Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44403
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪挺軒(Ting-Hsuan Hung)
dc.contributor.authorHsing-Ju Tienen
dc.contributor.author田幸茹zh_TW
dc.date.accessioned2021-06-15T02:55:34Z-
dc.date.available2011-08-06
dc.date.copyright2009-08-06
dc.date.issued2009
dc.date.submitted2009-08-03
dc.identifier.citation洪士程。2006。柑桔木蝨傳播黃龍病之生態研究。國立台灣大學昆蟲學研究所博士論文。164頁。
洪挺軒。1994。柑橘黃龍病原擬細菌診斷用核酸探針之製備與應用於感染生態之研究。台灣大學植物病蟲害研究所博士論文。253 頁。
姜林惠。2005。柑橘黃龍病在柑橘木蝨體內的增殖與分佈。國立台灣大學昆蟲學研究所碩士論文。43頁。
黃安利。1987。柑橘立枯病病原菌之形態與消長動態之電顯研究。國立台灣大學植物病理與微生物學研究所博士論文。148 頁。
蔡佳欣。2007。柑橘黃龍病之病菌系統、發病生態與化學治療。國立台灣大學植物病理與微生物學研究所博士論文。150頁。
Boonham, N., Perez, L. G., Mendez, M. S., Peralta, E. L., Blockley, A., Walsh, K., Barker, I. and Mumford, R. A. 2004. Development of a real-time RT-PCR assay for the detection of Potato spindle tuber viroid. J. Virol. Methods 116(2): 139 -146.
Bové, J. M. and Garnier, M. 2002. Phloem and xylem restricted plant pathogenic bacteria. Plant Science 163: 1083-1098.
Cappor, S. P., Rao, D. G. and Viswanath, S. M. 1967. Diaphorina citri Kuwayama, a vector of the greening disease of citrus in India. Indian J. Agr. Sci. 37: 572-576
Chavan, V. M. and Summanwar, A. S. 1993. Population dynamics and aspects of the biology of citrus psylla, Diaphorina citri Kuw., in Maharashtra. pp. 286-290. In Moreno, P., da Graca, J. V. and Timmer, L. W. [eds.] Proc. 12th Conference of the International Organization of Citrus Virologists (IOCV). University of California, Riverside.
Chen, C. C. 2000. Occurrence and control of tomato spot wilt virus in Taiwan. http://www.tdais.gov.tw/search/book5/155/155.htm.
da Graça, J. V. 1991. Citrus greening disease. Annu. Rev. Phytopathol. 29: 109-136.
Garnier, M., Danel, N. and Bové, J. M. 1984. The greening organism is a Gram negative bacterium. pp. 115-124. In Garnsey, S. M. (ed.) Proc. 9th Conference of
the International Organization of Citrus Virologists (IOCV). Univ. Calif. Riverside.
Halbert, S. E. 2005. The discovery of huanglongbing in Florida. Pages H3 in: Proc. of 2nd International Citrus Canker and Huanglongbing Research Workshop. Florida Citrus Mutual. Orlando, FL.
Hansen, A. K., Trumble J. T., Stouthamer, R. and Paine, T. D. 2008. A New Huanglongbing Species, “Candidatus Liberibacter psyllaurous,” Found To Infect Tomato and Potato, Is Vectored by the Psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology. Vol. 74.
Heid, C. A., Stevens, J., Livak, K. J. and Williams, P. M. 1996. Real time quantitative PCR. Genome Res. 6(10): 986-994.
Huang, C. H. 1979. The pathogen and control of citrus likubin in Taiwan. Sci. Agric. 27(5-6): 157-159. (in Chinese)
Hung, T. H., Wu, M. L. and Su, H. J. 1999a. Detection of fastidious bacteria causing citrus greening disease by non-radioactive DNA probes. Ann. Phytopathol. Soc. Jpn 65(2), 140–146.
Hung, T. H., Wu, M. L. and Su, H. J. 1999b. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. J. Phytopathology 147, 599–604.
Hung, T. H. Wu, M. L. and Su, H. J. 2000. Identification of alternative hosts of the fastidious bacteria causing citrus greening. J. Phytopathol. 148: 321-326.
Hung, T. H., M. L. Wu, and H. J. Su. 2001. Identification of the Chinese box orange (Severinia buxifolia) as an alternative host of the bacterium causing citrus Huanglongbing. Eur. J. Plant Pathol. 107: 183-189.
Hung, T. H., Hung S. C., Chen, C. N., Hsu, M. H. and Su, H. J. 2004. Detection by PCR of Candidatus Liberibacter asiaticus, the bacterium causing citrus Huanglongbing in vector psyllids: application to the study of vector-pathogen relationships. Plant Pathology 53: 96-102.
Holland, P. M., Abramson, R. D., Watson R., and Gelfand, D. H. 1991. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 88(16): 7276–7280.
Koizumi, M., Pormmintara, M., Linwattana, G. and Kaisuwan, T. 1993. Field evaluation of citrus cultivars for greening resistance in Thailand, pp. 274-279.
Moreno, P., da Graça, J. V. and Timmer, L. M. [eds] Proc. 12th conference of the International Organization of Citrus Virologist (IOCV). University of California, Riverside.

Martinez, A. L. and Wallace, J. M. 1967. Citrus leaf-mottle-yellows disease in the Philippines and transmission of the causal virus by psyllid, Diaphorina citri. Plant Dis. Rept. 51:692-695.
Lakowicz, J. R. 1999. Principles of Fluorescence Spectroscopy. New York: Kulwer Academic/Plenum Publishers. Vol. 1.
Li, W. B., Hartung, J. S. and Levy L. 2006. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. Journal of microbiological methods. 66: 104-115.
Lin, S. J., Ke, Y. F. and Tao, C. C. 1973. Bionomics observation and integrated control of citrus psylla, Diaphorina citri Kuwayama. J. Hort. Soc. China 19(4): 234–242. (In chinese)
Liu, Y. H. and Tsai, J. H. 2000. Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae). Ann. Appl. Biol. 137: 201-206.
Livak, K. J., Flood, S. J. A., Marmaro, J., Giusti, W. and Deetz, K. 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic-acid hybridization. PCR Methods Appl. 4(6): 357-362.
Massoniée, G., Garnier, M. and Bové, J. M. 1976. Transmission of Indian citrus decline by Trioza erytreae (Del Guercio), the vector of South African greening, pp. 18-20 In E. C. Calavan [ed.], Proc. 7th Conference of the International Organization of Citrus Virologists. IOCV, Riverside, CA.
Miyakawa T, 1980. Experimentally-induced symptoms and host range of citrus likubin (greening disease) in Taiwan, mycoplasma-like organisms, transmitted by Diaphorina citri. Ann. Phytopathol. Soc. of Jpn 46: 224–230.
Moson, G., Caciagli, P., Accotto, G. P. and Noris, E. 2008. Real-time PCR for the quantitative of Tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. J. Virol. Methods 147(2): 282-289.
Mumford, R. A., Walsh, K., Barker, I. and Boonham, N. 2000. Detection of Potato mop top virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology 90(5): 448-453.
Nakata, T. 2008. Effectiveness of micronized fluorescent powder for marking citrus psyllid, Diaphorina citri. Appl. Entomol. Zool. 43(1): 33-36.
Salibe, A. A. and Tirtawidjaja, S. 1984. Incidencia da doenca “greening” em variedades citricos na Indonesia. Summa Phytopathol. 10:35 (Rev. Plant Pathol. 65: 196)
Saponari, M., Manjunath, K. and Yokomi, R. K. 2008. Quantitative detection of Citrus tristeza virus in citrus and aphids by real-time reverse transcription-PCR (TaqMan®). J. Virol. Methods 147(1): 43-53.
Su, H. J., Cheon, J. U. and Tsai, M. J. 1986. Citrus greening (Likubin) and some viruses and their control trails. In Plant Virus Disease of Horticultural Crops in the Tropics and Subtropics. FFTC Book Serial No.33, Food and Fertilizer Technology Center for the ASPAC Region, Taipei, Taiwan, R.O.C.
Teixeira, D. C., Ayres, A. J., Kitajima, E. W., Tanaka, F. A. O., Danet, J. L., Jagoueix-Eveillard, S., Saillard, C. and Bové, J. M. 2005a. First report of a huanglongbing-like disease of citrus in Sao Paulo State, Brazil, and association of a new liberibacter species, “Candidatus Liberibacter americanus”, with the disease. Plant Dis. 89: 173-179.
Teixeira, D. C., Eveillard I. S., Sirand-Pugnet P., Wulff A., Saillard C., Ayres1 A. J. and Bove´ J. M. 2008. The tufB–secE–nusG–rplKAJL–rpoB gene cluster of the liberibacters: sequence comparisons, phylogeny and speciation. Evol Microbiol., 1414-1421.
Teixeira, D. C., Saillard, C., Eveillard, S., Danet, L., Costa, P. I., Ayres, J. and Bové, J. M. 2005. ‘Candidatus Liberibacter americanus’ associated with citrus huanglongbing (greening disease) in São Paulo State, Brazil. J. Syst. Evol. Microbiol. 55: 1857-1862
Tsai, C. H., Hung, T. H. and Su, H. J. 2008. Strain Identification of Citrus Huanglongbing Bacteria (HLBB) by pathogenicity characterization in Taiwan. Bot. Stud. 49: 49-56.
Valasek, M. A. and Repa, J. J. 2005. The power of real-time PCR. Adv. Physiol Educ. 29(3): 151-159.
Vigano, F. and Stevens, M. 2007. Development of a multiplex Immunocapture- RT-PCR for simultaneous detection of BMYV and BChV in plants and single aphids. J. Virol. Methods 146(1-2): 196-201.
Walker, N. J. 2002. A technique whose time has come. Science 296: 557-558.
Wittwer, C. T., Herrmann, M. G., Moss, A. A. and Rasmussen, R. P. 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22(1): 130-139.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44403-
dc.description.abstract柑橘黃龍病(citrus huanglongbing,世界上慣稱citrus greening),為柑橘的重要病害之一。目前發現主要分布於亞洲、非洲及美洲等地區。罹病時會導致葉片葉脈間黃化、落葉、果實轉色異常、果皮變厚等病徵,得病植株容易矮化衰弱,嚴重時死亡,使得果園產量減少、樹齡短於10年,因此造成柑橘產業的重大損害。此病由特殊的薄壁細菌所引起,目前病菌暫定的學名為Candidatus Liberibacter sp.,具韌皮部侷限性,寄生於維管束之篩管細胞,至今尚未能人工培養,主要經由接穗嫁接以及媒介昆蟲來傳播。台灣的黃龍病菌屬於亞洲種(Candidatus Liberibacter asiaticus,簡稱Las),可藉由亞洲柑橘木蝨(Diaphorina citri Kuwayama)以永續性方式來傳播,造成此病之蔓延。由於黃龍病菌通常在柑橘寄主體內濃度低且分布不均勻,因此病菌偵測不易。目前的偵測方法中以 PCR檢測法較為敏感而廣被使用,但尚無法進行病菌定量追蹤。本論文旨應用更先進的Real-time PCR的技術去偵測柑橘寄主與柑橘木蝨體內的黃龍病菌,藉由建構定量的標準曲線去估算其寄主體內所帶有的黃龍病菌套數(copies),達到定性兼定量偵測病菌的目標,進而有助於追蹤病菌在柑橘寄主與媒介木蝨的增殖動態,並能深入探討柑橘木蝨的帶菌能力與媒介特性。根據本論文在椪柑、柳橙、檸檬及文旦四種品種的嫁接感染試驗中,利用Real-time PCR法做病菌追蹤,發現椪柑於感染3週後即可被偵測到病菌,柳橙則約晚2週才被偵測到;但柳橙自第8週後病菌增殖速度加快,椪柑則約自第12週後增殖才加快;到第16週以後椪柑內的病菌濃度明顯超越柳橙,而兩者約在嫁接感染4個月後開始於上位葉發現黃化病徵。檸檬及文旦則是感染約7~8週後才可被偵測到,嫁接24週後帶菌量仍低且尚無出現明顯病徵。同時比較田間不同柑橘品種的黃龍病株Real-time PCR之檢測結果得知,不同柑橘寄主體內病菌含量有其明顯差異性,樣本中以茂谷柑測到的菌量最高,其次為椪柑、柳橙、四季橘以及文旦。在木蝨傳菌試驗中,發現與嫁接感染試驗的結果有所差異,木蝨傳菌三週後即可同時於椪柑及柳橙植株內偵測到,但後續的病菌增殖緩慢,至14週後病菌數量皆尚未有明顯增加的趨勢。根據木蝨成蟲族群獲菌試驗的結果發現,獲菌時間的增長並無法使族群帶菌率明顯提升,帶菌率皆分布於40~60%;單隻成蟲木蝨體內可測到約數百至數千copies的菌量。相較於田間帶菌蟲的檢測結果得知,單隻田間成蟲帶菌量遠高於成蟲獲菌試驗所得的菌量,由此可知成蟲獲菌不易,即使獲菌成功也較難增殖;進而推論田間帶菌量高的木蝨主要藉由若蟲期來獲菌,增殖至成蟲期後可達到較大量的黃龍病菌進行有效之傳播。此外,由若蟲的檢測結果得知,若蟲需至4齡以上帶菌率才會較顯著提高,且發現單隻若蟲帶菌量相較於成蟲低許多,再次證明若蟲至成蟲之發育期也是病菌重要增殖期。本論文結果顯示黃龍病菌的傳播以嫁接方式較蟲傳方式效率佳,嫁接感染者病菌增殖較快,因此防治黃龍病以建立健康種苗制度為首要。其次,在媒介昆蟲木蝨方面,應特別注意病株上寄生的若蟲,其為主要的帶菌毒蟲源,若能落實砍除病株並盡量降低木蝨族群數量,將可有效降低木蝨傳播效率,防止黃龍病的流行。zh_TW
dc.description.abstractCitrus huanglongbing (HLB), also called citrus greening, is a destructive disease of citrus, which has been found in Asia, African and America. The disease is caused by a phloem-limited bacterium, tentatively named Candidatus Liberibacter sp., which can not be cultured in vitro so far. The pathogen can be transmitted by psyllids and bud-wood grafting. In Taiwan, the pathogen was categorized into Candidadus Liberibacter asiaticus (Las) and its vector is the Asia citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae). Las inhabits its host plants with low concentration and uneven distribution, the detection of Las used to be not easy. The PCR-based assay was considered to be a more reliable and adoptable method for Las detection, but it can not be applied in quantitative monitoring of Las. This thesis was dedicated to apply the real-time PCR technique for the quantitative detection of Las. This newly devised method could be also used to monitor the multiplicative fluctuation of Las in the graft-inoculation and psyllid-transmission tests and to study the relationship between psyllids and Las. In the graft-inoculation tests, the result demonstrated that the multiplicative fluctuation of Las was different among four citrus hosts such as Ponkan mandarins (PM), Liu-Cheng sweet oranges (LC), Wentan pomeloes (WP) and Eureka lemons (EL). Based on the developed real-time PCR assays, Las could be detected in PM 3 weeks post-inoculation (wpi) whereas in LC 5 wpi. The multiplicative rate of Las was significantly increased in LC 8 wpi whereas in PM 12 wpi. However, the concentration of Las in PM was higher than that in LC 16 wpi. Both PM and LC started to show yellowing symptoms on leaves 4 months after graft-inoculation. Las could be detected in EL and WP 7~8 wpi, and their concentration of Las kept low level even 24 wpi. The quantitative difference was also showed in the detection of various citrus cultivars infected by Las with the real-time PCR assay, and the results indicated the comparative concentration was Mucot>PM>LC>Calamondin>WP. Las could be detected in both PM and LC 3 wpi in the psyllid-transmission tests, but the amount of Las did not significantly increase even 14 wpi. Obviously, the graft-inoculation had a better efficiency for replication of Las than the psyllid-transmission. In the acquisition tests, the data revealed that the extension of acquisition-access time did not elevate the Las-carrying percentages (keeping a range at 40~60%) for psyllid populations. The amounts of Las were approximately hundreds to thousands of copies in individual infected adult in this acquisition test, which were less than those collected from the field. This result hints that acquisition of Las is not easy for adult psyllids, and most adults with high concentration of Las should originate from Las-carrying nymphs. The nymph tests also showed that the quantity of Las was abundant after 4-instar, and adults carried more Las than nymphs, which suggests that the nymphal stages are importantly multiplicative periods for Las in psyllids. Our results demonstrated that the transmission efficiency of Las with graft-inoculation was better than that with psyllid-inoculation. Thus, establishment of Las-free nursery foundation should be considered to be the most important measure for the control of HLB. For avoidance of vector-transmission, elimination of diseased plants and decrease of psyllid vectors in the field should be seriously conducted to prevent the production of Las-carrying psyllids and retard the spreading of HLB.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:55:34Z (GMT). No. of bitstreams: 1
ntu-98-R96633010-1.pdf: 1302851 bytes, checksum: d615ce9be542bbd4b568b7c4ee78fe43 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要.............................................. I
英文摘要.............................................. II
目錄.................................................. IV
表目錄............................................... 1
圖目錄............................................... 2
壹、前言..................................... .........3
貳、前人研究.......................................... 5
一、柑橘黃龍病之發生與危害............................ 5
二、柑橘黃龍病菌之病菌系統與發病生態.................. 6
三、黃龍病菌偵測與診斷................................ 7
四、柑橘黃龍病之木蝨傳播特性與研究................... 8
五、柑橘黃龍病之防治方法............................. 9
六、即時定量聚合酶連鎖反應 (Real-time PCR)............ 10
叁、材料與方法........................................ 12
一、試驗植物之準備.................................... 12
二、試驗柑橘木蝨之準備................................ 12
三、柑橘黃龍病菌之菌種來源與保存...................... 12
四、柑橘黃龍病菌偵測方法.............................. 12
(一) 植物核酸萃取.................................... 12
(二) 木蝨核酸萃取..................................... 13
(三) 傳統PCR(conventional PCR)........................ 14
(四) 膠體電泳分析..................................... 14
(五) PCR產物選殖與定序................................ 15
(六) Real-time PCR................................... 16
(1)引子對(primer)與探針(probe)之設計.................. 16
(2)Real-time PCR反應條件.............................. 16
(3)絕對定量標準品與標準曲線(standard curve)之建立..... 17
五、柑橘木蝨之持續獲菌試驗............................ 17
六、柑橘黃龍病菌於不同柑橘寄主之嫁接試驗.............. 17
七、柑橘木蝨不同齡期與植物寄主之帶菌量定性定量檢測.... 18
八、柑橘木蝨於不同柑橘寄主之傳菌試驗.................. 18
肆、結果.............................................. 19
一、以TaqMan Primer/Probe法研發柑橘黃龍病菌之Real-time PCR定量偵測.............................................. 19
二、不同柑橘寄主之嫁接感染試驗與病菌追蹤.............. 19
三、以蟲傳方式對不同柑橘寄主之傳菌試驗................ 21
四、柑橘木蝨之獲菌試驗................................ 22
五、柑橘木蝨田間帶菌率與帶菌量檢測.................... 23
伍、討論.............................................. 24
陸、參考文獻.......................................... 30
柒、表................................................ 35
捌、圖................................................ 46
dc.language.isozh-TW
dc.title柑橘黃龍病菌在柑橘寄主與媒介木蝨體內的定性與定量偵測zh_TW
dc.titleQuantitative and Qualification Detection of Candidatus Liberibacter asiaticus in Citrus Hosts and the Asian Citrus Psyllid (Diaphorina citri Kuwayama)en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪士程,蕭旭峰,葉信宏
dc.subject.keyword柑橘黃龍病,柑橘木蝨,即時定量聚合&#37238,連鎖反應,zh_TW
dc.subject.keywordCitrus huanglongbing,citrus greening,HLB,Real-time PCR,Diaphorina citri,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2009-08-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
1.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved