Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44343Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張宏鈞 | |
| dc.contributor.author | Chi-Hong Lee | en |
| dc.contributor.author | 李季鴻 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:52:10Z | - |
| dc.date.available | 2012-08-14 | |
| dc.date.copyright | 2009-08-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-04 | |
| dc.identifier.citation | [1] Argyris, J. H., “Energy theorems and structural analysis,” Aircraft Eng., vol.
26, pp. 347–356, 1954. [2] Barnes, W. L., A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp. 824–830, 2003. [3] Bayliss, A., M. Gunzburger, and E. Turkel, “Boundary conditions for the numerical solution of elliptic equations in exterior regions,” SIAM J. Appl. Math., vol. 42, pp. 430–451, 1982. [4] Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185-200, 1994. [5] Bloch, F., “Quantum mechanics of electrons in crystals,” Zeits. f. Physik, vol. 52, 555, 1928. [6] Botten, L. C., N. A. Nicorovici, R. C. McPhedran, A. A. Asatryan, and C. M. de Sterke, “Photonic band calculations using scattering matrices,” Phys. Rev. E, vol. 64, 046603, 2001. [7] Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett., vol. 95, 046802, 2005. [8] Brand, S., R. A. Abram, and R. A. Kaliteevski, “Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal,” Phys. Rev. B, vol. 75, 035102, 2007. [9] Brillouin, L., “Les electrons dans les metaux et le classement des ondes de de Broglie correspondantes,” C. R. Acad. Sci. vol. 191, 292, 1930. [10] Bulgakov, A. A. and O. V. Shramkova, “Investigation of complex waves in semiconducting periodic structure,” LFNM, Kharkov, Ukraine, 2002. [11] Bulgakov, A. A., V. K. Kononenko, and O. V. Kostylyova, ”Investigation of complex wave propagation in the semiconductor layered periodic walls,“ 12th International Conference on Mathematical Methods in Electromagnetic Theory, Ukraine, 2008. [12] Cavendish, J. C., D. A. Field, andW. H. Frey, “An approach to automatic three dimensional finite element mesh generation,” Int. J. Numer. Methods Eng., vol. 21, pp. 329–347, 1985. [13] Charles, K., Introduction to Solid State Physics, 8th edition. John Wiley & Sons, New York, 2005. [14] Chen, H. J., Hybrid-elements FEM based complex mode solver for optical waveguides with triangular-mesh generator. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003. [15] Chen, Y. C., C. K. Tzuang, T. Itoh, and T. K. Sarkar, “Modal characteristics of planar transmission lines with periodical perturbations: Their behaviors in bound, stopband, and radiation regions,” IEEE Trans. Antennas Propag., vol. 53, pp. 47–58, 2005. [16] Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “All- Dielectric One-Dimensional Periodic Structures for Total Omnidirectional Reflection and Partial Spontaneous Emission Control,” Appl. Phys. A, vol. 68, pp. 25–28, 1999.[17] Chigrin, D.N., A.V. Lavrinenko, and C.M. Sotomayor Torres, “Nanopillars photonic crystal waveguides,” Opt. Express, vol. 12, pp. 617–622, 2004. [18] Chung. C. C., Analysis of Slot and Triangle-Shaped Surface Plasmonic Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan, July 2008. [19] Clarricoats, P. J. B. and R. A. Waldron, “Non-Periodic Slow-Wave and Backward-Wave Structures,” J. Electron. Contr., vol. 8, pp. 455–458, 1960. [20] Clarricoats, P. J. B and B. C. Taylor, “Evanescent and propagating modes of dielectric-loaded circular waveguide,” Proc. IEE, vol. 111, pp. 1951–1956, 1964. [21] Clarricoats, P. J. B. and K. R. Slinn, “Complex modes of propagation in dielectric-loaded circular waveguide,” Electron. Lett., vol. 1, pp. 145–146, 1965. [22] Courant, R., “Variational methods for the solution of problems of equilibrium and vibrations,” Bull. Am. Math. Soc., vol. 49, pp. 1–23, 1943. [23] Crombach, U., “Complex waves on shielded lossless rectangular dielectric image guide,” Electron Lett., vol. 19, pp. 557–558, 1983. [24] Davanco, M., Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,” Opt. Express vol. 15, pp. 9681-9691, 2007. [25] Engquist. B and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comp., vol. 31, pp. 629, 1977. [26] Fan, S., J. Winn, A. Devenyi, J.C. Chen, R.D. Meade, and J.D. Joannopoulos, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Amer. B, vol. 12 pp. 1267–1272, 1995. [27] Fernandez, F. A., Y. Lut, J.B. Davies, and S. Zhut, “Finite Element Analysis of Complex Modes in Inhomogeneous Waveguides,” IEEE Transactions on Magnetics, vol. 29, pp. 1601-1604, 1993. [28] Golub, Gene, H., and Charles, F. Van Loan, Matrix Computations, 2nd edition, Johns Hopkins University Press, Baltimore, MD, 1989. [29] Haus, H. A., Waves and Fields in Optoelectronics. Prentice-Hall, 1983. [30] Hiett, B. P., D. H. Beckett, S. J. Cox, J. M. Generowicz, M. Molinari, and K. S. Thomas, ”Aplication of finite element methods to photonic crystal modelling,” IEE Proc - Sci. Meas. Technol., vol. 149, pp. 293–296, 2002. [31] Hermann, D., M. Frank, K. Busch, and P. Wolfle, “Photonic band structure computations,” Optics Express, vol. 8, pp. 167–172, 2001. [32] Hofer, M., N. Finger, G. Kovacs, J. Sch¨oLolmer, S. Zaglmayr, U. Langer, and R. Lerch, “Finite-element simulation of wave propagation in periodic piezoelectric saw structures,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 53, pp. 1192–201, 2006. [33] Huang, W. X. and T. Itoh, “Complex modes in lossless shielded microstrip lines,” IEEE Trans. Microwave Theory Tech., vol 36, pp. 163–165, 1988. [34] Huang, K. C., P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B, vol. 68, 075209, 2003. [35] Huang, K. C., E. Lidorikis, X. Jiang, J. D. Joannopoulos, K. A. Nelson, P. Bienstman, and S. Fan, “Nature of lossy Bloch states in polaritonic photonic crystals,” Phys. Rev. B, vol. 69, 195111, 2004. [36] Hsu, S. M., Full-vectorial finite element beam propagation method based on curvilinear hybrid edge/nodal elements for optical waveguide problems. M. S.Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2004. [37] Hsu, S. M., Characteristic Investigation and Finite Element Method Modeling for Two-Dimensional Anisotropic Photonic Crystals. PhD. Dissertation, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan, July 2008. [38] Istrate, E., A. A. Green, and E. H. Sargent, “Behavior of light at photonic crystal interfaces,” Phys. Rev. B, vol. 71, 195122, 2005. [39] Ito, T. and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B, vol. 64, 045117, 2001. [40] Jin, J., The Finite Element Method in Electromagnetics. Wiley-IEEE Press, 2nd edition, 2002. [41] Joannopoulus, J. D., R. Meade, and J. Winn, Photonic Crystals. Molding the Flow of Light, Princeton, NJ: Pinceton Univ. Press, 1995. [42] John, S., “Strong localization of photons in certain disordered dielelctric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486–2489, 1987. [43] Johnson, N. F. and P. M. Hui, “k · p theory of photonic band structures in periodic dielectrics,” J. Phys.: Condens. Matter, vol. 5, L355, 1993. [44] Johnson, S. G., and J. D. Joannopoulos, “Block-iterative frequencydomain methods for Maxwell’s equations in a planewave basis,” Opt. Express, vol. 8, pp. 173–190, 2001. [45] Kane, E. O. The k·p method, Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, Ed. , New York: Academic, vol. 1, pp. 75–100, 1966. [46] Koshiba, M., and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol., vol. 18, pp. 737–743, 2000. [47] Kuzmiak, V., A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B, vol. 50, 16835, 1994. [48] Kuzmiak, V. and A. A. Maradudin, “Photonic band structures of twodimensional systems containing metallic components,” Phys. Rev. B, vol. 55, 7427, 1997. [49] Leong, M.S., P.S. Kooi, B. Widjojo, and T.S Yeo, “Complex modes in shielded coplanar waveguide,” Proc. 20th EuMC, pp. 1371–1376, 1990. [50] Leung. K. M. and Y. Qiu, “Multiple-scattering calculation of the twodimensional photonic band structure,” Phys. Rev. B, vol. 48, pp. 7767–7771, 1993. [51] Lou, Z. and J. M. Jin, “Finite element analysis of phased array antennas,” Microwave Opt. Tech. Lett., vol. 37, pp. 3, May, 2003. [52] Maier, S. A., “Plasmonics: Fundamentals and Applications,” Springer, New York, 2006. [53] Marquart, C., S. I. Bozhevolnyi, and K. Leosson, “Near-field imaging of surface plasmon-polariton guiding in band gap structures at telecom wavelengths,” Optics Express, vol. 13, no. 9, pp. 3303–3309, 2005. [54] McGrath, D. T. and V. P. Pyati, “Phased array antenna analysis with the hybrid finite element method,” IEEE Trans. Antennas Propagat., vol. 42, no. 12, pp. 1625–1630, 1994. [55] Mias, C., J. P. Webb, and R. I. Ferrari, “Finite element eigenvalue analysis of periodic structures,” IEE Colloquium: Semiconductor Optical Microcavity Devices and Photonic Bandgaps, pp. 3/1–3/5, 1996. [56] Mias, C., J. P.Webb, and R. I. Ferrari, “Finite element modeling of electromagnetic waves in doubly and triply periodic structures,” Proc. Inst. Elect. Eng. Optoelectron., vol. 146, pp. 111, Apr. 1999. [57] Mohammadi, A., H. Nadgaran, and M. Agio, “Contour-path effective permittivities for the two-dimensional finite-difference time-domain method,” Optics Express, vol. 13, pp. 10367–10381, 2005. [58] Moore, T. G., J. G. Blaschak, A. Taflove, and G. A. Kriegsmann, “Theory and application of radiation boundary operators,” IEEE Trans. Antennas Propag., vol. 36, pp. 1797–1812, 1988. [59] Moreno, E., D. Erni and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B, vol. 65, 155120, 2002. [60] Mrozowski, M. and J. Mazur, “Complex waves in lossless dielectri.: waveguides,” Proc. 19th EuMC, pp. 528–533, 1989. [61] Mrozowski, M. and J. Mazur, “Predicting complex waves in lossless guides,” Proc. 20th EuMC, pp. 487–492, 1990. [62] Mrozowski, M. and J. Mazur, “Matrix theory approach to complex waves,” lEEE Trun:. Microwave Theory Tech., vol. 40, pp. 781–785, 1992. [63] Nicorovici, N. A., R. C. McPhedran, and L. C. Botten, “Photonic band gaps for arrays of perfectly conducting cylinders,” Phys. Rev. E, vol. 52, pp. 1135–1145, 1995. [64] Ohtera, Y., “Calculating the complex photonic band structure by the finitedifference time-domain based method,” Jpn. J. Appl. Phys., vol. 47, pp. 4827– 4834, 2008. [65] Ohtaka, K., T. Ueta, and K. Amemiya, “Calculation of photonic bands using vector cylindrical waves and reflectivity of light for an array of dielectric rods,” Phys. Rev. B, vol. 57, pp. 2550–2568, 1998. [66] Omar, A. S. and K. F. Schunemann, “Effect of complex modes at finline discontinuities,” IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1508–1514, 1986. [67] Omar, A. S. and K. F. Schunemann, “Complex and backward-wave modei in inhomogeneously and anisotropically filled waveguides,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 268–275, Mar. 1987. [68] Pendry, J. B., “Playing tricks with light,” Science, vol. 285, 1687–1688, 1999. [69] Pendry, J. B. and A. MacKinnon, “Calculation of photon dispersion relationships,” Phys. Rev. Lett., vol. 69, pp. 2772–2775, 1992. [70] Pendry, J. B., “Calculating photonic band structure,” J. Phys. Condens. Matter, vol. 8, pp. 1085–1108, 1996. [71] Peng, C. H., Analysis of Photonic Crystal Fibers Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2007. [72] P´erez-Rodr´ıguez, F., D´ıaz Monge, F., N. M. Makarov, R. M´arquez-Islas, and B. F. Desirena, “Spatial-Dispersion Effects in One-Dimensional Photonic Crystals with Metallic Inclusions,” MSMIIW’07 Symposium Proceedings. Khar-k-ov, Ukraine, June 25–30, 2007. [73] Pierce, J. R., “Coupling of modes of propagation,” J. Appl. Phys., vol. 25, pp. 179–183, 1954. [74] Rayevskiy, S. B., “Some properties of complex waves in a double-layer, circular, shielded waveguide,” Radio Eng. Electron Phys., vol. 21, pp. 36–39, 1976. [75] Ritchie, R. H., “Plasma losses by fast electrons in thin films,” Phys. Rev., vol. 106, pp. 874–881, 1957. [76] Rebay S. “Efficient unstructured mesh generation by means of delaunay triangulation and Bowyer-Watson algorithm,” J. Comput. Phys., vol. 106, pp. 125–138, 1993. [77] Saad, Y., “Variations on Arnoldi’s Method for Computing Eigenelements of Large Unsymmetric Matrices,” Linear Algebra and its Applications, vol. 34, pp. 269–295, 1980. [78] Sakoda, K., N. Kawai, and T. Ito, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B, vol. 64, 045116, 2001. [79] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat., vol. 43, pp. 1460–1463, Dec. 1995. [80] Saito, K., M. Koshiba, “Full-vectorial finite element beam propagation method withperfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol., vol. 19, pp. 405–413, 2001. [81] Sigalas, M. M., C.M. Soukoulis, C.T. Chan, and K.M. Ho, “Electromagneticwave propagation through dispersive and absorptive photonic-band-gap materials ,” Phys. Rev. B, vol. 49, 11080, 1994. [82] Silvester, P., “Finite element solution of homogeneous waveguide problems,” Alta Frequenza, vol. 38, pp. 313-317, 1969. [83] Smith, D. L. and C. Mailhiot, “k · p theory of semiconductor superlattice electronic structure. I. Formal results,” Phys. Rev. B, vol. 33, pp. 8345–8359, 1986. [84] Soto-Puebla,D., M. Xiao, and F. Ramos-Mendieta, “Optical properties of a dielectricVmetallic superlattice: the complex photonic bands,” Phys. Lett. A, vol. 326, pp. 273–280, 2004. [85] Spence, A. and Poulton, C., “Photonic band structure calculations using nonlinear eigenvalue techniques,” J. Comput. Phys., vol. 204, pp. 65–81, 2005. [86] Suzuki. T. and P.K.L. Yu, “Tunneling in photonic band structures,” J. Opt. Soc. Am. B, vol.12, pp. 804–820, 1995. [87] Taflove, A., Computational Electrodynamics: The Finite Difference Time Domain Method. Norwood, MA: Artech House, 1995. [88] Tamir, T. and A. A. Oliner, “Guided complex waves,” Proc. IEE, vol. 110, pp. 310–334, 1963. [89] Tamir, T., “Wave number symmetries for guided complex waves,” Electronics Lett., vol. 3, pp. 180–182, 1967. [90] Tavallaee, A. A. and J. P. Webb, “Finite-Element Modeling of Evanescent Modes in the Stopband of Periodic Structures,” IEEE Transactions on Magnetics, vol. 44, pp. 1358–1361, 2008. [91] Tisseur, F. and K. Meerbergen, “The quadratic eigenvalue problem,” SIAM Rev., vol. 43, pp. 235–286, 2001. [92] Tsao, C. H. and R. Mittra, “Spectral-domain analysis of frequency selective surfaces comprised of periodic arrays of cross dipoles and Jerusalem crosses,” IEEE Trans. Antennas Propagat., vol. AP-32, pp. 478–486, 1984. [93] Turner , M. J., R. W. Clough, H. C. Martin, and L. J. Topp, “Stiffness and deflection analysis of complex structures,” J. Aero. Sci., vol. 23, pp. 805–824, 1956. [94] Tzuang, C. K. and J. M. Lin, “On the mode-coupling formation of complex modes in a nonreciprocal finline,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 1400–1408, 1993. [95] Vernois, G. and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol., vol. 25, pp.2511–2521, 2007. [96] Yablonovitch, E. “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987. [97] Yeh, P., “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. vol. 69, pp. 742–756, 1979. [98] Yi, J. C., and N. Dagli, “Finite-element analysis of valence band structure and optical properties of quantum-wire arrays on vicinal substrates,” IEEE J. Quantum Electron., vol. 31, pp. 208–218, 1995. [99] Yu, C. P. and H. C. Chang, “Applications of the finite difference mode solution method to photonic crystal structures,” Opt. Quantum Electron., vol. 36, pp. 145–163, 2004. [100] Yuan, J. and Y. Y. Lu, “Photonic bandgap calculations using Dirichlet-to- Neumann maps,” J. Opt. Soc. Am., vol. 23, pp. 3217–3222, 2006. [101] Zhao, Y. and Y. Hao, “Finite-difference time-domain study of guided modes in nano-plasmonic waveguides,” IEEE Trans. Antennas Propag. vol. 55, pp. 3070–3077, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44343 | - |
| dc.description.abstract | 藉由在有限元素法中加入週期性結構邊界條件,成功的建立了帶有一個與兩個方向的週期結構之模型。利用嶄新的邊界條件演算法,可以快速與準確的分析由頻率相關與不相關材料組成的兩個方向的週期結構之色散曲線圖與模態特性。當表面電漿在磁場偏極化下被激發出時會出現有趣且帶有實用利益的現象。
基本色散關係的呈現始於一維的極化與金屬光子晶體,從無能量損耗與有能量損耗的光子晶體發現進而檢驗明顯的差異。與解析解的比較下可以驗證計算分析的準確性與收斂性。然後,我們分析由圓柱與橢圓柱構成之奈米電漿子波導,此結構可利用表面電漿共振,在低於繞射極限的情況下傳遞電磁波。從實數頻率作為輸入參數的有限元素法可得到此奈米結構的高解析度色散曲線圖,亦在此系統中發現複數布拉赫波向量的複數模態並廣泛的討論。 最後,使用新開發之兩個週期性的邊界條件演算法去分析二維介質與金屬光子晶體,可得到關於傳導、複數與消逝模態的完整資訊。在介質光子經典的分析展現出卓越的高準度,與Dirichlet-to-Neumann map和mutiple multipole method的計算結果亦呈現很好的吻合。並且,我們詳細的展示了與表面電漿子相關的模態特性。 | zh_TW |
| dc.description.abstract | Periodic structures are successfully modeled by the implementations of periodic boundary conditions (PBCs) in the finite element method (FEM) for single and double periodicity. With a novel algorithm of PBCs, fast and precise calculations can be executed to investigate dispersion diagrams and modal characteristics of
doubly periodic structures composed of either frequency-dependent and frequency-independent material dielectric constants. Interesting and advantageous phenomena are discovered for the H-polarization situations for which surface plasmons are meantime excited. Starting from one-dimensional polaritonic and metallic photonic crystals, essential characters of dispersion relations are presented. Apparent dissimilarities between lossless and lossy photonic crystals are revealed and examined. In comparison with analytical solutions, the correctness and behavior of numerical convergence can be accurately verified. Afterward we analyze the nano-plasmonic waveguides in the forms of circular and elliptical cylinders for guiding electromagnetic waves with plasmon resonances below the diffraction limit. Outstanding high-resolution dispersion diagrams of such subwavelength structures are performed by the real-ω FEM. The complex modes possessing complex Bloch-wave vectors are as well discovered in these systems and have been extensively discussed. The developed algorithm of PBCs for doubly periodic systems is then employed to analyze two-dimensional dielectric and metallic photonic crystals. Complete information about the propagating, complex, and evanescent modes are disclosed. Eminently high precision is shown in the calculations of dielectric photonic crystals. And excellent agreement between the Dirichlet-to-Neumann map and the multiple multipole method are shown for metallic photonic crystals. Furthermore, we demonstrate modal characteristics correlated with surface plasmons in detail. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:52:10Z (GMT). No. of bitstreams: 1 ntu-98-R96941081-1.pdf: 15853883 bytes, checksum: 7f907900faa0b497e84e437abde6d07f (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The Finite ElementMethod . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Plasmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 The Brillouin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Contributions of the PresentWork . . . . . . . . . . . . . . . . . . . 6 1.6 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Mathematical Formulation and Related Techniques 11 2.1 Bloch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 The PerfectlyMatched Layers . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Generalized Scalar FEM Based Algorithm with the In-Plane Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 The Governing Equation . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Finite Element Discretization . . . . . . . . . . . . . . . . . . 16 2.4 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.2 Periodic Boundary Conditions for 2-D Structures with Single Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.3 Periodical Boundary Conditions for 2-D Structures with Double Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Finite Element Method BasedMatrix Eigenvalue Equation . . . . . . 28 2.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.2 The Real-k Method Based on Finite-Element Formulation . . 29 2.5.3 The Real-ω Method Based on Finite-Element Formulation . . 30 2.6 Comparison and Further Discussion of PBCs . . . . . . . . . . . . . . 36 3 Analyzing Characteristics of Singly Periodic Systems 45 3.1 Introduction to ComplexModes . . . . . . . . . . . . . . . . . . . . . 45 3.2 Analysis of One-Dimensional Photonic Crystals . . . . . . . . . . . . 48 3.2.1 Polaritonic Photonic Crystal . . . . . . . . . . . . . . . . . . . 50 3.2.2 Metallic Photonic Crystal . . . . . . . . . . . . . . . . . . . . 52 3.3 Nano-PlasmonicWaveguides . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.1 Nano-plasmonicWaveguides: Circular Cylinders . . . . . . . . 55 3.3.2 Nano-plasmonic Waveguides: Elliptical Cylinders . . . . . . . 58 3.4 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 Analyzing Characteristics of Doubly Periodic Systems 100 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2 Band Structure Analysis for Isotropic Dielectric Photonic Crystals . . 102 4.3 Band Structure Analysis for Isotropic Metallic Photonic Crystals . . . 105 4.3.1 Lossless Photonic Crystals . . . . . . . . . . . . . . . . . . . . 105 4.3.2 Lossy Photonic Crystals . . . . . . . . . . . . . . . . . . . . . 110 4.4 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5 Conclusion 141 6 List of Acronyms 144 | |
| dc.language.iso | en | |
| dc.subject | 週期結構 | zh_TW |
| dc.subject | 有限元素 | zh_TW |
| dc.subject | 電漿子 | zh_TW |
| dc.subject | finite element | en |
| dc.subject | plasmonic | en |
| dc.subject | periodic structures | en |
| dc.title | 介電質與電漿子週期結構的有限元素分析 | zh_TW |
| dc.title | Finite Element Analysis of Dielectric and Plasmonic Periodic Structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊雄,莊晴光 | |
| dc.subject.keyword | 有限元素,電漿子,週期結構, | zh_TW |
| dc.subject.keyword | finite element,plasmonic,periodic structures, | en |
| dc.relation.page | 155 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| Appears in Collections: | 光電工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-98-1.pdf Restricted Access | 15.48 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
