請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44300完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖振鐸(Chen-Tuo Liao) | |
| dc.contributor.author | Yong-Yu Chen | en |
| dc.contributor.author | 陳詠妤 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:49:47Z | - |
| dc.date.available | 2009-08-11 | |
| dc.date.copyright | 2009-08-11 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-05 | |
| dc.identifier.citation | 1. 國立科學工藝博物館 http://biotech.nstm.gov.tw/home.asp.
2. Bailey, R. A. (2007). Designs for two-colour microarray experiments. Journal of the Royal Statistical Society: Series C (Applied Statistics), 56(4): 365-394. 3. Bechhofer, B. E. and Tamhane, A. C. (1981). Incomplete block designs for comparing treatments with a control: general theory. Technometrics, 23, 45-57. 4. Callow, M. J., Dudoit, S., Gong, E. L., Speed, T. P., and Rubin, E. M. (2000). Microarray expression profiling identifies genes with altered expression in HDL-deficient mice. Genome Res, 10(12):2022-2029. 5. Chai, F. S., Liao, C. T., and Tsai, S. F. (2007). Statistical Designs for Two-Color cDNA Microarray Experiments. Biometrical Journal, 49(2): 259-271. 6. Churchill, G. A. (2002). Fundamentals of experimental design for cDNA microarrays. Nature Genetics, 32 Suppl:490-495. 7. Dey, A. (1993). Robustness of block designs against missing data. Statistica Sinica, 3,219-231. 8. Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J. M. (1999). Expression profiling using ”cDNA” microarrays. Nature Genetics, 21(1 Suppl):10-14. 9. Fries, A. and Hunter, W. G. (1980). Minimum aberration 2k−p designs. Techometrics, 22: 601-608. 10. Gosh, S. (1979). On robustness of designs against incomplete data. Sankhya B, 40, 204-208. 11. Kerr, M. K. (2003). Design considerations for efficient and effective microarray studies. Biometrics, 59(4):822-828. 12. Kerr, M. K. and Churchill, G. A. (2001). Experimental design for gene expression microarrays. Biostatistics, 2(2):183-201. 13. McKay, B. (1991). “Nauty”, “makeg” and “geng”. C-program avaliable at http://cs.anu.edu.au/prople14. Nguyen, D. V., Wang, N., and Carroll, R. J. (2004). Evaluation of missing value estimation of microarray data. Journal of Data Science, 2:347-370. 15. Notz, W. I. (1985). Optimal design for treatment-control comparison in the presence of two-way heterogeneity. Journal of Statistical Planning and Inference, 12, 61-73. 16. Shah, K. R. and Sinha, B. K. (1989). Theory of Optimal Designs. Springer-Verlag, Heidelberg. 17. Simon, R., Radmacher, M. D., and Dobbin, K. (2002). Design of studies using DNA microarrays. Genetic Epidemiol, 23(1):21-36. 18. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6):520-525. Evaluation Stadies. 19. Tsai, S. F., Liao, C. T., and Chai, F. S. (2006). Statistical designs for two-color microarray experiments involving technical replication. Computational Statistics & Data Analysis, 51, 2078-2090. 20. Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J., and Speed, T. P. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res, 30(4):e15. 21. Yang, Y. and Speed, T. (2002). Design issues for cDNA microarray experiments. NatRev Genet, 3(8):579-588. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44300 | - |
| dc.description.abstract | 微陣列晶片是近十年來興起並廣泛應用的生物技術。相較於傳統的序列表現量檢定技術,微陣列晶片能夠同時檢測上萬個mRNA片段的表現量,大幅提昇了實驗的效率。在應用上,為生物學家找尋功能基因(functional genes)及基因調控網路(gene regulatory network)提供強而有力的協助。相對於微陣列晶片的檢測能力,其高維度的基因表現資料(gene expression data)既龐大且複雜。在微陣列試驗過程中,觀測值發生缺失是難以避免的狀況。對於缺失的資料,有兩種常見的處理方式:(1)對缺值進行估計,再以全體資料進行分析。(2)刪去缺值,利用剩下的數據進行分析。目前已經有許多研究探討如何在資料分析前進行缺值估計(Troyanskaya et al., 2001; Nguyen et al., 2004)。而本篇研究主要是利用試驗設計的方法,針對後者作處理,也就是刪去缺值的處理方式進行討論。
在雙染色cDNA微陣列實驗的系統下,本研究考量了忽略染劑效應以及將染劑效應納入變異來源的兩種不同模型,各模型分別再以比較實驗(comparative experiments)及處理對照實驗(test-control experiments)這兩種常見的實驗類型逐一探討。 一個適當的試驗設計可以協助實驗者在有限的資源下進行實驗,並獲得最大的資訊解答欲知的問題。在有資料缺失的限制下,刪去發生缺值的晶片資料後,一個不完全區集設計仍維持所有對比(contrast)的可估性(estimable),即稱為一個符合穩健性第一準則(robustness criterion I)的設計(Goash, 1979)。本研究中,將穩健性第一準則的概念進行延伸,定義缺失型態(flawness pattern)、喪失連接性之最小缺失晶片數(breakdown number)以及維持連接性之剩餘設計的比例(proportion of connected residual designs)作為一設計穩健程度的判定指標。並利用以上三種指標,比較不同設計之間的穩健程度高低,最後將判定結果及建議設計列於本文附表,提供微陣列實驗者參考利用。 | zh_TW |
| dc.description.abstract | Microarray has been an increasingly popular biotechnology in measuring gene expression of a biological sample. In contrast to the traditional methods, it enables biologists to evaluate ten thousands of mRNA sequences in expression simultaneously. Statistical methods developed for such large-scale and complex data from microarray experiments have been intensively explored within recent years. On the other hand, the studies on the design issues need further investigation. In the current study, we focus on one of the important design issues in two-color mciroarray experiments. We propose a new criterion to evaluate the robustness of designs against missing data. Furthermore, we construct the robust designs suitable for the two-color microarray experiments.
Missing data are frequently confronted during a microarray experiment. Conventionally, one performs analysis either estimating or ignoring missing data. However, we are currently interested in selection of good designs that may provide high robustness against missing data. We first present two linear models in characterizing the data of a two-color microarray experiment according to whether or not take into account the variation between two fluorescent dyes. Then we seek for the robust designs based on the proposed models and the robustness criterion. The criterion we proposed is to compute the proportions of the connected residual designs for the class of block designs of size two and that of row-column designs with two rows. The robust designs are defined as those who have the maximal proportions if a number of blocks (columns) are missing. In specificity, we investigate two kinds of experiments in this thesis, including treatment comparative experiments and test-control experiments. Two classes of practical designs are respectively proposed for these two kinds of experiments using two-color microarrays. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:49:47Z (GMT). No. of bitstreams: 1 ntu-98-R96621201-1.pdf: 1062707 bytes, checksum: 420f8cc32278e6d629ac4390634bdd67 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 1 前言
1.1 微陣列實驗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 試驗設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 忽略染劑效應下的比較實驗 2.1 線性模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 對比及可估性 . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 設計穩健性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 設計穩健程度評估 . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 評估指標的計算 . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 尋找MFD/UMFD演算法 . . . . . . . . . . . . . . . . . . . . . 17 3 忽略染劑效應下的處理-對照實驗 3.1 線性模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 考量染劑效應下的比較實驗 4.1 線性模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.1 計算缺失型態 . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 考量染劑效應下的處理-對照實驗 5.1 線性模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 結果討論與未來研究 6.1 區集設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.1.1 缺失型態的意義 . . . . . . . . . . . . . . . . . . . . . . . 32 6.1.2 命題2.1的意義 . . . . . . . . . . . . . . . . . . . . . . . 33 6.1.3 晶片數與處理數的關係 . . . . . . . . . . . . . . . . . . . . 34 6.1.4 染劑安排 . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 行列設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.3 未來研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 參考資料 40 附表一. 區集設計下的缺失狀態及維持連接性之剩餘設計比例 42 附表二. 區集設計下比較實驗的建議設計 52 附表三. 區集設計下處理-對照實驗的建議設計 58 附表四. 行列設計下的缺失狀態 64 附表五. 行列設計下的比較實驗的建議設計 69 附表六. 行列設計下處理-對照實驗的建議設計72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 處理-對照實驗 | zh_TW |
| dc.subject | 雙染色cDNA微陣列實驗 | zh_TW |
| dc.subject | 資料缺失 | zh_TW |
| dc.subject | 設計穩健性 | zh_TW |
| dc.subject | 基因表現資料 | zh_TW |
| dc.subject | 比較實驗 | zh_TW |
| dc.subject | row-column design | en |
| dc.subject | robustness | en |
| dc.subject | gene expression | en |
| dc.subject | comparative experiment | en |
| dc.subject | test-control experiment | en |
| dc.subject | block design | en |
| dc.title | 具穩健性之雙染色cDNA微陣列試驗設計之研究 | zh_TW |
| dc.title | Robust Designs against Missing Data in Two-Color cDNA Microarray Experiments | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡風順,丁兆平 | |
| dc.subject.keyword | 雙染色cDNA微陣列實驗,資料缺失,設計穩健性,基因表現資料,比較實驗,處理-對照實驗, | zh_TW |
| dc.subject.keyword | robustness, gene expression,comparative experiment,test-control experiment,block design,row-column design, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-05 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
