Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44332
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊西苑(Hsi?Yuan Yang)
dc.contributor.authorChing-Ming Wuen
dc.contributor.author吳慶明zh_TW
dc.date.accessioned2021-06-15T02:51:33Z-
dc.date.available2010-08-19
dc.date.copyright2009-08-19
dc.date.issued2009
dc.date.submitted2009-08-05
dc.identifier.citation葉晨聖和黃志嘉 “金奈米的製備與生物醫學上的應用”. 生醫奈米技術2007, p.3, 教育部出版
衛生署網頁 http://www.doh.gov.tw/CHT2006/DM/ DM2_2.aspx?now_fod_list_no=10328&class_no=440&level_no=4
Cancerconsultants.com Side Effects of Cancer Treatment http://patient.cancerconsultants.com/ SideEffects.aspx?TierId=1090
Albrecht, M. G. and Creighton J.A. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 1977, 99: 5215–5219.
Ann, D. et al. Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society 2004, press
Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J. R. and Geddes, C. D. Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 2005, 16, 55-62.
Baron, R.; Willner B. and Willner I. Biomolecule–nanoparticle hybrids as functional units for nanobiotechnology. Chem Comm 2007, 28: 323-332.
Bassell, G. J.; Powers, C. M.; Taneja, K. L.; and Singer, R. H. Single mRNAs visualized by ultra structural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J Cell Biol 1994, 126: 863-876.
Bast, R.C.; Xu, F.J.; Yu, Y.H.; Barnhill, S.; Zhang, Z.; Mills, G.B. (1998). CA 125: the past and the future. Int J Biol Markers 1998, (4): 179 -187.
Berry, C.C. and Curtis A.S.G. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Physics 2003, 36: 198 - 206
Burda, C.; Chen, X.; Narayanan, R. and El-Sayed, M. A. The chemistry and properties of nanocrystals of different shapes. Chem Rev 2005, 105(4): 1025-1102.
Cao, Y.; Jin, R. and Mirkin, C. A. DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 2001, 123: 7961-7962.
Cao, Y.C.; Jin, R. and Mirkin, C.A.. . Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297: 1536–1540.
Caruso, R.A. and Antonietti, M. Sol-gel nanocoating: An approach to the preparation of structured materials. Chem Mater 2001, 13: 3272-3282.
Chan, W.C.; Maxwell, D.J.; Gao, X.; Bailey, R.E.; Han, M. and Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002, 13: 40-46.
Chen, Y. H. and Yeh, C. S. A new approach for the formation of alloy nanoparticles: Laser synthesis of gold-silver alloy from gold-silver colloidal mixtures. Chem Comm 2001, 15: 371-372.
Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z.Y.; Zhang, H.; Xia, Y.; and Li, X. Immunogold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 2007, 7: 1318–1322.
Cheng, Y.; Ave, C. S.; Meyers, J. D.; Panagopoulos, I.; Fei, B. and Burda, C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 2008, 130: 10643-10647.
Cheng, M.M.; Cuda G.; Bunimovich Y.L.; Gaspari, M.; Heath, R.J.; Hill H.D.; Mirkin, C.A.; Nijdam, A.J.; Terracciano, R.; Thundat, T. and Ferrari, M. Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 2006, 10: 11–19.
Chenjie, X.; Jin, X.; Nathan, K.; Edward W.G; Eugene, C.Y. and Shouheng, S. Monodisperse magnetic nanoparticle coupled with nuclear localization signal peptide for cell-nucleus targeting. Chem Asian J 2008, 3: 548-552.
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G. and Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008, 14: 1310–1316.
Cortie, M.B. and van der Lingen, E. Catalytic gold nanoparticles. Mat forum 2002, 26: 1-14.
de Bono, J. S. and Twelves, C. J. The oral fluorinated pyrimidines. Invest New Drugs 2001, 19: 41-59.
de la Furente, J.M.; Berry, C.C.; Riehle, M.O. and Curtis, A.S. Nanoparticle targeting at cells. Langmuir 2006, 22: 3286–3293.
Debouttiere, P.J.; Roux S.; Vocanson, F.; Billotey C.; Beuf, O.; Reguillon, A. F.; Lin, Y.; Rostaing, S.; Lamartine, R.; Perriat, P. and Tillement, O. Design of gold nanoparticles for magnetic resonance imaging. Adv Funct Mater 2006, 16: 2330–2339.
Dignam, J. J.; Colangelo, L.; Tian, W.; Jones, J.; Smith, R.; Wickerham, D. L. and Wolmark, N. Outcomes among African-Americans and Caucasians in colon cancer adjuvant therapy trials: findings from the National Surgical Adjuvant Breast and Bowel Project. J Natl Cancer Inst 1999, 91: 1933-1940.
Donald et al. Holland-Frei Cancer Medicine 2006, 7th ed.
Dong, S. and Roman, M. Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 2007, 129: 13810-13811.
Eldridge, J. H.; Staas, J. K.; Meulbroek, J. A.; McGhee, J. R.; Tice, T. R. and Gilley, R. M. Biodegradable microspheres as a vaccine delivery system. Mol Immunol 1991, 28: 287-294.
Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L. and Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277: 1078-1081.
El-Sayed, I.H.; Huang, X. and El-Sayed, M.A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2005, 239: 129–135.
Faraday, M. Philosophical transactions of the royal society, London, 1857.
Faraday, M. Experimental relations of gold (and other metals) to light. Philos Trans R Soc London 1857, 147: 145.
Faulk, W. P. and Taylor G. M. An immunocolloid method for the electron microscope. Immunocytochem 1971, 8: 1081-1084.
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K. and Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2005, 22: 969–976.
Ghosh, P.; Han, G.; De, M.; Kim, C. K. and Rotello, V. M. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008, 60: 1307-1315.
Ghoshmoulick, R.; Bhattacharya, J.; Mitra, C.K.; Basak, S. and Dasgupta, A.K. Protein seeding of gold nanoparticles and mechanism of glycation sensing. Nanomedicine 2007, 3: 208–214.
Gibson, J. D.; Khanal, B. P. and Zubarev, E. R. Paclitaxel-functionalized gold ganoparticles. J Am Chem Soc 2007, 129: 11653-11661.
Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P. and Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem Soc Rev 2008, 37: 1783-1791.
Gole, A. and Murphy, C.J. Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed. Chem Mater 2004, 16(19): 3633-3640
Haba, Y.; Kojima, C. and Harada, A. Preparation of poly (ethyleneglycol)- modified poly (amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability. Langmuir 2007, 23: 5243–5246.
Hainfeld, J.F.; Slatkin, D.N.; Focella, T.M. and Smilowitz, H. M. Gold nanoparticles: a new X-ray contrast agent. J Radiol 2006, 79: 248–253.
Haller, C. and Hizoh, I. The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest Radiol 2004, 39: 149–154.
Heath, J.R. and Davis, M.E. Nanotechnology and cancer. Annu Rev Med 2008, 59: 251-265.
Hillyer, J.F. and Albrecht, R.M. Gastrointestinal presorption and tissue distribution of different sized colloidal gold nanoparticles. J Pharm Sci 2001, 90: 1927-1936.
Hirsch, L.R.; Stafford, R.J.; Bankson, J.A.; Sershen, S.R.; Rivera B.; Price.; R.E; Hazle, J.D.; Halas, N.J. and West, J.L. Nanoshell-mediated near infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003, 100: 13549–13554.
Huang, G. T.; Sheu, J. C.; Yang, P. M.; Lee, H. S.; Wang, T. H. and Chen, D. S. Ultrasound-guided cutting biopsy for the diagnosis of hepatocellular carcinoma-a study based on 420 patients. J Hepatol 1996, 25: 334-338.
Huang, X.; El-Sayed, I.H.; Qian, W. and El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006, 128: 2115-2120.
Huang, J.; Zhang, X.; Wang, C.; Wang, L.; LI, H.; Cao, X.; Zhang, A.; Li, X.; Fan, C. and Hu, J. , Size and surface effect of gold nanoparticles (AuNPs) in nanogold-assisted PCR. Surface Rev Let 2008, 15 (6): 757-762.
Jaeger, G. T.; Larsen, S.; Søli, N. and Moe, L. Two years follow-up study of the pain-relieving effect of gold bead implantation in dogs with hip-joint arthritis. Acta Vet Scand 2007, 23: 49-57.
Jain, P.K.; Lee, K.S.; El-Sayed, I.H. and El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 2006, 110: 7238–7248.
Jeanmaire, D. L. and Richard P. Surface Raman electrochemistry part I. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 1977, 84: 1–20.
Jose L.B. and Michel I. S. C. Therapy burden, drug resistance, and optimal treatment regimen for cancer chemotherapy. J Math App in Med Biol 2000, 17: 33-51.
Khlebtsov, N.G.; Trachuk, L.A. and Mel’nikov, A.G. The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium. Opt Spectrosc 2005, 98: 83–90.
Kim, B.; Tripp, S. L. and Wei, A. Self-organization of large gold nanoparticle arrays. J Am Chem Soc 2001, 123: 7955-7956.
Kim, S.; Lim, Y.T.; Soltesz, E.G.; De Grand, A.M.; Lee, J.; Nakayama, A.; Parker, J.A.; Mihaljevic, T.; Laurence, R.G.; Dor, D.M.; Cohn, L.H.; Bawendi, M.G. and Frangioni, J.V. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004, 22: 93–97.
Kim, D.; Park, S.; Lee, J.H.; Jeong, Y.Y. and Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 2007, 129: 7661–7665.
Kimura, Y. Isolation of an anti-angiogenic substance from Agaricus blazei Murill: its antitumor and antimetastatic actions. Cancer Sci 2004, 95 (9): 758–764.
Kodach, L. L.; Bos, C. L.; Duran, N. Peppelenbosch, M. P.; Ferreira, C. V. and Hardwick, J. C. Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogen 2006, 27: 508-516.
Koo, O.M.; Rubinstein, I. and Onyuksel, H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 2005 1: 193–212.
Koprowski, H; Herlyn, M; Steplewski, Z and Sears H.F. Specific antigen in serum of patients with colon carcinoma. Science 1981, 212 (4490): 53–55.
Langereis, S.; Kooistra, H.A.; van Genderen, M.H. and Meijer, E.W. Probing the interaction of the biotin – avidin complex with the relaxivity of biotinylated Gd-DTPA. Org Biomol Chem 2004, 2: 1271–1273.
Lauterbur, P. C. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 1973, 242: 190-191.
Lee, J.H.; Huh, M.; Jun, Y.W.; Seo, J.W.; Jang, J.T.; Song, H.T.; Kim, S.; Cho, E.J.; Yoon, H.G; Suh, J.S. and Cheon, J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 2006, 13: 95-99.
Li, S.; Tseng, W.C.; Stolz, D.B.; Wu, S.P.; Watkins, S.C. and Huang, L., Dynamic changes in the characteristics of cationic lipid vectors after exposure to mouse serum; implications for intravenous lipofection. Gene Ther 1999, 6 : 585–594.
Li, H. and Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 2004, 101: 14036–14039.
Li, P.C.; Wei, C.W.; Liao, C.K.; Chen, C.D.; Pao, K.C.; Wang, C.R.; Wu, Y.N. and Shieh, D.B. Photoacoustic imaging of multiple targets using gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control 2007, 54: 1642-1647.
Longley, D. B.; Harkin, D. P. and Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003, 3: 330-338.
Loo, C.; Lowery, A.; Halas, N.; West, J. and Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005, 5: 709–711.
Lou, ha, M.; Nicolet J.; Zylberberg H.; Sabile A.; Vons C.; Vona G.; Poussin K.; Tournebize M.; Capron F.; Pol S.; Franco D.; Lacour B.; Bréchot C. and Paterlini-Bréchot P. Liver resection and needle liver biopsy cause hematogenous dissemination of liver cells. Hepatol 1999, 29: 879-782.
Lu, C.W.; Hung, Y.; Hsiao, J.K.; Yao, M.; Chung, T.H.; Lin, Y.S.; Wu, S.H.; Hsu, S.C.; Liu, H.M.; Mou, C.Y.; Yang, C.S.; Huang, D.M. and Chen, Y.C. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 2007, 7: 149–154.
Majoros, I.J.; Myc, A.; Thomas, T.; Mehta, C.B. and Baker, J.R. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromol 2006, 7: 572-579.
Martina, M.S.; Fortin, J.P.; Menager, C.; Clement, O.; Barratt, G.; Madelmont, C.G.; Gazeau, F.; Cabuil, V. and Lesieur, S. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 2005, 127: 10676-10685.
Maysinger, D. Nanoparticles and cells: good companions and doomed relationships. Org Biomol Chem 2007, 5: 2335–2342.
McFadden, P. Broadband biodetection: Holmes on a chip. Science 2002, 297: 2075–2076.
Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C. and Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382: 607-609.
Mohanraj, V.J. and Chen Y. Nanoparticles – A review. Trop J Pharmaceut Res 2006, 5 (1): 561-573
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65: 55-63.
Murphy, C.J. and Jana, N.R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 2002 14: 80–82.
Nasongkla, N.; Bey, E.; Ren, J.; Ai, H.; Khemtong, C.; Guthi, J.S.; Chin, S.F.;, Sherry, A.D.; Boothman, D.A. and Gao, J. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 2006, 6: 2427-2430.
Nie, S. and Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275: 1102-1106.
Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama,Y.; Takahashi,H.; Kawano,T.; Katayama,Y. and Niidome,Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 2006, 114: 343–347.
Otsuka, H.; Akiyama, Y; Nagasaki, Y. and Kataoka, K. Quantitative and reversible lectin- induced association of gold nanoparticles modified with lactosylmercaptopoly (ethylene glycol). J Am Chem Soc 2001, 123: 8226–30.
Oyelere, A.K.; Chen, P.C.; Huang, X.; El-Sayed, I. H. and El-Sayed, M. A. Pepetide-conjugated gold nanorods for nuclear targeting. Bioconjug Chem 2007, 18: 1490–1497.
Paciotti, G.F.; Kingston, D.G.I. and Tamarkin, L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumortargeted drug delivery vectors. Drug Dev Res 2006, 67: 47–54.
Petri-Fink, A. and Hofmann H. Superparamagnetic iron oxide nanoparticles (SPIONs): from synthesis to in vivo studies--a summary of the synthesis, characterization, in vitro, and in vivo investigations of SPIONs with particular focus on surface and colloidal properties. IEEE Transact Nanobiosci 2008, 6(4): 289-297.
Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W. and Jahnen-Dechent. W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3: 1941–1949.
Polak, J. M. and Noorden, S. V. An introduction to immunocytochemistry: current techniques and problems. Oxford University Press, New York. 1988.
Prato, M.; Kostarelos, K. and Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 2008, 41: 60-68.
Qian, X. In vivo tumor targeting and spectroscopic detection with surface- enhanced Raman nanoparticle tags. Nature Biotech 2008, 26 (1): 114-125.
Ragusa, A.; Garcia, I. and Penades, S. Nanoparticles as nonviral gene delivery vectors. IEEE Trans Nanobioscience 2007, 6: 319–330.
Rawat, M.; Singh, D. and Saraf, S. Nanocarriers: Promising vehicle for bioactive drugs. Biol Pharm Bull 2006, 29: 1790–1798.
Raynal, I.; Prigent, P. and Peyramaure, S. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 2004, 39: 56–63.
Roger, W.J. and Basu, P. Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Atherosclerosis 2005, 178: 67–73.
Rosi, N. L. and Mirkin, C. A. Nanostructures in biodiagnostics. Chem Rev 2005, 105: 1547-1562.
Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S. and Mirkin, C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312: 1027-1030.
Roussel, F.; Dalion, J. and Benozio, M. The risk of tumoral seeding in needle biopsies. Acta Cytol 1989, 33: 936-939.
Sahoo, S.K. and Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003, 8: 1112–1120.
Sahoo, S.K.; Parveen, S. and Panda, J.J. The present and future of nanotechnology in human health care. Nanomed 2007, 3: 20–31.
Schilsky, R. L. Biochemical and clinical pharmacology of 5-fluorouracil. Oncology 1998, 12: 13-18.
Selvaraj, V. and Alagar, M. Analytical detection and biological assay of antileukemic drug 5-fluorouracil using gold nanoparticles as probe. Int J Pharm 2007, 337: 275-281.
Sharma, P.; Brown, S.; Walter, G.; Santra, S. and Moudgil, B. Nanoparticles for bioimaging. Adv Colloid Interface Sci 2006, 123(6): 471–485.
Shaw III, F.C. Gold-based therapeutic agents. Chem Rev 1999, 99: 2589–2600.
Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R. and Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 2005, 21: 10644–10654.
Skrabalak, S. E.; Au, L., Lu, X.; Li, X. and Xia, Y. Gold nanocages for cancer detection and treatment. Nanomed 2007, 2: 657-668.
Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M. and Parak, W. J. Biological applications of gold nanoparticles. Chem Soc Rev 2008, 37: 1896-1908.
Sullivan, D. C. and Ferrari, M. Nanotechnology and tumor imaging: seizing an opportunity. Mol Imaging 2004, 3: 364-369.
Summers, D. H. Care of the terminal patient. Nurs Times 1979, 75: 790-798.
Sun, R.W.; Ma, D.L.; Wong, E.L. and Che, C.M. Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans 2007, 43: 4884–4892.
Tkachenko, A.G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M.F.; Franzen, S. and Feldheim, D.L. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 2003, 125: 4700-4701.
Tom, R. T.; Suryanarayanan, V.; Reddy, P. G.; Baskaran, S. and Pradeep, T. Ciprofloxacin-protected gold nanoparticles. Langmuir 2004, 20: 1909-1914.
Tsai, S. H.; Liu, Y. H.; Wu, P. L. and Yeh , C. S., Preparation of Au-Ag-Pd trimetallic nanoparticles and their application as catalysts. J Mater Chem 2003, 13 : 978-980.
Tsai, C.S.; Yu T.B. and Chen, C.T. Gold nanoparticle-based competitive colorimetric assay for detection of protein–protein interactions. Chem Commun 2005, 34: 4273–4275.
Tsai, C. Y.; Shiau A. L.; Chen S. Y.; Chen Y. H.; Cheng P. C.; Chang M. Y.; Chen D. H.; Chou C. H.; Wang C. R. and Wu C. L.. Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheum 2007, 56(2): 544-554.
Ulukaya, E.; Colakogullari, M. and Wood, E. J. Interference by anti-cancer chemotherapeutic agents in the MTT-tumor chemosensitivity assay. Chemotherapy 2004, 50: 43-50.
van Vlerken, L. E. and Amiji, M. M. Multi-functional polymeric nanoparticles for tumor-targeted drug delivery. Expert Opin Drug Deliv 2006, 3: 205-216.
Villalonga, R.; Cao, R. and Gragoso, A. Supramolecular chemistry of cyclodextrin in enzyme technology. Chem Rev 2007, 107: 3088-3116.
Visaria, R.K.; Griffin, R.J.; Williams, B.W.; Ebbini, E.S.; Paciotti, G.F.; Song, C.W. and Bischof, J.C. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Mol Cancer Ther 2006, 5: 1014–1020.
Whitesides, G. M., The 'right' size in nanobiotechnology. Nat Biotechnol 2003, 21: 1161-1165.
Wu, P. C.; Wang, W. S.; Huang, Y. T.; Sheu, H. S.; Lo, Y. W.; Tsai, T. L.; Shieh, D. B.; and Yeh, C. S. Porous iron oxide based nanorods developed as delivery nanocapsules. Chemistry 2007, 13: 3878-3885.
Yang, J.; Eom, K.; Lim, E.; Park, J.; Kang, Y.; Yoon, D. S.; Na, S.; Koh, E. K.; Suh, J.; Huh, Y.; Kwon, T. Y. and Haam, S. In situ detection of live cancer cells by using bioprobes based on Au nanoparticles. Langmuir 2008, 24: 12112-12115.
Yeh, H.C.; Ho, Y.P. and Wang, T.H. Quantum dot - mediated biosensing assays for specific nucleic acid detection. Nanomedicine 2005, 1: 115-121.
Yoo, J.S. Selective gas-phase oxidation at oxide nanoparticles on micro porous materials. Spr Sci Bus Media Catal Today 1998, 41: 409–432
Zhou, Y.; Wang, S.; Zhang, K. and Jiang, X. Visual detection of copper (II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew Chem Int Ed 2008, 47: 7454-7456.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44332-
dc.description.abstract金奈米粒子因具備特異的理化性質和良好的生物相容性,而曾被應用於音波呈像的增強、基因的運送及光誘導的加熱治療等。然而其生物特性所知仍有限。本實驗中我們則以不同的製程生產出球形 (AuNPs) 和桿狀(AuNRs)兩種大小和形狀相異之金奈米,且作不同之表面修飾,並分別於體外及活體評估其生物性質及探索其醫學上之應用性。在細胞毒性的實驗中,發現表面修飾聚乙二醇 (PEG) 後的金奈米較之原始奈米粒子具有較低的細胞毒性。此外,將金奈米由BALB/c品系之小鼠尾靜脈注射後,藉由原子吸光光譜檢測其在器官分佈情形得知,金奈米粒子主要堆積在脾臟其次是肝臟,而在心臟、肺臟及腎臟的量都相對得少,並且其生物分布與奈米形狀、大小、表面修飾皆有顯著相關。在對尿液和糞便的檢測中也發現,注射後24小時後,這些奈米金粒子能持續從腎臟和消化道排出體外。這些生物相容性和生物降解性的觀察結果,將有助於我們對金奈米的藥物動力及毒性的了解,並藉以設計更佳之奈米載體。
此外,我們進一步設計並評估以金奈米為載體之癌症化學治療的新平台。由上述實驗發現球形金奈米之生物相容性最佳,因此以球形金奈米為平台,藉由端修飾硫醇 (SH) 的寡核苷酸與金奈米的共價鍵結,並以鹽離子梯度環境控制,成功的將寡核苷酸與奈米金作高密度自組裝結合。我們並以DNA雙股間的氫鍵特異結合方式,來鍵結類核苷酸的抗癌藥物- 5-FU。實驗結果顯示表面經核甘酸修飾過的金奈米比沒修飾過者能攜帶更多5-FU,並且隨著金奈米直徑從 25 nm 增加到35nm時,表面電荷也由-9.58降低到-21.66mv,顯示更多的寡核苷酸與之結合。在磷酸緩衝液的酸鹼值為環境改變之藥物釋放試驗中,發現藥物由金奈米釋出程度與環境酸鹼指數有正相關性。此種特性顯示,這類新穎的奈米載體藥物聯結方式,在發展對後半段消化道的病變之投藥系統上具有相當的潛力,因其微環境傾向由酸性轉鹼性之故也。我們更進一步在大腸癌細胞株藉由四唑鹽比色法 (MTT) 檢視其癌細胞之毐殺特性,結果顯示金奈米-抗癌藥物的結合體對癌細胞的毒殺能力隨著劑量增加而加強,且確實比單獨投藥效果來得好。此種金奈米藥物的結合,可藉著環境條件的調控來釋放藥物,極適合以口服的方式來對結腸癌進行化學治療。整體結果顯示金奈米具備相當好的生物相容性和生物降解性,且可攜帶分子到特定區,未來結合金奈米之超音波顯影特性,將能達到癌症的診斷和治療之新穎應用,也能發展成為相當優異且有極具潛力的奈米運送者。
zh_TW
dc.description.abstractGold nanoparticles (AuNPs) with its distinctive physical and chemical properties and well as biocompatibility have been utilized in the fields of photoacoustic imaging, delivery of genes and laser induced photothermal therapy in recent years. In this study, we fabricated two types of gold-nanoparticles with various surface modifications. Their biological properties and potential biomedical applications were explored. In the in vitro biocompatibility evaluation, those PEG modified nanoparticles exhibit better compatibility in the MTT assays. The in vivo biodistribution analysis was performed using BALB/c mice through I.V. injection via tail vein followed by Atomic Absorption Spectroscopy analysis. We discovered that most nanoparticles accumulated in the spleen and liver, and few of them were found in heart, lung and kidney. The nanoparticles were then excreted via kidney and gastrointestinal tract and can be detected in urine and feces 24 hr after injection. The conformation, size and surface modifications all contribute to their in vivo biodistribution. Together with the results from biocompatibility, biodegradation and biodistribution will contribute to our understanding of the pharmacokinetic and toxicity of nanoparticles and to develop better nano carrier.
To evaluate the chemotherapeutic efficiency of our AuNPs, oligonucleotide conjugated AuNPs was applied as the carrier for simultaneous DNA and anti-cancer nucleoside delivery. The polynucleotide was modified with thiol group in the 5’ end. Under a salt gradient, these oligonucleotides form high-density self-assembled monolayer on the particle surface. The nanoparticle-oligonucleotide complex presented higher capacity in carrying 5-FU anti-cancer compounds than the original gold particles. The hydrodynamic size of the AuNPs increased from 25 to 35nm with an increase in the negative surface charge from -9.58 to -21.66mV after polynucleotide conjugation and drug loading. A positive association between environmental pH and the drug release was observed in PBS, which implied their potential use in the controlled localized drug release in the lower GI tract. The MTT assay revealed a dose dependent cytotoxicity of the nanoparticle- oligonucleotide-anti-cancer drug complex to colon cancer cell line than the free compounds of the same dosage. This new polynucleotide-AuNPs complex presented great potential to be used as the environmental controlled anti-cancer nanocapsule, especially for per oral colon cancer chemotherapy. As gold nanoparticles have been shown to be a good photoacoustic imaging contrast agent, their potential as an excellent nano vehicles for combined molecular imaging and cancer drug are highly expected.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:51:33Z (GMT). No. of bitstreams: 1
ntu-98-D87225003-1.pdf: 11889819 bytes, checksum: 5c11ebdcd46121e8b5b560f306ead0fe (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書…………………………………………………….………… i
誌謝………………………………………………………………….…………… ii
中文摘要 .…………………………………………………….…………………. viii
Abstract ……………………………………………………….………...……….. x
Chapter 1: Introduction ……………………..…………………………….…… 1
1.1 Nanotechnology …………………………..………………………….……… 1
1.1.1 The general characteristics of metallic nanoparticles ………………...……. 2
1.1.1.1 The Surface effect …………………………………………..…….……… 2
1.1.1.2 The Magnetic property …………………………………..………….……. 3
1.1.1.3 The Catalytic property ……………………………………...…………….. 3
1.1.1.4 The Optical property ……………………………………...………………. 4
1.2 Nanobiomedicine and Cancer ………………………...…………………….. 4
1.2.1 Cancer epidemiology ……………………...…………………………………6
1.2.2 Cancer diagnosis ………………………………………...………………….. 7
1.2.3 Cancer therapy ………………………………………...……………………. 8
1.2.4 The challenge for cancer diagnosis …………………………………………. 9
1.2.5 The challenge for cancer therapy …………………………………………… 10
1.3 Gold nanoparticles (AuNPs) ………………………….………………..…… 11
1.3.1 The unique properties of AuNPs …………………………………...……….. 11
1.3.1.1 Surface plasmon resonance (SPR) …………………………………………11
1.3.2.2 Surface-enhanced Raman scattering (SERS) ………………………………11
1.3.3.3 Surface modification ……………………………………………………….12
1.3.2 The applications of AuNPs in Nanobiomedicine …………………………….12
1.3.2.1 Optical bioimage …………………………………………………………...13
1.3.2.2 The magnetic resonance imaging (MRI) …………………………………..14
1.3.2.3 The computed tomography (CT) ………………………………………..…15
1.3.2.4 Photothermal therapy ……………………………………………….…….. 15
1.3.2.5 Delivery platforms …………………………………………………………16
1.4 The development of noninvasive carrier for cancer drug delivery ...…….. 17
Chapter 2: Materials and Methods …..…………………...……………………. 20
2.1 Preparation of citrate capped gold nanospheres (AuNPs) and gold nanorods (AuNRs) ………………………………………...……..................................... 20
2.2 In vitro cytotoxicity analysis of AuNRs ………………………….....……...... 20
2.3 In vivo organ distribution of gold nanoparticles …………………......……..... 20
2.4 The excretion study of gold nanoparticles ……………………………...….… 21
2.5 Preparation of polynucleotide conjugated AuNPs ……………...……….…… 21
2.6 Measuring 5-FU loaded on Au-polynucleotide complex ……………….……. 22
2.7 5-FU releasing analysis …………………………………………………...….. 23
2.8 In vitro cancer cytotoxicity analysis of the 5-FU loaded Au-
polynucleotide complex ………………………………………..……………. 23
Chapter 3: Results ……...…………………...…………...……………………… 25
3.1 Physical properties of the gold nanoparticles ...…………………...………….. 25
3.2 Cellular uptake and cytotoxicity analysis of AuNRs ……..................………... 25
3.3 Organ distribution of gold nanoparticles …………………..................…...….. 26
3.4 Bio-excretion of gold nanoparticles …..…………………..……………...…… 26
3.5 The characterization of Au-polynucleotide nano carrier ...………………….... 26
3.6 The 5- FU absorptive efficacy of Au-polynucleotide nano carrier ………….... 27
3.7 The drug releasing and chemotherapeutic efficacies for colorectal cancer by the Au-polynucleotide nano carrier ………………………………………........… 28
Chapter 4: Discussion …..……………………………………….……………..... 29
4.1 Size and shape dependent properties of gold nanoparticles …………...……... 29
4.2 Biodistribution of PEG-coated gold nanoparticles …………………….…....... 31
4.3 Bio-excretion of gold nanoparticles ………….……………....................…..… 31
4.4 Characteristics and 5-FU loading ability of Au-polynucleotide nano carrier .... 31
4.5 Environmental control of drug releasing system ………...…………...………. 32
4.6 Improved chemotherapeutic efficacy for colorectal cancer by the Au-
polynucleotide nano carrier …………………………..…...………………...… 33
Chapter 5: Conclusion ….…...………………...……………...…………...……. 35
Figures ………………………………………………………..…………...……... 36
References ……………………………………………………...………….....….. 46
Appendices …………………………………………………………………….… 56
Curriculum Vitae ………………………………………………………...…...… 60
dc.language.isoen
dc.title合成以表面修飾之金奈米粒子的生物特性及在癌症治療上的研究評估zh_TW
dc.titleThe Biological Properties and Cancer Therapeutic Applications of Artificially Synthesized Gold Nanoparticles with Surface Modificationsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.coadvisor謝達斌(Dar-Bin Shieh)
dc.contributor.oralexamcommittee吳益群,陳俊宏,辛致煒
dc.subject.keyword金奈米,寡核&#33527,酸,藥物攜帶者,癌症,zh_TW
dc.subject.keywordgold nanoparticles,drug carrier,nucleoside,cancer,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2009-08-05
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
11.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved