Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44325
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊晴光(Ching-Kuang C. Tzuang)
dc.contributor.authorWei-Cheng Xiaoen
dc.contributor.author蕭偉成zh_TW
dc.date.accessioned2021-06-15T02:51:10Z-
dc.date.available2019-08-04
dc.date.copyright2009-08-13
dc.date.issued2009
dc.date.submitted2009-08-05
dc.identifier.citation[1] M. I. Skolnik, Ed., Radar Handbook, McGraw-Hill, New York, 2nd Edition, 1990.
[2] N. Levanon and E. Mozeson, Radar Signals, John Wiley & Sons, New York, 2004.
[3] M. R. Bell, “Information theory and radar waveform design,” IEEE Transactions on Information Theory, vol. 39, pp. 1578-1597, September 1993.
[4] W. H. Haydl, M. Neumann, L. Verweyen, A. Bangert, S. Kuddazus, M. Schlectweg, A. Hülsmann, A. Tessmann, W. Reinert, and T. Krems, “Single-chip coplanar 94-GHz FMCW radar sensors”, IEEE Microwave and Guided wave Letters, vol. 9, no.2 pp.73-75, Feb. 1999.
[5] K. W. Chang, G. S. Dow, H. Wang, T. H. Chen, K. Tan, B. Allen, and J. Berenz, “A W-band single-chip transceiver for FMCW radar,” in IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp, pp. 41-44, June 1993.
[6] W. H. Haydl, M. Neumann, L. Verweyen, A. Bangert, S. Kuddazus, M. Schlectweg, A. Hülsmann, A. Tessmann, W. Reinert, and T. Krems, “Single-chip coplanar 94-GHz FMCW radar sensors”, IEEE Microwave and Guided wave Letters, vol. 9, no.2 pp.73-75, Feb. 1999.
[7] A. Tessmann, L. Verweyen, M. Neumann, H. Masster, W. H. Haydl, A. Hülsmann, M. Schlechtweg, “A 77 GHz GaAs pHEMT transceiver MMIC for automotive sensor applications,” in Proc. 1999 IEEE GaAs IC Symp., Dig., pp. 207-210.
[8] H. J. Siweris, A. Werthof, H. Tischer, and U. Schaper, “Low-Cost GaAs pHEMT MMIC’s for Millimeter-Wave Sensor Applications,” IEEE Trans. on Microwave Theory and Techniques, vol 46, no. 12, Dec. 1998.
[9] K. Yhland and C. Fager, “A FET Transceiver Suitable for FMCW Radars,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 9, Sept. 2000.
[10] Dennis Buss, Brian L. Evans, Jeff Bellay, William Kenik, Baher Haroun, Dirk Leipold, Den Maggio, Jau-Yuann Yang, and Ted Moise ; “SOC CMOS Technology for Personal Internet Product” ,IEEE Trans. ELECTRON DEVICES, vol. 50, no. 3, pp. 546-556, Mar. 2003.
[11] Taiwan Semiconductor Manufacturing Co., LTD. Design Manual.
[12] F.O. Eynde et al, “A Fully Integrated Single-Chip Sc for Bluetoth,” IEEE ISSCC tech. Dig., pp.196-197, 2001.
[13] G. Gramegna, P. G. Matto, M. Losi, S. Das, M. Franciotta, N. G. Bellantone, M. Vaiana, V. Mandara, and M. Paparo, “A 56-mW 23-mm2 Single-Chip 180-nm CMOS GPS Receiver with 27.2-mW 41-mm2 Radio” IEEE JSSC, vol. 41, no.3, March 2006.
[14] G. Chien, W. Feng, Y. A. Hsu, L. Tse, “A 2.4 GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application,” ISSCC. Dig Tech. Paper, Feb. 2003.
[15] L. Perraud et al., “ A dual-band 802.11a/b/g radio in 0.18-um CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 94-95, 2004.
[16] Z. Xu, S. Jiang, Y. Wu, Heng-yu Jian, G. Chu, K. Ku, P Wang, N. Tran, Q. Gu, Ming-zhi Lai, C. Chien, M. F. Chang, P. D. Chow, “A Compact Dual-Band Direct-Conversion CMOS Transceiver for 802.11a/b/g WLAN,” ISSCC Dig. Tech. Papers, pp. 98-99, Feb. 2005.
[17] R. Ahola et al.,” A single chip CMOS transceiver for 802.11 a/b/g WLANs,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 92-93, 2004.
[18] C.-K. C. Tzuang, C.-H. Chang, H.-S. Wu, S. Wang, S.-X. Lee, C.-C. Chen, C.-Y. Hsu, K.-H. Tsai, J. Chen, “A X-Band CMOS Multifunction-Chip FMCW Radar,” 2005 IEEE MTT-s Int. Microwave Symp. Dig., pp. 2011-2014, 11-16 June 2006.
[19] C. K. C. Tzuang, C. C. Chen, and W. Y. Chien, “LC-free CMOS Oscillator Employing Two-dimensional Transmission Line,” in Proc. 2003 IEEE Int. frequency Control Symp. And PDA Exhibition and the 17th European Frequency and Time Forum, pp. 487-489, 2003.
[20] Sen Wang, Kun-Hung Tsai, Kuo-Ken Huang, Si-Xian Li, Hsien-Shun Wu, and Ching-Kuang C. Tzuang, “Design of X-Band RF CMOS Transceiver for FMCW Monopulse Radar,” to be appeared in IEEE Trans. Microwave Theory and Tech., Jan. 2009.
[21] B. Razavi, RF Microelectronics, PRENTICE HALL, 1998.
[22] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE j. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[23] T. Lee and A. Hajimiri, “A general theory of phase noise in electrical oscillators,” IEEE j. Solid-State Circuits, vol. 33, no. 2, pp. 928, Mar. 1998.
[24] D. B. Lesson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
[25] H.-S. Wu, H.-J Yang, C.-J. Peng and C.-K. C. Tzuang, “Miniaturized microwave passive filter incorporating multilayer synthetic quasi-TEM transmission line,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 9, pp. 2713-2720, Sip. 2005.
[26] C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and Johnsea Chen, “CMOS Active Bandpass Filter Using Compacted Synthetic Quasi-TEM Lines at C-Band,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 12, pp. 4548-4555, Dec. 2006.
[27] M.-J. Chiang, H.-S. Wu and C.-K. C. Tzuang, “Design of synthetic quasi-TEM transmission line for CMOS compact integrated circuit,” IEEE Trans. Microwave Theory and Tech., vol. 55, no. 12, part1, pp. 2512-2520, Dec. 2007.
[28] H.-H. Wu, H.-S. Wu and C.-K. C. Tzuang, “Synthesized high-impedance CMOS Thin-Film transmission line,” in Topical Meeting on Silicon Monolithic Integrated Circuits in RF System Dig., Sep. 8-10, pp. 302-304, 2004.
[29] S. Wang and C.-K. C. Tzuang, “Compacted Ka-band CMOS rat-race hybrid using synthesized transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1023-1026, 2007.
[30] C.-C. Chen and C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 6, pp. 1637-1647, Jun. 2004.
[31] Meng-Ju Chiang, “Design and Application of CMOS Synthetic Quasi-TEM Transmission Line,” Doctoral Dissertation, NTU, January, 2008.
[32] Sen Wang, “ Design of Synthetic Quasi-TEM Transmission-Line-Based CMOS Transceiver for Implementation of FMCW Radar System,” Doctoral Dissertation, NTU, January, 2009.
[33] R. L. Bunch, and S. Raman, “Large-Signal Analysis MOS Varactors in CMOS –Gm LC VCOs,” IEEE J. Solid-State Circuits, vol. 38, Aug. 2003.
[34] P. Andreani and . Mattisson, “On the Use of MOS Varactors in RF VCO’s,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[35] R. G. Freitag, “A unified analysis of MMIC power amplifier stability,” in IEEE MTT-S int. Microwave Symp. Dig., pp. 297-300, 1992.
[36] R. G. Freitag, S. H. Lee, D. M. Krafcsil, D. E. Dawson, and J. E. Degenford, “Stability and improved circuit modeling considerations for high power MMIC amplifiers,” in IEEE Microwave and Milimeter-wave Monolithic Circuits Symp., pp. 125-128, 1988.
[37] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE J. Solid-State Circuits, vol. 33, pp. 743-751, May 1998.
[38] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, pp. 620-628, Apr. 2001.
[39] A. M. Niknejad and R. G. Meyer, “ Analysis, design and optimization of spiral inductors and transformers for Si RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, pp. 1470-1481, Oct. 1998.
[40] Meng-Ju Chiang, Hsien-Shun Wu, and Ching-Kuang C. Tzuang, “ A CMOS 3-dB Directional Coupler Using Edge-Coupled Meandered Synthetic Transmission Lines,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 771-774, June. 2008.
[41] Yu-Hsiu Wu, Hsien-Shun Wu, Meng-Ju Chiang, and Ching-Kuang C. Tzuang, “24-GHz 0.18-um CMOS Four-stage Transmission Line-Based Amplifier with High Gain-Area Efficiency,” Asia Pacific Microwave Conference., pp. 1-5, Dec. 2008.
[42] A. Tasic, W. A. Serdijn, and J. R. Long, “design of multistandard adaptive voltage-controlled oscillators,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 556-563, Feb. 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44325-
dc.description.abstract本論文利用0.18微米互補性金屬氧化物半導體(CMOS)製程,提三個24GHz微波壓控振盪器應用在K頻段之調頻連續波(FMCW)雷達系統。電路設計方面,三個壓控振盪器皆包含兩個調頻機制,其一為粗調機制,具有較大調頻範圍,用來修正震盪頻率並可與鎖相迴路結合,另一為微調機制,設計較小的調頻範圍,以符合系統調頻之應用。在第三章中,第一個壓控振盪器採用二倍頻訊號輸出,並與後端四級放大器結合,以提供足夠的本地訊號輸出功率給後端混頻器使用;第二個壓控振盪器則為基頻震盪器,並包含一溫度補償之偏壓電路,降低壓控振盪器之震盪頻率隨溫度變異的程度。最後,利用雜訊匹配技巧,提出一低相位雜訊震盪器。被動元件方面,使用互補式金屬圖案所構成合成傳輸線(CCS TL)、MOM電容、MOS 可變電容。zh_TW
dc.description.abstractThis thesis presents a 24 GHz microwave voltage control oscillator for K-band Frequency Modulated Continuous Wave (FMCW) Radar System which is realized in 0.18 um CMOS process. At circuit design level, three VCOs have two control voltages for tuning frequency. One is coarse control, which has larger tuning region for revising oscillating frequency. Another is fine control, which has smaller tuning region for frequency modulation of FMCW radar. In chapter 3, A second harmonic VCO including four stage amplifier provides sufficient LO signal for mixer. Secondary, a fundamental VCO including temperature compensated bias circuit reduces the variation of the oscillating frequency with temperature. Finally, a low phase noise VCO by noise matching design is presented. Complementary-conducting-strips (CCS) transmission line, Metal-oxcide-metal capacitors and MOS varactors are used as passive components.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:51:10Z (GMT). No. of bitstreams: 1
ntu-98-R96942071-1.pdf: 2293647 bytes, checksum: bce27b1af72d9bcdd856457dec728022 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Background and Research Motivation 1
1.2 Thesis Organization 6
Chapter 2 Design Considerations of Voltage Control Oscillator 7
2.1 Introduction 7
2.2 Fundamental of VCO 7
2.2.1 LC VCO mechanisms 7
2.2.2 Tuning Issues 13
2.2.3 Concepts of Phase Noise 14
2.3 Passive Components 16
2.3.1 Complementary-Conducting-Strip Transmission Line 16
2.3.2 Varactors 19
Chapter 3 Second Harmonic Voltage Control Oscillator 23
3.1 Mode Analysis of Second Harmonic Oscillator 23
3.2 CCS TL Based Inductor 26
3.3 Voltage Control Oscillator Design 30
3.4 Measurement Result and Modification 34
Chapter 4 Temperature Compensated Voltage Control Oscillator 41
4.1 Temperature Compensated Bias Circuit 41
4.2 Voltage Control Oscillator Design 43
4.3 Measurement Result 46
Chapter 5 Low Phase Noise Voltage Control Oscillator 51
5.1 Analysis of the Proposed VCO 51
5.2 Simulated Results 54
5.3 Measurement Result 58
Chapter 6 Conclusion 61
REFERENCE 64
dc.language.isoen
dc.titleK 頻段調頻連續波雷達系統之壓控振盪器設計zh_TW
dc.titleDesign of Voltage Control Oscillator for K-band FMCW Radar Systemen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許博文,陳仲羲,柏小松
dc.subject.keyword壓控振盪器,調頻連續波雷達,zh_TW
dc.subject.keywordVoltage Control Oscillator,FMCW,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2009-08-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
2.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved