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。