請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44358完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊宏(Chun-Hung Lin) | |
| dc.contributor.author | Ta-Wei Liu | en |
| dc.contributor.author | 劉大偉 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:52:59Z | - |
| dc.date.available | 2014-08-12 | |
| dc.date.copyright | 2009-08-12 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-04 | |
| dc.identifier.citation | 1. Peek RM, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2:28–37.
2. Cave DR (2001) Chronic gastritis and Helicobacter pylori. Semin. Gastrointest. Dis. 12:196–202. 3. Sipponen P, Hyvarinen H (1993) Role of Helicobacter pylori in the pathogenesis of gastritis, peptic ulcer and gastric cancer. Scand. J. Gastroenterol. Suppl. 196:3–6. 4. Boren T, Normark S, Falk P (1994) Helicobacter pylori: molecular basis for host recognition and bacterial adherence. Trends Microbiol. 2:221–228. 5. Ilver D, et al. (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–377. 6. Monteiro MA, et al. (2000) Expression of histoblood group antigens by lipopolysaccharides of Helicobacter pylori strains from Asian hosts: the propensity to express type 1 blood-group antigens. Glycobiol. 10:701–713. 7. Monteiro MA, et al. (1998) Simultaneous expression of type 1 and type 2 Lewis blood group antigens by Helicobacter pylori lipopolysaccharides. Molecular mimicry between H. pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. J. Biol. Chem. 273:11533–11543. 8. Monteiro MA, et al. (2000) Lipopolysaccharide structures of Helicobacter pylori genomic strains 26695 and J99, mouse model H. pylori Sydney strain, H. pylori P466 carrying sialyl Lewis X, and H. pylori UA915 expressing lewis B classification of H. pylori lipopolysaccharides into glycotype families. Eur. J. Biochem. 267:305–320. 9. Osaki T, et al. (1998) Establishment and characterisation of a monoclonal antibody to inhibit adhesion of Helicobacter pylori to gastric epithelial cells. J. Med. Microbiol. 47:505–512. 10. Valkonen KH, et al. (1994) Interaction of lipopolysaccharides of Helicobacter pylori with basement membrane protein laminin. Infect. Immun. 62:3640–3648. 11. Edwards NJ, et al. (2000) Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. Mol. Microbiol. 35:1530–1539. 12. Appelmelk BJ, et al. (1998) Phase variation in Helicobacter pylori lipopolysaccharide. Infect. Immun. 66:70–76. 13. Appelmelk BJ, et al. (1996) Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in auto-immunity. Infect. Immun. 64:2031–2040. 14. Rasko DA, et al. (2000) Lewis antigen expression and stability in Helicobacter pylori isolated from serial gastric biopsies. J. Infect. Dis. 181:1089–1095. 15. Karlsson KA (2000) The human gastric colonizer Helicobacter pylori: a challenge for host-parasite glycobiology. Glycobiol. 10:761–771. 16. Falk P (2001) Why does Helicobacter pylori actually have Lewis antigens? Trends Microbiol. 9:61–62. 17. Gerhard M, et al. (1999) Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc. Natl. Acad. Sci. USA 96:12778–12783. 18. Mahdavi J, et al. (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578. 19. Cummings, R. D. 1999. Selectins, p. 391–416. In A. Varki, R. D. Cummings, J. Esko, H. Freeze, G. Hart, and J. Marth (ed.), Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 20. Larsen E, et al. (1990) PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15). Cell 63:467–474. 21. Weis WI, et al. (1998) The C-type lectin superfamily in the immune system. Immunol. Rev. 163:19–34. 22. Ng KK-S, Drickamer K, Weis WI (1996) Structnral analysis of monosaccharide binding to rat liver mannose-binding protein. J. Biol. Chem. 271:663–674. 23. Logan SM, et al. (2000) Functional genomics of Helicobacter pylori: identification of a beta-1,4 galactosyltransferase and generation of mutants with altered lipopolysaccharide. Mol. Microbiol. 35:1156–1167. 24. Martin SL, et al. (2000) H. pylori adhesion and Lewis x. Gastroenterology 119:1415–1416. 25. Kwon DH, et al. (1998) The effect of galE gene inactivation on lipopolysaccharide profile of Helicobacter pylori. Curr. Microbiol. 37:144–148. 26. Moran AP, et al. (2000) The relationship between O-chain expression and colonization ability of Helicobacter pylori in a mouse model. FEMS Immunol. Med. Microbiol. 29:263–270. 27. Heneghan MA, et al. (2000) Relationship of blood group determinants on Helicobacter pylori lipopolysaccharide with host lewis phenotype and inflammatory response. Infect. Immun. 68:937–941. 28. Campbell BJ, et al. (1999) Adherence of Helicobacter pylori to human gastric epithelium mediated by an epithelial cell-surface Lewis(x) carbohydrate-binding protein. Gastroenterology 116:G0565. 29. Edwards, N. J. 2000. Data presented at the 4th Int. Workshop on Pathogenesis and Host Response in Helicobacter Infections, Helsingor, Denmark. 30. Oka T, et al. (1999) Identification and cloning of rat galectin-2: expression is predominantly in epithelial cells of the stomach. Arch. Biochem. Biophys. 361:95–201. 31. Fisher JH, Mason R (1995) Expression of pulmonary surfactant D in rat gastric mucosa. Am. J. Respir. Cell Mol. Biol. 12:13–18. 32. Eggleton P, et al. (1999) Surfactant protein D binding to Helicobacter pylori lipopolysaccharide. Gut 45:A35. 33. Rasko DA, et al. (2000) Lewis antigen expression and stability in Helicobacter pylori isolated from serial gastric biopsies. J. Infect. Dis. 181:1089–1095. 34. Guruge JL, et al. (1998) Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc. Natl. Acad. Sci. USA 95:3925–3930. 35. Boren T, et al. (1993) Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262:1892–1895. 36. Walker MM, et al. (1999) Direct observation of kinetics and agglutination of Helicobacter pylori with the collectin, surfactant protein D. Gut 45:A41–A42. 37. Covacci A, Rappuoli R (2000) Tyrosine-phosphorylated bacterial proteins: Trojan horses for the host cell. J. Exp. Med. 191:587–592. 38. Zheng PY, et al. (2000) Association of peptic ulcer with increased expression of Lewis antigens but not cagA, iceA, and vacA in Helicobacter pylori isolates in an Asian population. Gut 47:18–22. 39. Henegha MA, et al. (1998) Effect of host Lewis blood group antigen expression on Helicobacter pylori colonisation density and the consequent inflammatory response. FEMS Immunol. Med. Microbiol. 20:257–266. 40. Marshal DG, et al. (1999) Lack of a relationship between Lewis antigen expression and cagA, CagA, vacA and VacA status of Irish Helicobacter pylori isolates. FEMS Immunol. Med. Microbiol. 24:79–90. 41. Mora AP (1996) Pathogenic properties of Helicobacter pylori. Scand. J. Gastroenterol. 31(Suppl. 215):22–31. 42. Riede G, et al. (1997) Role of adherence in interleukin-8 induction in Helicobacter pylori-associated gastritis. Infect. Immun. 65:3622–3630. 43. Appelmel BJ, et al. (1996) Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmunity. Infect. Immun. 64:2031–2040. 44. Mora A (1998) The products of Helicobacter pylori that induce inflammation. Eur. J. Gastroenterol. Hepatol. 10(Suppl. 1):S3–S8. 45. Mora AP, et al. (1996) Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol. Med. Microbiol. 16:105–115. 46. Wirt HP, et al. (1996) Expression of the human cell surface glycoconjugates Lewis X and Lewis Y by Helicobacter pylori isolates is related to cagA status. Infect. Immun. 64:4598–4605. 47. Appelmel BJ, et al. (1997) Molecular mimicry between Helicobacter pylori and the host. Trends Microbiol. 5:70–73. 48. Mora AP, et al. (1996) Molecular mimicry of host structures by lipopolysaccharides of Campylobacter and Helicobacter spp.: implications in pathogenesis. J. Endotoxin Res. 3:521–531. 49. Appelmel BJ, et al. (1998) Bugs on trial: the case of Helicobacter pylori and autoimmunity. Immunol. Today 19:296–299. 50. Falle G, et al. (1997) Antigastric autoantibodies in Helicobacter pylori infection: implications of the histological and clinical parameters of gastritis. Gut 41:619–623. 51. Negrin R, et al. (1996) Antigenic mimicry between Helicobacter pylori and gastric mucosa in the pathogenesis of body atrophic gastritis. Gastroenterology 111:655–665. 52. Negrin R, et al. (1991) Helicobacter pylori infection induces antibodies cross-reacting with human gastric mucosa. Gastroenterology 101:437–445. 53. Falle G, et al. (1998) Evidence of novel pathogenic pathways for the formation of antigastric autoantibodies in Helicobacter pylori gastritis. J. Clin. Pathol. 51:244–245. 54. Ma JY, et al. (1994) Positive correlation between H,K-adenosine triphosphate autoantibodies and Helicobacter pylori antibodies in patients with pernicious anaemia. Scand. J. Gastroenterol. 29:961–965. 55. Claey D, et al. (1998) The gastric H+,K+-ATPase is a major autoantigen in chronic Helicobacter pylori gastritis with body mucosa atrophy. Gastroenterology 115:340–347. 56. Keena J, et al. (2000) A role for the bacterial outer membrane in the pathogenesis of Helicobacter pylori. FEMS Microbiol. Lett. 182:259–264. 57. Mora AP (1999) Helicobacter pylori lipopolysaccharide-mediated gastric and extragastric pathology. J. Physiol. Pharmacol. 50:787–805. 58. Gaskins, H. R. in Gastrointestinal Microbes and Host Interactions, Mackie, R. I., White, B. A., Isaacson, R. E. Eds. (Chapman & Hall, New York, 1997), vol. 2, pp. 537–587. 59. Bjork S, et al. (1987) Structures of blood group glycosphingolipids of human small intestine. A relation between the expression of fucolipids of epithelial cells and the ABO, Le and Se phenotype of the donor. J. Biol. Chem. 262:6758–6765. 60. Finne J, et al. (1989) Novel polyfucosylated N-linked glycopeptides with blood group A, H, X, and Y determinants from human small intestinal epithelial cells. J. Biol. Chem. 264:5720–5735. 61. Bry L, et al. (1996) A model of host-microbial interactions in an open mammalian ecosystem Science 273:1380–1383. 62. Hooper LV, et al. (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA 96:9833–9838. 63. Michael J, et al. (2005) Human symbionts use a host-like pathway for surface fucosylation. Science 307:1778–1781. 64. Taylor DE, et al. (1998) Lack of correlation between Lewis antigen expression by Helicobacter pylori and gastric epithelial cells in infected patients. Gastroenterology 115:1113–1122. 65. Wirth HP, et al. (1997) Helicobacter pylori Lewis expression is related to the host Lewis phenotype. Gastroenterology 113:1091–1098. 66. Wirth HP, et al. (1999) Phenotypic diversity in Lewis expression of Helicobacter pylori isolates from the same host. J. Lab. Clin. Med. 133:488–500. 67. Croinin O, et al. (1998) Molecular mimicry of ferret gastric epithelial blood group antigen A by Helicobacter mustelae. Gastroenterology 114:690–696. 68. Monteiro MA, et al. (1997) The lipopolysaccharide of Helicobacter mustelae type strain ATCC 43772 expresses the monofucosyl A type 1 histo-blood group epitope. FEMS Microbiol. Lett. 154:103–109. 69. Zheng PY, et al. (2000) Association of peptic ulcer with increased expression of Lewis antigens but not cagA, iceA, and vacA in Helicobacter pylori isolates in an Asian population. Gut 47:18–22. 70. Marcos NT, et al. (2008) Helicobacter pylori induces β3GnT5 in human gastric cell lines, modulating expression of the SabA ligand sialyl-Lewis x. J. Clin. Invest. 118:2325–2336. 71. Schreiber S, et al. (2004) The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl. Acad. Sci. USA 101:5024–5029. 72. Sawa M, et al. (2006) Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc. Natl. Acad. Sci. USA 103:12371–12376. 73. Chang CF, et al. (2004) Discovery of picomolar slow tight-binding inhibitors of alpha-fucosidase. Chem. Biol. 11:1301–1306. 74. Intra J, et al. (2007) Comparative and phylogenetic analysis of α-L-fucosidase genes. Gene 392:34–46. 75. Stein M, Rappuoli R, Covacci A (2000) Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl. Acad. Sci. USA 97:1263–1268. 76. Falush D, et al. (2003) Traces of human migrations in Helicobacter pylori populations. Science 299:1582–1585. 77. González-Valencia G, et al. (2008) Lewis antigen expression by Helicobacter pylori strains colonizing different regions of the stomach of individual patients. J. Clin. Microbiol. 46:2783–2785. 78. Falk PG, et al. (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62:1157–1170. 79. Etzioni A (1996) Adhesion molecules-their role in health and disease. Pediatr. Res. 39:191–198. 80. Karlsson KA (1995) Microbial recognition of target-cell glycoconjugates. Curr. Opin. Struct. Biol. 5:622–635. 81. Koo IC, et al. (2008) Role for lysosomal enzyme β-hexosaminidase in the control of mycobacteria infection. Proc. Natl. Acad. Sci. USA 105:710–715. 82. Yurchenco PD, Atkinson PH (1975) Fucosyl-glycoprotein and precursor polls in HeLa cells. Biochemistry 14:3107–3114. 83. Wu B, Zhang Y, Wang PG (2001) Identification and characterization of GDP-D-mannose 4,6-dehydratase and GDP-L-fucose synthetase in a GDP-L-fucose biosynthetic gene cluster from Helicobacter pylori. Biochem. Biophys. Res. Commun. 285:364–371. 84. Madrid JF, et al. (1998) Lectin-gold localization of fucose residues in human gastric mucosa. J. Histochem. Cytochem. 46:1311–1320. 85. Benitez JA, et al. (1997) Adherence of Vibrio cholerae to cultured differentiated human intestinal cells: an in vitro colonization model. Infect. Immun. 65:3474–3477. 86. Brassart D, et al. (1991) In vitro inhibition of adhesion of Candida albicans clinical isolates to human buccal epithelial cells by Fuc alpha 1-2Gal beta-bearing complex carbohydrates. Infect. Immun. 59:1605–1613. 87. Hooper LV, Gordon JI (2001) Glycans as legislators of host–microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiol. 11:1R–10R. 88. Cambi A, et al. (2005) How C-type lectins detect pathogens. Cell. Microbiol. 7:481–488. 89. Unge P (1999) Antibiotic treatment of Helicobacter pylori infection. Curr. Top. Microbiol. Immunol. 241:261–300. 90. Glupczynski Y (1998) Antimicrobial resistance in Helicobacter pylori: a global overview. Acta Gastroenterol. Belg. 61:357–366. 91. Chang YJ, et al. (2006) Mechanisms for Helicobacter pylori CagA-induced cyclin D1 expression that affect cell cycle. Cell. Microbiol. 8:1740-1752. 92. Chang YJ, et al. (2004) Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Mol. Pharmcol. 66:1465-1477. 93. Gramer MJ, Goochee CF (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotech. Prog. 9:366–373. 94. Liu SW, et al. (2009) Identification of essential residues of human α-L-fucosidase and tests of its mechanism. Biochemistry 48:110-120. 95. Ho CW, et al. (2006) Discovery of different types of inhibition between the human and Thermotoga maritime α-fucosidases by fuconojirimycin-based derivatives. Biochemistry 45:5695-5702. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44358 | - |
| dc.description.abstract | 全球約有50%的人口感染幽門螺旋桿菌;研究顯示,這個病原菌與胃炎、十二指腸潰瘍與胃癌的形成,有直接的相關性。幽門螺旋桿菌與宿主細胞間如何傳達訊息而互相影響?再者,這種交互作用的機制,是否對於不同胃部疾病的形成有關?這些問題到目前為止還不是很清楚。利用對含有岩藻醣的複合醣做螢光標示,我們發現幽門螺旋桿菌可以從宿主細胞攝入岩藻醣,在共同培養幽門螺旋桿菌與宿主細胞的條件下(以幽門螺旋桿菌去感染宿主細胞),宿主細胞會分泌出第二型岩藻醣水解酶到共同培養液中。利用RNA干擾技術降低宿主細胞第二型岩藻醣水解酶的表現,可以降低CagA(幽門螺旋桿菌的一種毒性分子)轉移到宿主細胞內的比例。因此,第二型岩藻醣水解酶的存在可能與幽門螺旋桿菌附著到宿主細胞表面的能力有關,尤其對從十二指腸潰瘍與胃癌病人取出的幽門螺旋桿菌株有所影響。另外,第二型岩藻醣水解酶的表現,可以增加幽門螺旋桿菌路易士X抗原的形成,此類醣分子除了加強對宿主細胞的附著能力,還可以作為偽裝胃壁細胞表面的醣分子種類,藉此躲避宿主免疫系統的攻擊。這些發現,不只證實了宿主第二型岩藻醣水解酶對於幽門螺旋桿菌的附著、生長與致病的能力有關,也說明了此酵素對於幽門螺旋桿菌所導致的相關疾病,可以作為一個臨床診斷與治療潛力的標的物。 | zh_TW |
| dc.description.abstract | Infecting about one-half of the global human population, Helicobacter pylori is well established as the primary cause of gastritis, duodenal ulcer and gastric cancer. Currently there is no clear information regarding if and how host cells interact with H. pylori and if such interactions are dependent on the type of gastric disease. Using fluorescently labeled fucose-containing glycoconjugates, we provide the first evidence observing both the uptake of L-fucose from gastric cancer cells to H. pylori and that human α-L-fucosidase 2 (FUCA2) is secreted only under co-culture conditions (i.e., host cells infected with H. pylori). Upon depletion of FUCA2 by RNA interference and detection of translocated CagA (a virulence factor of H. pylori) in host cells, FUCA2 was found to be essential for H. pylori adhesion, in particular to the gastric cancer- and duodenal ulcer-specific strains. Additionally FUCA2 was shown to significantly enhance the expression of Lewis x antigen in H. pylori, which is critical for the bacterial cell adhesion in the pathogenesis and defense strategy to escape from host surveillance. These findings not only demonstrate an important connection between FUCA2 and the adhesion, growth and pathogenicity of H. pylori, but also support the idea that FUCA2 is a potential target for clinical diagnosis and therapeutic intervention of H. pylori-related diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:52:59Z (GMT). No. of bitstreams: 1 ntu-98-D93b46005-1.pdf: 5579839 bytes, checksum: 277d512c5b9caaace00d206664fc7d37 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 (1)
Abstract (2) 1. Introduction 1.1. Role of Helicobacter pylori in the pathogenesis of gastritis, peptic ulcer and gastric cancer (11) 1.2. Molecular basis for host recognition and bacterial adherence of H. pylori (11) 1.3. H. pylori Lewis antigens as adhesions (14) 1.4. Lewis antigens and putative autoimmune mechanisms (19) 1.5. Lewis antigens mimicry and immune evasion: the example of Bacteroides thetaiotaomicron (21) 1.6. Specific finding (24) 2. Results 2.1. H. pylori extracts 6-azido-L-fucose from human epithelial fucosylated glycoconjugates (26) 2.2. α-L-Fucosidase is secreted from host cells in response to H. pylori infection (27) 2.3. Secreted α-L-fucosidase controls H. pylori adhesion (29) 2.4. α-L-Fucosidase activity is critical for H. pylori attachment in strains isolated from patients with duodenal ulcers or gastric cancer (30) 2.5. α-L-Fucosidase activity regulates the expression level of Lex antigen (32) 3. Discussion 3.1. Role for human α-L-fucosidase 2 (FUCA2) in the control of H. pylori-infected gastric cancer cells (34) 3.2. A role foe host glycans in commensal relationships (36) 3.3. Antibiotic treatment of H. pylori infection: the potential of α-L-fucosidase inhibitor (38) 4. Materials and methods 4.1. Bacterial strains and cell lines (39) 4.2. H. pylori and cancer cell co-culture conditions (39) 4.3. Confocal fluorescence microscopy and imaging (40) 4.4. Purification and activity assay of α-L-fucosidase (41) 4.5. In-gel digestion (42) 4.6. Mass spectrometry analysis (44) 4.7. Cloning, expression and purification of human FUCA2 (45) 4.8. Kinetic analysis of human FUCA1 and FUCA2 (46) 4.9. RNA interference (47) 4.10. Flow cytometric analysis of fucosylated glycans on the surface of H. pylori or Capan 1 cells (48) 4.11. Infection assays and immunoblotting of CagA and Lex(49) 5. References (52) Table 1 Ki values of L-fucose, 6-azido-L-fucose and 1-aminomethyl-1-deoxy-fuconojirimycin (FNJ) for human FUCA1 and FUCA2 (69) Fig. 1A Schematic representation showing metabolic incorporation of tetra-O-acetyl-6-azido-L-fucose (70) Fig. 1B Procedure for specific fluorescent labeling of fucosylated glycans in cells (70) Fig. 2 Fluorescent imaging of fucosylation by incubating AGS, N87 and Capan 1 cells with tetra-O-acetyl-6-azido-L-fucose (72) Fig. 3 H. pylori obtains L-fucose from host cell membranes (4h) (73) Fig. 4 H. pylori takes up L-fucose from the host cell (8h) (75) Fig. 5 H. pylori takes up 6-azido-L-fucose directly from the host culture medium (76) Fig. 6A Activity assay of the secreted α-L-fucosidase from Capan 1 cells co-cultured with H. pylori (78) Fig. 6B Activity assay of the secreted α-L-fucosidase from five gastric adenocarcinoma cell lines cells uninfected with H. pylori (79) Fig. 6C Activity assay of the secreted α-L-fucosidase from five gastric adenocarcinoma cell lines cells co-cultured with H. pylori (80) Fig. 6D The enzymatically active pooled fractions obtained from the affinity chromatography-based purification were analyzed by SDS-PAGE (80) Fig. 6E Identification of α-L-fucosidase 2 (FUCA2) (81) Fig. 7 Sequence alignment of human α-L-fucosidase 1 (FUCA1) and α-L-fucosidase 2 (FUCA2) (83) Fig. 8A SDS-PAGE analysis of purified human FUCA1 and FUCA2 (84) Fig. 8B Double reciprocal plot of L-fucose for the Ki value of FUCA1 (84) Fig. 8C Double reciprocal plot of 6-azido-L-fucose for the Ki value of FUCA1 (85) Fig. 8D Double reciprocal plot of L-fucose for the Ki value of FUCA2 (85) Fig. 8E Double reciprocal plot of 6-azido-L-fucose for the Ki value of FUCA2 (86) Fig. 8F Double reciprocal plot of FNJ for the Ki value of FUCA2 (86) Fig. 9 Secreted FUCA2 is essential for H. pylori adhesion to host cells (4h) (88) Fig. 10A FUCA2 is essential for H. pylori adhesion to host cells (8h) (90) Fig. 10B Immunoblot analysis of mock-transfected Capan 1 cells infected with H. pylori using mouse monoclonal anti-CagA (91) Fig. 10C Immunoblot analysis of Capan 1-FUCA2 K.D. cells infected with H. pylori using mouse monoclonal anti-CagA (91) Fig. 11A Treatment of Capan 1 cells with FNJ was found to considerably reduce the transfer of 6-azido-L-fucose from host cells to H. pylori (93) Fig. 11B Flow cytometric analysis of fucosylated glycoconjugates on the surface of H. pylori (94) Fig. 11C Flow cytometric analysis of fucosylated glycoconjugates on the surface of Capan 1 cells (94) Fig. 12A Immunoblot analysis of Capan 1 cells infected with different gastric syndrome H. pylori strains using mouse monoclonal anti-CagA (96) Fig. 12B Immunoblot analysis of Capan 1 cells infected with different gastric syndrome H. pylori strains using mouse monoclonal anti-CagA (with 100 μM FNJ) (96) Fig. 12C Immunoblot analysis of AGS cells infected with different gastric syndrome H. pylori strains using mouse monoclonal anti-CagA (97) Fig. 12D Immunoblot analysis of AGS cells infected with different gastric syndrome H. pylori strains using mouse monoclonal anti-CagA (with 100 μM FNJ) (97) Fig. 13A Immunoblot analysis of different H. pylori duodenal ulcer (DU) strains-infected Capan 1 cells with mouse monoclonal anti-CagA (99) Fig. 13B Immunoblot analysis of different H. pylori duodenal ulcer (DU) strains-infected Capan 1 cells with mouse monoclonal anti-CagA (with 100 μM FNJ) (99) Fig. 13C Immunoblot analysis of different H. pylori duodenal ulcer (DU) strains-infected AGS cells with mouse monoclonal anti-CagA (100) Fig. 13D Immunoblot analysis of different H. pylori duodenal ulcer (DU) strains-infected AGS cells with mouse monoclonal anti-CagA (with 100 μM FNJ) (100) Fig. 14A Immunoblot analysis of different H. pylori duodenal ulcer (DU) strains -infected mock-transfected Capan 1 cells with mouse monoclonal anti-Lex antigen (102) Fig. 14B Immunoblot analysis of different H. pylori duodenal ulcer (DU) strains -infected Capan 1-FUCA2 K.D. cells with mouse monoclonal anti-Lex antigen (102) Fig. 15A Immunoblot analysis of different H. pylori duodenal ulcer (DU) strains -infected Capan 1 cells with mouse monoclonal anti-Lex antigen (104) Fig. 15B Immunoblot analysis of different H. pylori duodenal ulcer (DU) strains -infected Capan 1 cells with mouse monoclonal anti-Lex antigen (with 100 μM FNJ) (104) Fig. 15C Immunoblot analysis of different H. pylori duodenal ulcer (DU) strains-infected AGS cells with mouse monoclonal anti-Lex antigen (105) Fig. 15D Immunoblot analysis of different H. pylori duodenal ulcer (DU) strains-infected AGS cells with mouse monoclonal anti-Lex antigen (with 100 μM FNJ) (105) Fig. 16 Immunoblot analysis of Capan 1 cells infected with H. pylori and blotted with anti-Fucosyltransferase 3/6 antibody (107) | |
| dc.language.iso | en | |
| dc.subject | 毒性分子 | zh_TW |
| dc.subject | 岩藻醣 | zh_TW |
| dc.subject | 岩藻醣水解酶 | zh_TW |
| dc.subject | 幽門螺旋桿菌 | zh_TW |
| dc.subject | 胃部疾病 | zh_TW |
| dc.subject | gastric disease | en |
| dc.subject | fucosidase | en |
| dc.subject | fucose | en |
| dc.subject | Helicobacter pylori | en |
| dc.subject | virulence | en |
| dc.title | 岩藻醣水解酶於幽門螺旋桿菌感染胃癌細胞扮演之角色 | zh_TW |
| dc.title | Role for α-L-Fucosidase in the Control of
Helicobacter pylori-infected Gastric Cancer Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳玲津(Alice Lin-Tsing Yu),陳玉如(Yu-Ju Chen),吳明賢(Ming-Shiang Wu),邱繼輝(Kay-Hooi Khoo) | |
| dc.subject.keyword | 幽門螺旋桿菌,岩藻醣,岩藻醣水解酶,毒性分子,胃部疾病, | zh_TW |
| dc.subject.keyword | Helicobacter pylori,fucose,fucosidase,virulence,gastric disease, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-04 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 5.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
