請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44365
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李佳音(Chia–Yin Lee) | |
dc.contributor.author | Chin–Nung Chen | en |
dc.contributor.author | 陳清農 | zh_TW |
dc.date.accessioned | 2021-06-15T02:53:24Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2009-08-20 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-04 | |
dc.identifier.citation | Abagyan RA, Batalov S: Do aligned sequences share the same fold? J Mol Biol 1997, 273:355-368.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402. Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M: gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 2001, 67:575-585. Atkinson S, Throup JP, Stewart GS, Williams P: A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 1999, 33:1267-1277. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, Albright LM, Coen DM, Varki A: Immunoblotting and Immunodetection. In Current protocols in molecular biology: John Wiley $ Sons, Inc.; 1993:10.8.1-10.8.17. Baldwin MA: Mass spectrometers for the analysis of biomolecules. Methods Enzymol 2005, 402:3-48. Bessler C, Schmitt J, Maurer KH, Schmid RD: Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity. Protein Sci 2003, 12:2141-2149. Bjelic S, Aqvist J: Computational prediction of structure, substrate binding mode, mechanism, and rate for a malaria protease with a novel type of active site. Biochemistry 2004, 43:14521-14528. Blosser RS, Gray KM: Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers. J Microbiol Methods 2000, 40:47-55. Boanca G, Sand A, Okada T, Suzuki H, Kumagai H, Fukuyama K, Barycki JJ: Autoprocessing of Helicobacter pylori gamma-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad. J Biol Chem 2007, 282:534-541. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254. Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR, Murzin AG: A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 1995, 378:416-419. Broetto L, Cecagno R, Sant'Anna F, Weber S, Schrank I: Stable transformation of Chromobacterium violaceum with a broad-host-range plasmid. Appl Microbiol Biotechnol 2006, 71:450-454. Camara M, Williams P, Hardman A: Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis 2002, 2:667-676. Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D: The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl Environ Microbiol 2003, 69:4989-4993. Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D: The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl Environ Microbiol 2003, 69:4989-4993. Charlton TS, de NR, Netting A, Kumar N, Hentzer M, Givskov M, Kjelleberg S: A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2000, 2:530-541. Chen CN, Chen CJ, Liao CT, Lee CY: A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity. BMC Microbiol 2009, 9:89. Chen CC, Hwang JK, Yang JM: (PS)2: protein structure prediction server. Nucleic Acids Res 2006, 34:W152-W157. Chen R, Li L, Weng Z: ZDOCK: an initial-stage protein-docking algorithm. Proteins 2003, 52:80-87. Chernin LS, Winson MK, Thompson JM, Haran S, Bycroft BW, Chet I, Williams P, Stewart GSAB: Chitinolytic activity in Chromobacterium violaceum: Substrate analysis and regulation by quorum sensing. J Bacteriol 1998, 180:4435-4441. Chilov GG, Sidorova AV, Svedas VK: Quantum chemical studies of the catalytic mechanism of N-terminal nucleophile hydrolase. Biochemistry (Mosc ) 2007, 72:495-500. Chowdhary PK, Keshavan N, Nguyen HQ, Peterson JA, Gonzalez JE, Haines DC: Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry 2007, 46:14429-14437. Chung CT, Niemela SL, Miller RH: One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. PNAS USA 1989, 86:2172-2175. Clough SJ, Lee KE, Schell MA, Denny TP: A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester. J Bacteriol 1997, 179:3639-3648. Cserzo M, Eisenhaber F, Eisenhaber B, Simon I: TM or not TM: transmembrane protein prediction with low false positive rate using DAS-TMfilter. Bioinformatics 2004, 20:136-137. Daugherty PS, Chen G, Iverson BL, Georgiou G: Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies. PNAS USA 2000, 97:2029-2034. Daumy GO, Danley D, McColl AS: Role of protein subunits in Proteus rettgeri penicillin G acylase. J Bacteriol 1985, 163:1279-1281. de Kievit TR, Iglewski BH: Bacterial quorum sensing in pathogenic relationships. Infect Immun 2000, 68:4839-4849. de Lorenzo, V, Herrero M, Jakubzik U, Timmis KN: Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 1990, 172:6568-6572. de Santis L, Carloni P: Serine proteases: an ab initio molecular dynamics study. Proteins 1999, 37:611-618. Diaz Perez JA, Garcia J, Rodriguez Villamizar LA: Sepsis by Chromobacterium violaceum: first case report from Colombia. Braz J Infect Dis 2007, 11:441-442. Dong YH, Xu JL, Li XZ, Zhang LH: AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. PNAS USA 2000, 97:3526-3531. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH: Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 2001, 411:813-817. Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH: Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 2002, 68:1754-1759. Dong YH, Zhang LH: Quorum sensing and quorum-quenching enzymes. J Microbiol 2005, 43:101-109. Dong YH, Wang LY, Zhang LH: Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond B Biol Sci 2007, 362:1201-1211. Dromigny JA, Fall AL, Diouf S, Perrier-Gros-Claude JD: Chromobacterium violaceum: a case of diarrhea in Senegal. Pediatr Infect Dis J 2002, 21:573-574. Drummond DA, Iverson BL, Georgiou G, Arnold FH: Why high-error-rate random mutagenesis libraries are enriched in functional and improved proteins. J Mol Biol 2005, 350:806-816. Duggleby HJ, Tolley SP, Hill CP, Dodson EJ, Dodson G, Moody PC: Penicillin acylase has a single-amino-acid catalytic centre. Nature 1995, 373:264-268. Duran N, Menck CF: Chromobacterium violaceum: a review of pharmacological and industiral perspectives. Crit Rev Microbiol 2001, 27:201-222. Emanuelsson O, Brunak S, von HG, Nielsen H: Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2007, 2:953-971. Fernandez-de-Cossio J, Gonzalez LJ, Satomi Y, Betancourt L, Ramos Y, Huerta V, Amaro A, Besada V, Padron G, Minamino N, Takao T: Isotopica: a tool for the calculation and viewing of complex isotopic envelopes. Nucleic Acids Res 2004, 32:W674-W678. Ferre F, Clote P: DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 2005, 33:W230-W232. Finch RG, Pritchard DI, Bycroft BW, Williams P, Stewart GS: Quorum sensing: a novel target for anti-infective therapy. J Antimicrob Chemother 1998, 42:569-571. Flavier AB, Ganova-Raeva LM, Schell MA, Denny TP: Hierarchical autoinduction in Ralstonia solanacearum: control of acyl- homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester. J Bacteriol 1997a, 179:7089-7097. Flavier AB, Clough SJ, Schell MA, Denny TP: Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 1997b, 26:251-259. Fritz-Wolf K, Koller KP, Lange G, Liesum A, Sauber K, Schreuder H, Aretz W, Kabsch W: Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C. Protein Sci 2002, 11:92-103. Gouet P, Courcelle E, Stuart DI, Metoz F: ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 1999, 15:305-308. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18:2714-2723. Hakansson K, Wang AH, Miller CG: The structure of aspartyl dipeptidase reveals a unique fold with a Ser-His-Glu catalytic triad. PNAS USA 2000, 97:14097-14102. Harrison RG: Expression of soluble heterologous proteins via fusion with NusA protein. inNovations 2000, 11:4-7. Hayward AC: Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 1991, 29:65-87. Hentzer M, Givskov M: Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 2003, 112:1300-1307. Hewitt L, Kasche V, Lummer K, Lewis RJ, Murshudov GN, Verma CS, Dodson GG, Wilson KS: Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active-site cleft. J Mol Biol 2000, 302:887-898. Hoang TT, Schweizer HP: Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 1999, 181:5489-5497. Horng YT, Deng SC, Daykin M, Soo PC, Wei JR, Luh KT, Ho SW, Swift S, Lai HC, Williams P: The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol Microbiol 2002, 45:1655-1671. Huang JJ, Han JI, Zhang LH, Leadbetter JR: Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2003, 69:5941-5949. Huang JJ, Petersen A, Whiteley M, Leadbetter JR: Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2006, 72:1190-1197. Hussain MBBM, Zhang HB, Xu JL, Liu Q, Jiang Z, Zhang LH: The acyl-homoserine lactone-type quorum-sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae. J Bacteriol 2008, 190:1045-1053. Inokoshi J, Takeshima H, Ikeda H, Omura S: Cloning and sequencing of the aculeacin A acylase-encoding gene from Actinoplanes Utahensis and expression in Streptomyces Lividans. Gene 1992, 119:29-35. Iwata K, Yamamoto Y, Yamaguchi H, Hiratani T: In vitro studies of aculeacin A, a new antifungal antibiotic. J Antibiot (Tokyo) 1982, 35:203-209. Jiang S, Li C, Zhang W, Cai Y, Yang Y, Yang S, Jiang W: Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli. Biochem J 2007, 402:429-437. Juhas M, Eberl L, Tummler B: Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 2005, 7:459-471. Kim JK, Yang IS, Rhee S, Dauter Z, Lee YS, Park SS, Kim KH: Crystal structures of glutaryl 7-aminocephalosporanic acid acylase: insight into autoproteolytic activation. Biochemistry 2003, 42:4084-4093. Kim JK, Yang IS, Shin HJ, Cho KJ, Ryu EK, Kim SH, Park SS, Kim KH: Insight into autoproteolytic activation from the structure of cephalosporin acylase: a protein with two proteolytic chemistries. PNAS USA 2006, 103:1732-1737. Kim MH, Choi WC, Kang HO, Lee JS, Kang BS, Kim KJ, Derewenda ZS, Oh TK, Lee CH, Lee JK: The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proc Natl Acad Sci U S A 2005, 102:17606-17611. Kim S, Kim Y: Active Site Residues of Cephalosporin Acylase Are Critical Not Only for Enzymatic Catalysis but Also for Post-translational Modification. J Biol Chem 2001, 276:48376-48381. Kim Y, Yoon K, Khang Y, Turley S, Hol WG: The 2.0 A crystal structure of cephalosporin acylase. Structure 2000, 8:1059-1068. Kim Y, Hol WG: Structure of cephalosporin acylase in complex with glutaryl-7-aminocephalosporanic acid and glutarate: insight into the basis of its substrate specificity. Chem Biol 2001, 8:1253-1264. Kim Y, Kim S, Earnest TN, Hol WGJ: Precursor structure of cephalosporin acylase - Insights into autoproteolytic activation in a new N-terminal hydrolase family. J Biol Chem 2002, 277:2823-2829. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM: Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166:175-176. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM: Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166:175-176. Krogh A, Larsson B, von HG, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305:567-580. Laskowski R.A., MacArthur M.W., Moss D., Thornton J.M.: PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 1993, 26:283-291. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A: A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 1996, 21:1137-1146. Leadbetter JR, Greenberg EP: Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 2000, 182:6921-6926. Lee C, Yamakawa T, Kodama T: Rapid growth of a thermotolerant yeast on palm oil. World J Microbiol Biotechnol 1993, 9:187-190. Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK: Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 2002, 68:3919-3924. Lee SK, Keasling JD: Effect of glucose or glycerol as the sole carbon source on gene expression from the Salmonella prpBCDE promoter in Escherichia coli. Biotechnol Prog 2006, 22:1547-1551. Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK: Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 2002, 68:3919-3924. Levefelt C, Lundh D: A fold-recognition approach to loop modeling. J Mol Model 2006, 12:125-139. Li S, Smith JL, Zalkin H: Mutational analysis of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing. J Bacteriol 1999, 181:1403-1408. Liao CT, Lee CY: The expressing and characterization of N-acylhomoserine lactone acylase of Ralstonia solanacearum GMI1000. Master thesis. Graduate Institute of Agriculture Chemistry, National Taiwan University; 2007. Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH: Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 2003, 47:849-860. Liu X, Lin J, Zhang Z, Bian J, Zhao Q, Liu Y, Lin J, Yan W: Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04 . J Microbiol Biotechnol 2007, 17:162-167. Llamas I, Keshavan N, Gonzalez JE: Use of Sinorhizobium meliloti as an Indicator for Specific Detection of Long-Chain N-Acyl Homoserine Lactones. Appl Environ Microbiol 2004, 70:3715-3723. Loo JA, Udseth HR, Smith RD: Peptide and protein analysis by electrospray ionization-mass spectrometry and capillary electrophoresis-mass spectrometry. Anal Biochem 1989, 179:404-412. Manefield M, Welch M, Givskov M, Salmond GP, Kjelleberg S: Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol Lett 2001, 205:131-138. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A: Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 2000, 29:291-325. Mart´ýnez–Mart´ýnez I, Navarro-Fernandez J, Garcia-Carmona F, Sanchez-Ferrer A: Implication of a mutation in the flavin binding site on the specific activity and substrate specificity of glycine oxidase from Bacillus subtilis produced by directed evolution. J Biotechnol 2008, 133:1-8. Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S, Jurgens K: Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 2004, 70:1593-1599. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P: Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology-UK 1997, 143:3703-3711. McDonough MA, Klei HE, Kelly JA: Crystal structure of penicillin G acylase from the Bro1 mutant strain of Providencia rettgeri. Protein Sci 1999, 8:1971-1981. Mole BM, Baltrus DA, Dangl JL, Grant SR: Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol 2007, 15:363-371. Montes T, Grazu V, Lopez-Gallego F, Hermoso JA, Garcia JL, Manso I, Galan B, Gonzalez R, Fernandez-Lafuente R, Guisan JM: Genetic modification of the penicillin G acylase surface to improve its reversible immobilization on ionic exchangers. Appl Environ Microbiol 2007, 73:312-319. Nelson DL, Cox MM: Amino acids, peptides, and proteins. In Lehninger principles of biochemistry. Third edition: Worth; 2000:115-158. Novo C, Farnaud S, Tata R, Clemente A, Brown PR: Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity. Biochem J 2002, 365:731-738. Novy R, Drott D, Yaeger K, Mierendorf R: Overcoming the codon bias of E. coli for enhanced protein expression. inNovations 2001a, 12:1-3. Novy R., Morris B: Use of glucose to control basal expression in the pET System. inNovations 2001b, 13:8-10. Oinonen C, Rouvinen J: Structural comparison of Ntn-hydrolases. Protein Sci 2000, 9:2329-2337. Otten LG, Sio CF, Vrielink J, Cool RH, Quax WJ: Altering the substrate specificity of cephalosporin acylase by directed evolution of the Beta -subunit. J Biol Chem 2002, 277:42121-42127. Otten LG, Sio CF, van der Sloot AM, Cool RH, Quax WJ: Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase. Chembiochem 2004, 5:820-825. Pan SH, Malcolm BA: Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). Biotechniques 2000, 29:1234-1238. Park SW, Choi SY, Chung KH, Hong SI, Kim SW: Characteristics of GL-7-ACA acylase immobilized on silica gel through silanization. Biochemical Engineering Journal 2002, 11:87-93. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY, Lee JK: AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 2003, 149:1541-1550. Park SY, Kang HO, Jang HS, Lee JK, Koo BT, Yum DY: Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 2005, 71:2632-2641. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP: Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. PNAS 1994, 91:197-201. Pearson JP, Van DC, Iglewski BH: Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 1999, 181:1203-1210. Pemberton JM, Vincent KM, Penfold RJ: Cloning and heterologous expression of the violacein biosynthesis gene cluster from Chromobacterium violaceum. Curr Microbiol 1991, 22:355-358. Pollegioni L, Lorenzi S, Rosini E, Marcone GL, Molla G, Verga R, Cabri W, Pilone MS: Evolution of an acylase active on cephalosporin C. Protein Sci 2005, 14:3064-3076. Rasmussen TB, Givskov M: Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 2006, 296:149-161. Reimmann C, Ginet N, Michel L, Keel C, Michaux P, Krishnapillai V, Zala M, Heurlier K, Triandafillu K, Harms H, Defago G, Haas D: Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 2002, 148:923-932. Robert H.: The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. PNAS USA 2003, 100:11660-11665. Roche DM, Byers JT, Smith DS, Glansdorp FG, Spring DR, Welch M: Communications blackout? Do N-acylhomoserine-lactone-degrading enzymes have any role in quorum sensing? Microbiology 2004, 150:2023-2028. Romero M, Diggle SP, Heeb S, Camara M, Otero A: Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 2008, 280:73-80. Sacchi S, Rosini E, Molla G, Pilone MS, Pollegioni L: Modulating D-amino acid oxidase substrate specificity: production of an enzyme for analytical determination of all D-amino acids by directed evolution. Protein Eng Des Sel 2004, 17:517-525. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Ariat M, Billault A, Brottier P, Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Thebault P, Whalen M, Wincker P, Levy M, Weissenbach J, Boucher CA: Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 2002, 415:497-502. Sambrook J, Russell DW: Molecular cloning. Third edition: Cold Spring Harbor Laboratory Press; 2001. Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF: Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 2001, 29:2994-3005. Schultheiss D, Schüler D: Development of a genetic system for Magnetospirillum gryphiswaldense. Arch Microbiol 2003, 179:89-94. Seo YS, Yoo A, Jung J, Sung SK, Yang DR, Kim WT, Lee W: The active site and substrate-binding mode of 1-aminocyclopropane-1-carboxylate oxidase determined by site-directed mutagenesis and comparative modelling studies. Biochem J 2004, 380:339-346. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Jr., Rinehart KL, Farrand SK: Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. PNAS USA 1997, 94:6036-6041. Shepherd RW, Lindow SE: Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol 2009, 75:45-53. Sheu DS, Wang YT, Lee CY: Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 2000, 146:2019-2025. Sheu DS, Lee CY: Altering the substrate specificity of polyhydroxyalkanoate synthase 1 derived from Pseudomonas putida GPo1 by localized semirandom mutagenesis. J Bacteriol 2004, 186:4177-4184. Shi C, Lu X, Ma C, Ma Y, Fu X, Yu W: Enhancing the thermostability of a novel beta-agarase AgaB through directed evolution. Appl Biochem Biotechnol 2008, 151:51-59. Shih YP, Kung WM, Chen JC, Yeh CH, Wang AH, Wang TF: High-throughput screening of soluble recombinant proteins. Protein Sci 2002, 11: 1714-1719. Shinohara M, Nakajima N, Uehara Y: Purification and characterization of a novel esterase (beta-hydroxypalmitate methyl ester hydrolase) and prevention of the expression of virulence by Ralstonia solanacearum. J Appl Microbiol 2007, 103:152-162. Simon R, Priefer U, Puler A: A broad host range mobilization system for in vivo genetic engineering: transponson mutagenesis in Gram-negative bacteria. Biotechnol 1983, 1:784-791. Sio C.F., Otten L.G., Cool R.H., Diggle S.P., Braun P.G., Bos R., Daykin M., Camara M., Williams P., W.J.Quax: Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 2006, 74:1673-1682. Sio CF, Riemens AM, van der Laan JM, Verhaert RM, Quax WJ: Directed evolution of a glutaryl acylase into an adipyl acylase. Eur J Biochem 2002, 269:4495-4504. Sio CF, Otten LG, Cool RH, Quax WJ: Analysis of a substrate specificity switch residue of cephalosporin acylase. Biochem Biophys Res Commun 2003, 312:755-760. Strupat K: Molecular weight determination of peptides and proteins by ESI and MALDI. Methods Enzymol 2005, 405:1-36. Sugamata Y, Shiba T: Improved secretory production of recombinant proteins by random mutagenesis of hlyB, an alpha-hemolysin transporter from Escherichia coli. Appl Environ Microbiol 2005, 71:656-662. Sumathi K, Ananthalakshmi P, Roshan MNAM, Sekar K: 3dSS: 3D structural superposition. Nucleic Acids Res 2006, 34:W128-W132. Suresh CG, Pundle AV, Sivaraman H, Rao KN, Brannigan JA, McVey CE, Verma CS, Dauter Z, Dodson EJ, Dodson GG: Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members. Nat Struct Biol 1999, 6:414-416. Swift S, Downie JA, Whitehead NA, Barnard AM, Salmond GP, Williams P: Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 2001, 45:199-270. Takeshima H, Inokoshi J, Takada Y, Tanaka H, Omura S: A deacylation enzyme for aculeacin A, a neutral lipopeptide antibiotic, from Actinoplanes Utahensis: purification and characterization. J Biochem 1989, 105:606-610. Ulrich RL: Quorum quenching: enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl Environ Microbiol 2004, 70:6173-6180. Uroz S, Chhabra SR, Camara M, Williams P, Oger P, Dessaux Y: N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 2005, 151:3313-3322. von Bodman SB, Ball JK, Faini MA, Herrera CM, Minogue TD, Urbanowski ML, Stevens AM: The quorum sensing negative regulators EsaR and ExpREcc, homologues within the LuxR family, retain the ability to function as activators of transcription. J Bacteriol 2003, 185:7001-7007. von HG: Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 1992, 225:487-494. Wang NC, Lee CY: Molecular cloning of the aspartate 4-decarboxylase gene from Pseudomonas sp. ATCC 19121 and characterization of the bifunctional recombinant enzyme. Appl Microbiol Biotechnol 2006, 73:339-348. Wang NC, Ko TP, Lee CY: Inactive S298R disassembles the dodecameric L-aspartate 4-decarboxylase into dimers. Biochem Biophys Res Commun 2008, 374:134-137. Wei CL, Yang YB, Deng CH, Liu WC, Hsu JS, Lin YC, Liaw SH, Tsai YC: Directed evolution of Streptomyces clavuligerus deacetoxycephalosporin C synthase for enhancement of penicillin G expansion. Appl Environ Microbiol 2005, 71:8873-8880. Welch M, Todd DE, Whitehead NA, McGowan SJ, Bycroft BW, Salmond GP: N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J 2000, 19:631-641. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP: Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 2001, 25:365-404. Whitmore L, Wallace BA: DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 2004, 32:W668-W673. Whitmore L, Wallace BA: Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 2008, 89:392-400. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF: Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 1999, 112:531-552. Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GS: Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 1998, 163:185-192. Winzer K, Williams P: Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol 2001, 291:131-143. Winzer K, Hardie KR, Williams P: Bacterial cell-to-cell communication: sorry, can't talk now - gone to lunch! Curr Opin Microbiol 2002, 5:216-222. Wu H, Song Z, Hentzer M, Andersen JB, Heydorn A, Mathee K, Moser C, Eberl L, Molin S, Hoiby N, Givskov M: Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa. Microbiology 2000, 146:2481-2493. Wu QY, Li F, Zhu WJ, Wang XY: Cloning, expression, purification, and characterization of arginine kinase from Locusta migratoria manilensis. Comp Biochem Physiol B Biochem Mol Biol 2007, 148:355-362. Xavier KB, Bassler BL: LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 2003, 6:191-197. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Camara M, Smith H, Williams P: N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 2002, 70:5635-5646. Yun C, Matsuda H, Kawamukai M: Directed evolution to enhance secretion efficiency and thermostability of chitosanase from Mitsuaria chitosanitabida 3001. Biosci Biotechnol Biochem 2006, 70:559-563. Yun H, Hwang BY, Lee JH, Kim BG: Use of enrichment culture for directed evolution of the Vibrio fluvialis JS17 omega-transaminase, which is resistant to product inhibition by aliphatic ketones. Appl Environ Microbiol 2005, 71:4220-4224. Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. J Comput Biol 2000, 7:203-214. Zhang D, Koreishi M, Imanaka H, Imamura K, Nakanishi K: Cloning and characterization of penicillin V acylase from Streptomyces mobaraensis. J Biotechnol 2007, 128:788-800. Zhang HB, Wang LH, Zhang LH: Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. PNAS USA 2002, 99:4638-4643. Zhang LH: Quorum quenching and proactive host defense. Trends Plant Sci 2003, 8:238-244. Zhang W, Liu Y, Zheng H, Yang S, Jiang W: Improving the activity and stability of GL-7-ACA acylase CA130 by site-directed mutagenesis. Appl Environ Microbiol 2005, 71:5290-5296. Zhu H, Dean RA: A novel method for increasing the transformation efficiency of Escherichia coli-application forbacterial artificial chromosome library construction. Nucleic Acids Res 1999, 27:910-911. Zhu J, Chai Y, Zhong Z, Li S, Winans SC: Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: Detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 2003, 69:6949-6953. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44365 | - |
dc.description.abstract | N–醯基高絲胺酸內酯醯化酶(AHL–acylases)可藉分解AHLs達到阻止病原菌致病的目的,因此,AHL–acylases是目前抗感染藥物開發上極具潛力的標的。本研究自植物病原菌青枯菌(Ralstonia solanacearum GMI1000)選殖出aac基因,ESI–MS (electrospray ionization mass spectrometry)分析證實aac基因轉譯的795–aa Aac (NP 520668)為AHL–acylase,而aculeacin A對Candida tropicalis的MIC試驗證實,Aac並非aculeacin A acylase (AAC),因此更名為AlaS。alaS基因表現株Chromobacterium violaceum CV026 (pS3aac) 可阻止受C7–HSL誘導的幾丁質酶及紫色素生成,證實AlaS可做為定額感應子清除者。
純化後之AlaS經N–端定序及ESI–MS分析,證明propolypeptide AlaS 由28–aa signal peptide、191–aa α–subunit、14–aa spacer peptide及562–aa β–subunit所構成,且在auto–processing修飾後可得由α–subunit (20.4 kDa)及β–subunit (60.8 kDa)所摺疊成的mature AlaS,故確認AlaS屬於N–terminal nucleophile (Ntn) hydrolase superfamily。AlaS最適反應溫度及pH值分別為35℃及pH 8.0,不需二價陽離子輔酶,且可在4°C下,穩定保持活性超過7週以上。經500 mM DTT (dithiothreitol)處理的AlaS仍保有50%的活性。 提升AlaS對短鏈N–(hexanoyl)–homoserine lactone (C6–HSL)分解活性,可擴大其應用範圍。本研究以25.3% identity的模板glutaryl 7–aminocephalosporanic acid acylase 1OQZ及docking程式建構含N–(heptanoyl)–homoserine lactone (C7–HSL)之AlaS結構模型(AlaS–C7–HSL–modeling),並以預測活性區作為循理性設計工具。空間填補策略成功篩選到C6–HSL分解活性高於AlaS 5.6倍的突變酵素AlaSS290I及AlaSFS290I,相較於具短鏈AHLs分解活性的指標酵素AHL–acylase HacB,AlaS突變酵素對短鏈N–(butanoyl)–homoserine lactone (C4–HSL)、N–(β– Ketocaproyl)–homoserine lactone (3OC6–HSL)及C6–HSL的比活性分別可提升至HacB的2.2、2.8及1.04倍。由篩選到的突變酵素證明I283及S290是增強短鏈AHLs分解活性的關鍵殘基。另外,經序列比對、結構疊合、pH profile、突變酵素比活性及動力學分析結果顯示,AlaS催化機制應是類似1OQZ的pseudotriads S234/H256/E704。此外,本研究開發快速簡單的紫白接合篩選法(violet–white conjugation selection; VWCS),以因應大規模的alaS突變基因庫的篩選。模擬基因庫試驗,證實VWCS是可行的篩選法。本研究是第一篇從植物病原菌中發現AHL–acylase並完成其酵素特性及動力學分析的報告,而關鍵殘基的發現可提供其它AHL–acylases增強短鏈AHLs時的重要突變標的。AlaS結構模擬證明,雖然全序列identity低至25.3%,但局部活性區為高保守性序列時,可取其活性區模型作為循理性設計工具。 | zh_TW |
dc.description.abstract | N–acylhomoserine lactones (AHLs) acylase possesses high development–values in medical and agricultural application since it can quench AHLs. In this study, an aac gene from Ralstonia solanacearum GMI1000 was cloned. ESI–MS (electrospray ionization mass spectrometry) analysis demonstrated that 795–aa Aac (NP 520668) encoded by aac gene is an AHL–acylase. The MIC test of aculeacin A for Candida tropicalis suggest that Aac isn’t an aculeacin A acylase (AAC), predicted at NCBI. Consequently, aac gene was renamed as ”alaS”. The alaS–expressing clone Chromobacterium violaceum CV026 (pS3aac) effectively inhibited violacein and chitinase activity induced by exogenous N–(heptanoyl)–homoserine lactone (C7–HSL), demonstrating that AlaS can be a quorum–quenching agent.
AlaS was furthermore over–expressed and purified in E. coli Star (pET41–aac) under glucose regulation and low temperature (17.5℃). N–terminal sequencing and ESI–MS analysis demonstrated that propolypeptide AlaS, consisting of 28–aa signal peptide, 191–aa α–subunit, 14–aa spacer peptide, and 562–aa β–subunit; and undergoing autoprocessing modification, α–subunit (20.4 kDa) and β–subunits (60.8 kDa) fold into mature AlaS. Consequently, AlaS belongs to N–terminal nucleophile (Ntn) hydrolase superfamily. Temperature 35℃ and pH 8.0 are optimal for reaction, no requirement for divalent cations cofactor, and AlaS activity can be stably maintained over seven weeks at 4°C storage. 500 mM DTT (dithiothreitol)– treated AlaS still can maintain 50% of activity. Improving C6–HSL–degrading activity of AlaS is necessary to control C6–HSL–dependent pathogenicity. One ideal AlaS–modeling was firstly built using only 25.3%–identity–sharing glutaryl 7–aminocephalosporanic acid acylase 1OQZ as a template. The local high–conserved active–site modeling was utilized as a rational design tool. The space–filling rational design strategy can successfully acquire both AlaSS290I and AlaSFS290I which exhibit over 5.6–folds high activities towards to C6–HSL than AlaS. Relative to index AHL–acylase HacB with short–chain degrading activity, mutated–AlaS can exhibit 2.2–, 2.8–, and 1.04–folds activities of HacB towards to N–(butanoyl)–homoserine lactone (C4–HSL), N–(β–Ketocaproyl)–homoserine lactone (3OC6–HSL), and C6–HSL, respectively. Apparently, these screening mutated–AlaS demonstrated that residues I283 and S290 are key residues for enhancing its degrading activities towards to short–chain AHLs. Additionally, superposition, structural–based alignments, pH profile, specific activity, kinetic parameters, and site–directed mutagenesis analysis revealed that the catalytic mechanism of AlaS shall be catalytic pseudotriads S234/H256/E704, similar to 1OQZ. For screening large–scale mutation library, one high–throughput violet–white conjugation selection (VWCS) method, was established in this study. The mimicked mutation library demonstrated that VWCS is realizable. To our knowledge, this is the first report to find an AHL–acylase in a phytopathogen and to investigate its biochemical characteristics and kinetic analysis. The key residues founding can provide other AHL–acylases with important rational design residue–targets for short–chain AHLs degrading activities enhancing. AlaS–modeling also provides a successful exemplification that even though the sharing–identity of global template is in low level (25.3%), if the sharing–identity of local desired–fragment is enough high, the built modeling structure still can be utilized as a rational design tool. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:53:24Z (GMT). No. of bitstreams: 1 ntu-98-D91623801-1.pdf: 5559277 bytes, checksum: 9d200f2881dba6a1f97cac7f291f7a6a (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 謝誌……………………………………………………………………………….… Ⅰ
目錄………………………………………………………………………………… Ⅲ 表次…………………………………………………………………………….…… Ⅵ 圖次…………………………………………………………………………………. Ⅶ 縮寫表………………………………………………………………………….…… Ⅷ 中文摘要…………………………………………………………………….……… Ⅸ 英文摘要(Abstract)………………………………………………………………… XI 第一章、序言………….…………………………………………………………… 1 第二章、文獻回顧…………………………………….…………………………… 2 一、定額感應機制………………………………….…………….……………… 2 二、定額清除策略………………………………….……………………………. 2 三、AHL–acylases的分布………………………………………..……………… 3 四、AHL–acylases的生理意義………………………..…………………………. 3 五、AHL–acylases之基質專一性…………………………………….…………. 4 六、N–terminal nucleophile (Ntn) hydrolases…………………………….……... 4 七、指示菌………………………………………………….……………………. 5 第三章、R. solanacearum GMI1000 AHL–acylase之選殖鑑定與清除定額感應子的應用評估………………………….…………………………………... 6 一、摘要……………………………………….………………………………… 6 二、前言…………………………………………………………………..……… 7 三、材料與方法………………………………………………………..………… 7 1.菌株、培養基及培養條件…………………………………………..……..… 7 2.全菌生物分析法…………………….……….…………………….……..….. 8 3. aac基因的選殖與表現………………………….…………………….……... 8 4.製備Aac粗蛋白…………………………………………………………….… 9 5. ESI–MS質譜儀分析…………………………………….…………………. 9 6. HSL–OPA化學分析法…………………………………….………..……….. 10 7.紫色素(violacein)定量分析法…………………………….…………..…….. 10 8.幾丁質酶(chitinase)活性分析法…………………..…………………………. 11 9. Aculeacin A對C. tropicalis之最小抑制濃度(MIC)試驗……….…….…….. 11 10.生物資訊…………………….……………………………………………… 11 11.統計軟體……………………………………………….……..……………. 11 四、結果……………….………………………………………..……………….. 11 1.自R. solanecarum GMI1000搜尋可轉譯AHL–acylase的候選基因aac…….. 11 2.具AHL分解活性的85 kDa Aac無法被分泌至E. coli細胞外…………….…. 12 3. Aac是AHL–acylase而非aculeacin A acylase………………………….…….. 13 4. E. coli DH10B (pS3aac)只能分解超過六個碳以上的中長鏈AHLs….……. 13 5. aac基因表現於C. violaceum可抑制受AHL調控的紫色素及幾丁質酶生成. 13 五、討論………….……………………………………………………………….. 14 第四章、AlaS之生化特性及酵素動力學分析…………………………….……… 16 一、摘要…………………………………………………………………..……… 16 二、前言………………………………………………………………….……… 17 三、材料與方法……………………………………………………….………… 17 1.菌株、培養基及培養條件……………………………………….………….. 17 2. alaS表現質體的構築……………………….…………………….…………. 17 3. Western blot分析………………………………………..................………… 18 4. AHL–acylase活性分析………………………………………….…………... 19 5. AlaS重組蛋白質純化……………………………………………..…………. 19 6. ESI–MS分析…………………………………………….............…………... 20 7.生化特性分析…………..………………………………………..………..…. 21 8. AlaS動力學分析…………..………………………………………….……... 21 9.生物資訊………………………….………..………………………………… 21 四、結果………………………………………………………..……………….. 22 1.Glucose調控及低溫誘導對AlaS活性表現的重要性…………….…….…… 22 2.AlaS大量表現的最佳宿主及融合蛋白分別為E. coli Roseta及NusA. …...... 23 3.AlaS屬於具autoprocessing功能的Ntn hydrolase superfamily………………. 23 4.AlaS之生化特性分析…………………....……………………................…… 24 5.AlaS對中長鏈AHLs(≧C7)具高分解活性………..….………………….…... 25 6.AlaS對C6–HSL的催化效率遠低於中長鏈AHLs…………………………… 25 五、討論………………….………………………………………………….…… 26 第五章、以循理性設計篩選對C6–HSL具高分解活性的AlaS…………………... 29 一、摘要………………………………………………………………….……… 29 二、前言……………………………………………………………………..…… 30 三、材料與方法…………………………………………………………….…… 31 1.菌株、培養基及培養條件……………………………..…………………….. 31 2.AlaS結構模型(comparative modeling)之建構…………….………………… 31 3.AlaS–C7–HSL結構模型之建構……………….…..………………………… 31 4.突變株構築…………………………………………………………………… 32 5.具短鏈AHLs分解活性的突變株篩選…...……………………….………….. 32 6.突變酵素純化與活性分析……………………………………..…………….. 32 7.Circular dichroism (CD) spectroscopy…….………..…………..…………..... 32 8.生物資訊……………………………….………………………..…………… 33 四、結果…………….………………………………………….…………….…. 34 1.AlaS–modeling擁有62.2% identity的β–strands中心區…………….….…… 34 2.預測的AlaS活性區坐落於β–strands中心區…………….………………….. 34 3.循理性設計原則為空間填補…………………………………..………….… 35 4.I283 and S290是提升AlaS對短鏈AHLs分解活性的關鍵殘基………..…... 35 5.AlaSS290I及AlaSFS290I具最高C6–HSL及3OC6–HSL分解活性……….…….. 36 6.AlaS突變酵素對C6–HSL催化效率的提昇主因確實是基質親和力增高.... 36 7.預測的AlaS催化相關殘基非全為高保守性……………………………..…. 37 8.AlaS的重要催化殘基(S234、H256、 F257、V303、N507、R536及E704).. 38 9.AlaS的催化機制可能類似於1OQZ的pseudotriads且非典型serine protease之triads及PGA的serine單一催化機制………….......................................... 39 10.AlaS催化中心是pseudotriads S234/H256/E704.......................................... 40 五、討論…………………………………………………………………….….. 41 第六章、應用於大規模篩選具短鏈AHLs分解活性突變株之的高效能VWCS篩選法………….…………………………………………………………… 45 一、摘要……………………………………………………………………….… 45 二、前言……………………………………………………………………….… 45 三、材料與方法……………………………………………………………..……. 47 1.菌株、培養基及培養條件…………………………………………………… 47 2.黏合態(ligated)及質體態(plasmid) pS3aac的製備…………………..……… 47 3.質體轉形法(transformation)…………………………….…………...………. 47 4.細菌接合法(conjugation)………………………………...….……………….. 48 5.AHL分解活性分析………………………………….………….…………… 49 四、結果………………………………………………….………..………………. 49 1.穩定的C. violaceum CV026–pS3aac轉形基因系統不適於建構隨機基因庫 49 2.CV026–S17–1–pS3aac接合基因傳送系統適用於轉移突變基因……….…. 50 3.高靈敏度紫白篩選培養基(violet–white screening medium)的開發….…… 50 4.紫白接合篩選法(VWCS)的可行性評估……………………………....……. 51 五、討論…………………………………………………………..……….……….. 51 第七章、總結…………………………………………………………..….……….. 54 參考文獻……………………………………………………………………………. 55 已發表文章(BMC Microbiol 2009, 9:89)…………..……………………...………. 113 表 次 表3–1、本研究所使用的菌株及質體…………………………………………… 66 表3–2、IPTG誘導對E. coli DH10B (pS3aac)分解活性的影響............................. 68 表3–3、經Aac處理的aculeacin A對Candida tropicalis F–129之最低抑制濃度(MIC) ………………………………………………………………… 69 表3–4、E. coli DH10B (pS3aac)分解AHLs之基質專一性……………………… 70 表4–1、E. coli Star (pET41–aac)之重組AlaS純化表…………………………… 71 表4–2、二價陽離子對AlaS活性的影響………………………………………… 72 表4–3、AlaS的基質專一性分析………………………………………………… 73 表4–4、AlaS動力學分析………………………………………………………… 74 表5–1、本研究使用於定點突變的引子………………………………………… 75 表5–2、CDSSTR程式分析AlaS受質結合區突變酵素CD圖譜之結果……….. 76 表5–3、AlaS受質結合區突變酵素之短鏈AHLs分解比活性分析…………….. 77 表5–4、AlaS受質結合區突變酵素之中長鏈AHLs分解比活性分析…………… 78 表5–5、AlaS受質結合區突變酵素對AHLs(C6~C7)之動力學分析…………… 79 表5–6、AlaS受質結合區突變酵素對AHLs(C8~C10)之動力學分析………….. 80 表5–7、催化區突變酵素之比活性分析………………………………………… 81 表5–8、CDSSTR程式分析催化區突變酵素CD圖譜之結果…………………… 82 表5–9、與催化區相關之突變酵素動力學分析………………………………… 83 表6–1、C. violaceum CV026 (pS3aac)分解AHLs之基質專一性分析….………. 84 表6–2、pS3aac轉形至E. coli及C. violaceum 之轉形效率評估……………….. 85 表6–3、 E. coli S17–1 (pS3aac)與C. violaceum CV026之接合效率評估………. 86 表6–4.篩選AHL分解選殖株的各種篩選法比較……………………………….. 87 圖 次 圖3–1、aac及solI/solR基因於R. solanecarum GMI1000全序列基因圖譜上的位置…………………………………………………………………………. 88 圖3–2、E. coli DH10B (pS3aac)之C7–HSL分解活性測試…………………….. 89 圖3–3、以E. coli BL21 (DE3)大量表現Aac融合蛋白…………………..……….. 90 圖3–4、E. coli DH10B (pS3aac)之C7–HSL分解產物ESI–MS圖譜…………… 91 圖3–5、aac基因表現於C. violaceum CV026對紫色素生成及幾丁質酶活性的影響………………………………………………………………………. 92 圖4–1、於pET系統大量表現AlaS之最適條件分析…….……………………… 93 圖4–2、AlaS與各種已知具autoprocessing AHL–acylase之序列比對…………. 94 圖4–3、AlaS之純化結果………………………………………………………… 95 圖4–4、以質譜儀測量AlaS分子量及N–端定序的結果……………………….. 96 圖4–5、AlaS之最適溫度、溫度耐受性、最適pH值及儲存穩定性分析……….. 97 圖4–6、有機溶劑、清潔劑、還原劑及變性劑對AlaS活性之影響分析…………. 98 圖4-7、AlaS與其它已知AHL-acylase的類緣關係………………………………. 99 圖5–1. Heterodimeric AlaS之立體結構模型…………………………………… 100 圖5–2. AlaS與其他Ntn–hydrolases的序列比對………………………………... 101 圖5–3. 以AlaS–C7–HSL複合結構模型預測AlaS活性區……………………… 103 圖5–4. AlaS–C7–HSL模型與1OQZ之基質結合口袋疊合結果及AlaS活性區模型……………………………………………………………………….. 104 圖5-5. 以in vivo CV026 bioassay篩選由循理性設計之AlaS突變表現株…….. 105 圖5–6. AlaSI283F、AlaSS290I及AlaSFS290I之活性區模型………………………… 106 圖5–7. 以in vivo CV026 bioassay篩選AlaS的催化活性重要殘基…………… 107 圖5–8. AlaS模型與Ntn–hydrolases及serine proteases活性區之疊合結果…….. 108 圖5–9、突變態AlaSS234A之純化……………………………………………….. 109 圖6–1、AHLs對C. violaceum CV026之最低紫色素誘導濃度(MIDC)….……. 110 圖6–2、紫白接合篩選法VWCS之可行性評估………………………………….. 111 圖6–3、利用VWCS法篩選分解短鏈AHLs的AlaS突變酵素之評估…………… 112 | |
dc.language.iso | zh-TW | |
dc.title | 青枯菌N–醯基高絲氨酸內酯醯化酶之特性分析及其AHLs分解活性的提升 | zh_TW |
dc.title | Identification, biochemical characterization, and enhancing activities towards to AHLs of N–acylhomoserine lactone acylase from Ralstonia solanacearum GMI1000 | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 許文輝(Wen-Hwei Hsu),黃鎮剛(Jenn-Kang Hwang),潘銘正,胡小婷(Shiau-Ting Hu),劉瑞芬(Ruey-Fen Liou),朱文深 | |
dc.subject.keyword | N–醯基高絲胺酸內酯醯化酶,青枯菌,循理性設計,結構模型,紫白接合篩選法, | zh_TW |
dc.subject.keyword | AHL–acylases,AlaS,Quorum quenching,auto–processing,Ntn hydrolase superfamily,rational design,VWCS, | en |
dc.relation.page | 112 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-04 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 5.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。