Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44381
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任(Yuh-Renn Wu)
dc.contributor.authorCheng-Yu Changen
dc.contributor.author張成宇zh_TW
dc.date.accessioned2021-06-15T02:54:18Z-
dc.date.available2010-08-12
dc.date.copyright2009-08-12
dc.date.issued2009
dc.date.submitted2009-08-03
dc.identifier.citation[1] E. F. Schubert, Light-Emitting-Diodes. Cambridge, 2007.
[2] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures. Cambridge, 2007.
[3] Y. R. Wu, C. Chiu, C. Y. Chang, P. Yu, and H.-C. Kuo, “Size-Dependent Strain Relaxation and Optical Characteristics of In-GaN/GaN Nanorod LEDs,” IEEE Journal of Selected Topics in Quantum Electronics, p. accept and In Press for Jul /Aug issue,2009.
[4] C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN : Mg structure,” Applied Physics Letters, vol. 88, no. 8, p. 083121, 2006.
[5] C. C. Yang, C. F. Lin, C. M. Lin, C. C. Chang, K. T. Chen, J. F. Chien, and C. Y. Chang, “Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous ptype GaN:Mg surfaces,” Applied Physics Letters, vol. 93, no. 20, p. 203103, 2008.
[6] A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck,
“Strain-induced polarization in wurtzite III-nitride semipolar layers,” Journal of Applied Physics, vol. 100, no. 2, p. 023522, Jul. 2006.
[7] T. Mattila and A. Zunger, “Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys,” Journal of Applied Physics, vol. 85, no. 1, pp. 160–167, 1999.
[8] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann,
M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini,
V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” Journal of Physics-Condensed Matter, vol. 14, no. 13, pp. 3399–3434,PII S0953–8984(02)29 173–0, 2002.
[9] H.-W. Yang, “Numerical Analysis of Optoelectronic Properties of InGaN/GaN Multiple Quantum Well,” Master’s thesis, National Taiwan University, 2008.
[10] S. Figge, T. Bottcher, J. Dennemarck, R. Kroger, T. Paskova, B. Monemar, and D. Hommel, “Optoelectronic devices on bulk GaN,” Journal of Crystal Growth, vol. 281, no. 1, pp. 101–106, 2005.
[11] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada,
and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-
Structure Light-Emitting-Diodes,” Japanese Journal of Applied Physics Part 2-Letters, vol. 34, no. 10B, pp. L1332–L1335, 1995.
[12] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Mukai, “Ultra-high efficiency white light emitting diodes,”Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 45, no. 37-41, pp. L1084–L1086, 2006.
[13] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Applied Physics Letters, vol. 94, no. 6, p. 063505, 2009.
[14] M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectronics Reliability, vol. 47, no. 9-11, pp. 1625–1629, 2007.
[15] H. Sato, A. Tyagi, H. Zhong, N. Fellows, R. B. Chung, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High power and high efficiency green light emitting diode on freestanding semipolar (11‾22) bulk GaN substrate,” Physica Status Solidi-Rapid Research Letters, vol. 1, no. 4, pp. 162–164, 2007.
[16] I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 36, no. 9A, pp. 5393–5408, 1997.
[17] S. Terao, M. Iwaya, R. Nakamura, S. Kamiyama, H. Amano,
and I. Akasaki, “Fracture of AlxGa1−xN/GaN heterostructure -
Compositional and impurity dependence,” Japanese Journal of
Applied Physics Part 2-Letters, vol. 40, no. 3A, pp. L195–L197, 2001.
[18] S. Nakamura and T. Mukai, “High-Quality InGaN Films Grown On GaN Films,” Japanese Journal of Applied Physics Part 2-Letters, vol. 31, no. 10B, pp. L1457–L1459, 1992.
[19] J. Hader, J. V. Moloney, and S. W. Koch, Nitride Semiconductor Devices Principle and Simulation, J. Piprek, Ed. Wiley-VCH, 2007.
[20] A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, “Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaNInGaN superlattices,” Journal of Applied Physics, vol. 81, p. 6332, 1997.
[21] A. F.Wright, “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN,” Journal of Applied Physics, vol. 82, p. 2833, 1997.
[22] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,”Nature, vol. 406, no. 6798, pp. 865–868, 2000.
[23] Y. R. Wu, M. Singh, and J. Singh, “Gate leakage suppression and contact engineering in nitride heterostructures,”Journal of Applied Physics, vol. 94, no. 9, pp. 5826–5831, 2003.
[24] Y. R. Wu, Y. Y. Lin, H. H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,” Journal of Applied Physics, vol. 105, no. 1, p. 013117, 2009.
[25] P. C. Yu, C. H. Chiu, Y. R.Wu, H. H. Yen, J. R. Chen, C. C. Kao, H. W. Yang, H. C. Kuo, T. C. Lu, W. Y. Yeh, and S. C. Wang,“Strain relaxation induced microphotoluminescence characteristics of a single InGaN-based nanopillar fabricated by focused ion beam milling,” Applied Physics Letters, vol. 93, no. 8, p. 081110, 2008.
[26] Y.-R. Wu, P. Yu, C. H. Chiu, C.-Y. Chang, and H. C. Kuo, “Analysis of strain relaxation and emission spectrum of a free-standing GaN-based nanopillar,” I. T. Ferguson, T. Taguchi, I. E. Ashdown, and S.-J. Park, Eds., vol. 7058, no. 1. SPIE, 2008, p. 70580G. [Online]. Available: http://link.aip.org/link/?PSI/7058/70580G/1
[27] I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogencontaining semiconductors,” Journal of Applied Physics, vol. 94, p. 3675, 2003.
[28] M. D. McCluskey, C. G. Van de Walle, C. P. Master, L. T. Romano, and N. M. Johnson, “Large band gap bowing of InxGa1-xN alloys,”Applied Physics Letters, vol. 72, no. 21, pp. 2725–2726, 1998.
[29] J. Singh, Physics of Semiconductors and Their Heterostructures. McGraw-Hill, Inc., 1993.
[30] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. Cambridge, 2006.
[31] W. Q. Han and A. Zettl, “Pyrolysis approach to the synthesis of gallium nitride nanorods,” Applied Physics Letters, vol. 80, no. 2, pp. 303–305, 2002.
[32] K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. Den-Baars, J. S. Speck, C. Weisbuch, and E. L. Hu, Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Applied Physics Letters, vol. 93, no. 10, p. 103502, 2008.
[33] H. Matsubara, S. Yoshimoto, H. Saito, J. L. Yue, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blueviolet wavelengths,” Science, vol. 319, no. 5862, pp. 445–447, 2008.
[34] T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography,”Applied Physics Letters, vol. 91, p. 171114, 2007.
[35] C. H. Chiu, M. H. Lo, C. F. Lai, T. C. Lu, H. W. Huang, Y. A. Chang, T. H. Hsueh, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and Y. K. Kuo, “Optical properties of In0.3Ga0.7N/GaN green emission nanorods fabricated by plasma etching,” Nanotechnology, vol. 18, no. 33, p. 335706, 2007.
[36] Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino, “Origin of high oscillator strength in greenemitting InGaN/GaN nanocolumns,” Applied Physics Letters, vol. 89, no. 16, p. 163124, 2006.
[37] K. Kim, J. Choi, T. S. Bae, M. Jung, and D. H. Woo, “Enhanced light extraction from nanoporous surfaces of InGaN/GaNBased light emitting diodes,” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 6682–6684, 2007.
[38] Y. D. Wang, K. Y. Zang, and S. J. Chua, Nonlithographic
nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures,” Journal of Applied Physics, vol. 100, no. 5, p. 054306, 2006.
[39] C. B. Soh, S. Y. Chow, L. Y. Tan, H. Hartono, W. Liu, and S. J. Chua, “Enhanced luminescence efficiency due to carrier localization in InGaN/GaN heterostructures grown on nanoporous GaN templates,” Applied Physics Letters, vol. 93, no. 17, p. 173107, 2008.
[40] K. Y. Zang, S. J. Chua, J. H. Teng, N. S. S. Ang, A. M. Yong, and S. Y. Chow, “Nanoepitaxy to improve the efficiency of InGaN light-emitting diodes,” Applied Physics Letters, vol. 92, no. 24, p. 243126, 2008.
[41] L. H. Peng, C. M. Lai, C. W. Shih, C. C. Chuo, and J. I. Chyi,“Boundary effects on the optical properties of InGaN multiple quantum wells,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, no. 3, pp. 708–715, May 2003.
[42] G. Koley and M. G. Spencer, “Surface potential measurements on GaN and AlGaN/GaN heterostructures by scanning Kelvin probe microscopy,” Journal of Applied Physics, vol. 90, no. 1, pp. 337–344, 2001.
[43] D. J. Kim, Y. T. Moon, K. M. Song, and S. J. Park, “Effect of barrier thickness on the interface and optical properties of InGaN/GaN multiple quantum wells,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 40, no. 5A, pp. 3085–3088, 2001.
[44] D. I. Florescu, J. C. Ramer, D. S. Lee, and E. A. Armour, “InGaN/GaN single-quantum-well light-emitting diodes optical output efficiency dependence on the properties of the barrier layer separating the active and p-layer regions,” Applied Physics Letters, vol. 84, no. 25, pp. 5252–5254, 2004.
[45] B. Jogai, “Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors,”Journal of Applied Physics, vol. 93, no. 3, pp. 1631–1635, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44381-
dc.description.abstract在奈米製程技術的進步發展下,有許多新奇的發光二極體結構被提出並表現出較好的元件特性,例如:奈米柱、奈米桿以及光子晶體元件等等。為了分析這些特殊的結構,我們利用了原子價力場模型與一致性的帕松、飄移擴散以及薛丁格方程式去設計、分析不同奈米結構下的氮化銦鎵/氮化鎵量子井發光二極體。首先,我們計算並描述了光譜能量藍移與應力釋放在不同尺寸的多重量子井奈米柱下的關係。並且,我們也研究了不同深度的蝕刻奈米洞陣列之氮化銦鎵/氮化鎵量子井發光二極體,而當奈米洞相當接近或穿透過量子井區域的時候,應力釋放效應與表面狀態效應對元件發光性質的影響被我們所分析。我們相信應力的釋放與奈米結構維度的尺寸將主要的影響其發光二極體的發光頻譜。在本篇論文中,我們將非常詳細地討論這些訊息。而應力鬆弛、壓電效應、表面狀態效應以及非輻射性複合機制等等在發光二極體中的作用都將被本篇論文所包含。我們的結果對於分析這類發光二極體之奈米結構的元件性質而言,可以提供許多有用的資訊。zh_TW
dc.description.abstractIn the advance of nano technologies, many novel LED structures such as nanocolumn, nanorod, and photonic devices have been proposed to show better device performance. In order to analyze these structures, we have applied the valence force field model and self-consistent Poisson, drift-diffusion, and Schrodinger to analyze the InGaN/GaN quantum well LEDs with different nano structures. We first describe the correlation between the energy blue shifts and the strain relaxation of multiple quantum wells embedded in nanorods with different averaged sizes. We also studied the emission properties of InGaN/GaN quantum well light emitting diodes when the etching depths of nanohole arrays are close to or penetrate the quantum well structures. The effects of strain relaxation and surface states are analyzed, which could possibly influence the diode emission properties. Our results suggest that the effects of strain relaxation and sizes of nano structure dimensions strongly influence the emission properties of the nanorod LEDs. In this thesis, we will discuss these information in great detail. The roles of strain relaxation, piezoelectric effect, surface states, and non-radiative recombination mechanism will all be included in this thesis. Our calculation results can provide useful information in analyzing emission properties of these imilar nano structure LEDs.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:54:18Z (GMT). No. of bitstreams: 1
ntu-98-R96941079-1.pdf: 4145361 bytes, checksum: 7e161a9cb0e65b87845b67792c7e1bac (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審查表. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 III-V Nitride Compound Semiconductors . . . . . . . . 1
1.3 Quantum Confined Effect . . . . . . . . . . . . . . . . 4
1.4 Characteristics of the InGaN/GaN QuantumWell Structures
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.1 Defect Density and High P-type Doping in In-
GaN and GaN Materials . . . . . . . . . . . . . 7
1.4.2 Spontaneous Polarization and Strain-induced Piezoelectric
Polarization Effects . . . . . . . . . . . 9
1.4.3 Quantum Confined-Stark Effect . . . . . . . . . 14
1.4.4 Spontaneous Emission . . . . . . . . . . . . . . 16
1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Electrical Properties of InGaN/GaN LEDs . . . . . . . 19
2.1.1 Valence Force Field (VFF) Model . . . . . . . . 19
2.1.2 The Total Polarization Charge Model . . . . . . 21
2.1.3 Self-Consistent Model . . . . . . . . . . . . . . 23
2.1.4 Fermi Distribution . . . . . . . . . . . . . . . . 29
2.2 Optical Properties of InGaN/GaN LEDs . . . . . . . . 32
2.2.1 Carrier Recombination Theory . . . . . . . . . . 32
2.2.2 Formula of Spontaneous Emission Rate . . . . . 37
3 Size Dependence of Strain Relaxation and Optical Properties
from InGaN/GaN Nanorod LEDs . . . . . . . . . . . . . . . 39
3.1 The Device Structures . . . . . . . . . . . . . . . . . . 41
3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 56
4 Etching Depth Dependence of Emission Properties from Nanohole
Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1 The Device Structures . . . . . . . . . . . . . . . . . . 60
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 71
5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 73
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
dc.language.isoen
dc.subject發光二極體zh_TW
dc.subject氮化銦鎵zh_TW
dc.subject氮化鎵zh_TW
dc.subject量子井zh_TW
dc.subject帕松方程zh_TW
dc.subject薛丁格方程zh_TW
dc.subject自發發光zh_TW
dc.subject奈米洞陣列zh_TW
dc.subject奈米柱zh_TW
dc.subject應力釋放zh_TW
dc.subject表面狀態zh_TW
dc.subjectnanohole arraysen
dc.subjectSchrodinger equationen
dc.subjectnanoroden
dc.subjectLEDen
dc.subjectsurface stateen
dc.subjectstrain relaxationen
dc.subjectGaNen
dc.subjectInGaNen
dc.subjectquantum wellen
dc.subjectPoisson equationen
dc.subjectspontaneous emissionen
dc.title具奈米結構之氮化銦鎵/氮化鎵發光二極體的光電特性之研究zh_TW
dc.titleStudy of Optoelectronic Properties of Nano Structure InGaN/GaN Light Emitting Diodesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋,余沛慈,李允立
dc.subject.keyword氮化銦鎵,氮化鎵,量子井,帕松方程,薛丁格方程,自發發光,奈米洞陣列,奈米柱,應力釋放,表面狀態,發光二極體,zh_TW
dc.subject.keywordInGaN,GaN,quantum well,Poisson equation,spontaneous emission,Schrodinger equation,nanohole arrays,nanorod,strain relaxation,surface state,LED,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2009-08-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved