請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44291完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝銘鈞 | |
| dc.contributor.author | Kuo-Sheng Liang | en |
| dc.contributor.author | 梁國盛 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:49:18Z | - |
| dc.date.available | 2011-08-18 | |
| dc.date.copyright | 2009-08-18 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-05 | |
| dc.identifier.citation | [1] Cushing MC, Anseth KS. Hydrogel cell cultures. Science 2007;316:1133.
[2] Langer R. New Methods of Drug Delivery. Science 1990;249:1527. [3] Kwon IC, Bae YH, Kim SW. Electrically Erodible Polymer Gel for Controlled Release of Drugs. Nature 1991;354:291. [4] Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997;388:860. [5] Bae SJ, Suh JM, Sohn YS, Bae YH, Kim SW, Jeong B. Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules 2005;38:5260. [6] Mathijssen RHJ, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clinical Cancer Research 2001;7:2182. [7] Herben VMM, Huinink WWTB, Beijnen JH. Clinical pharmacokinetics of topotecan. Clinical Pharmacokinetics 1996;31:85. [8] van Hattum AH, Pinedo HM, Schluper HMM, Erkelens CAM, Tohgo A, Boven E. The activity profile of the hexacyclic camptothecin derivative DX-8951f in experimental human colon cancer and ovarian cancer. Biochemical Pharmacology 2002;64:1267. [9] Lerchen HG, Baumgarten J, von dem Bruch K, Lehmann TE, Sperzel M, Kempka G, Fiebig HH. Design and optimization of 20-O-linked camptothecin glycoconjugates as anticancer agents. Journal of Medicinal Chemistry 2001;44:4186. [10] Knight V, Koshkina NV, Waldrep JC, Giovanella BC, Gilbert BE. Anticancer exffect of 9-nitrocamptothecin liposome aerosol on human cancer xenografts in nude mice. Cancer Chemotherapy and Pharmacology 1999;44:177. [11] Chou TH, Chen SC, Chu IM. Effect of composition on the stability of liposomal irinotecan prepared by a pH gradient method. Journal of Bioscience and Bioengineering 2003;95:405. [12] Boyd BJ, Whittaker DV, Khoo SM, Davey G. Hexosomes formed from glycerate surfactants - Formulation as a colloidal carrier for irinotecan. International Journal of Pharmaceutics 2006;318:154. [13] Tang YQ, Czuczman PR, Chung ST, Lewis AL. Preservation of the active lactone form of irinotecan using drug eluting beads for the treatment of colorectal cancer metastases. Journal of Controlled Release 2008;127:70. [14] Weingart JD, Thompson RC, Tyler B, Colvin OM, Brem H. Local-Delivery of the Topoisomerase-I Inhibitor Camptothecin Sodium Prolongs Survival in the Rat Intracranial 9l Gliosarcoma Model. International Journal of Cancer 1995;62:605. [15] Storm PB, Moriarity JL, Tyler B, Burger PC, Brem H, Weingart J. Polymer delivery of camptothecin against 9L gliosarcoma: release, distribution, and efficacy. Journal of Neuro-Oncology 2002;56:209. [16] Berrada M, Serreqi A, Dabbarh F, Owusu A, Gupta A, Lehnert S. A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials 2005;26:2115. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44291 | - |
| dc.description.abstract | 本篇研究中,我們利用一種生物可分解性的單體(ε-Caprolactone)去和另一個生物可分解的高分子( polyehylene glycol)接合來製造高分子(PCL-PEG-PCL)。當高分子依照特定的單體重量比合成之後,其具有溫度敏感性並且可以水溶液的狀態下,隨著溫度作溶液和膠體間的相態轉變。由這種高分子所形成的膠體具有良好的生物可分解性及生物相容性。我們使用凝膠滲透層析儀和核磁共振來確認高分子的結構和分子量。然後使用熱重分析儀來測試其熱穩定性。我們在不同高分子濃度的溶液中混入化療藥物CPT-11和SN-38, 然後使用掃描式電子顯微鏡觀察這些膠體的結構。含有親水性藥物CPT-11的膠體型態會隨著高分子濃度的改變而改變。而同比例含有疏水性藥物SN-38的膠體型態則和含有親水性藥物CPT-11完全不一樣。在體外藥物釋放測試中,含有CPT-11的溫度敏感性水膠在高藥物濃度(5mg/ml)下,藥物在兩天內就完全釋放出來,而在同樣藥物濃度下,含有SN-38的水膠則在呈現出另外一種藥物釋放曲線,藥物在10天內穩定且緩慢的線性釋放。在動物實驗中,注射含有高濃度CPT-11水膠的實驗組和分五次低濃度注射以達到相同藥量的對照組,呈現出較低的毒性和相同的治療效果。而在注射含有高濃度SN-38水膠的實驗組,也呈現現出比對照組更低的毒性。因此,用這種具有溫度敏感性的水膠包覆化療藥物(CPT-11或SN-38)來作為一個原處釋放藥物的載體是非常合適的。 | zh_TW |
| dc.description.abstract | In this study, we use a biodegradable monomer (ε-Caprolactone) to combine with a biodegradable polymer (polyehylene glycol) and a biodegradable triblock copolymer (PCL-PEG-PCL) was synthesis. The triblock copolymer (PCL–PEG–PCL) is thermosensitive when weights of those monomers were combined at some special ratio and its aqueous solution can undergo the sol–gel–sol transition as the temperature increases. The hydrogel was fully biodegradable and biocompatible. GPC and NMR 1H are used for characterizing the polymer. Thermal stability was tested by TGA. Chemotherapy drugs:CPT-11 and SN-38 were loaded into hydrogel made by triblock copolymers at several concentrations. Then, a scanning electron microscope was used to observe morphology of hydrgel loaded with chemotherapy drugs. The morphology of hydrogel loaded with hydrophilic drug CPT-11 is different from the polymer concentrations and hydrogel loaded with hydrophobic drug SN-38 show another appearance under the same polymer concentration with CPT-11. In vitro drug release from thermosensitive hydrogel was investigated. CPT-11 was released within two days from hydrgel when they are loaded at a high concentration (5mg/ml). The releasing curve of hydrogel loaded with SN-38 at the same concentration shows a slowly stable and linear trend within 10 days. In vivo experiments of CPT-11 indicated that the treatment using hydrogel loaded with 5 doses (inject once) for suppressing tumor growth is the same effective as five injections and the toxicity is lower. In the experiments of SN-38, hydrogel loaded with 5 doses also shows a lower toxicity than five injections. Thus, they can be used as a suitable drug - polymer implant for local release of chemotherapeutic drug like irinotecan or SN-38. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:49:18Z (GMT). No. of bitstreams: 1 ntu-98-R96548032-1.pdf: 2712597 bytes, checksum: 80be3a8c10ae57ad9675223961ced1ea (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 ........................................................................................................................i
英文摘要 .......................................................................................................................ii INTRODUCTION ..........................................................................................................1 MATERIALS and METHODS .......................................................................................3 Materials .....................................................................................................................3 Synthesis .....................................................................................................................3 Gel Permeation Chromatography ...............................................................................4 Thermogravimetry Analysis ........................................................................................4 Measurements of NMR (1H) .......................................................................................4 Scanning Electronic Microscope ................................................................................5 Hydrogel contains drugs .............................................................................................5 In vitro release study ...................................................................................................6 Animals and tumor cells .............................................................................................6 RESULTS and DISCUSSION ........................................................................................8 Materials properties ....................................................................................................8 In vitro study .............................................................................................................11 Animal models ..........................................................................................................14 CONCLUSION ............................................................................................................ 17 REFERENCES ............................................................................................................ 18 APPENDIX ...................................................................................................................21 SCHEME ......................................................................................................................22 Scheme 1. Synthesis of triblock copolymer, PCL-PEG-PCL ...................................22 TABLE...........................................................................................................................22 Table 1. List of PCL-PEG-PCL Triblock Coploymers .............................................22 FIGURES ......................................................................................................................23 Fig. 1A. GPC spectra of S-I, S-II, S-III, PEG-1000 .................................................23 Fig. 1B. GPC spectra of S-IV, S-V, S-VI, PEG-2000 ..............................................23 Fig. 1C. NMR(1H)spectra of triblock copolymer S-III ...........................................24 Fig. 2. Sol-gel transition diagram .............................................................................25 Fig. 3. Sol-gel transition figures:(a) 4 ℃ (b) 37 ℃ (c) 55 ℃ ..................................25 Fig. 4. Thermogravimetry Analysis ..........................................................................26 Fig. 5A. 1000X Morphology of hydrogel loaded with CPT-11 (high dose) at different polymer concentrations. (a) 20% (b) 30% (c) 40% (d) 50% ......26 Fig. 5B. 3500X Morphology of hydrogel loaded with CPT-11 (high dose) at different polymer concentrations. (a) 20% (b) 30% (c) 40% (d) 50% ......27 Fig. 6A. Morphology (1000X) of hydrogel loaded with SN-38 (high dose) at different polymer concentrations. (a) 20% (b) 30% (c) 40% (d) 50% ......27 Fig. 6B. Morphology (3500X) of hydrogel loaded with SN-38 (high dose) at different polymer concentrations. (a) 20% (b) 30% (c) 40% (d) 50% ......28 Fig. 6C. Surface Morphology (1000X) of hydrogel loaded with SN-38 (high dose) at different polymer concentrations. (a) 20% (b) 30% (c) 40% (d) 50% ......28 Fig. 7. Releasing profile of CPT-11 (low dose) under different polymer concentrations ...........................................................................................29 Fig. 8A. Releasing profile of CPT-11 (high dose) at different polymer concentrations .......................................................................................29 Fig. 8B. Releasing profile of CPT-11 (high dose) at different polymer concentrations in the first 24 hours ...............................................................................30 Fig. 9. Releasing profile of CPT-11 (high dose) under different pH .....................30 Fig. 10A. Releasing profile of hydrogel loaded with SN-38 (high dose) under different polymer concentration ..............................................................31 Fig. 10B. 100% scale releasing profile of hydrogel loaded with SN-38 (high dose) under different polymer concentration ....................................................31 Fig. 11A. Releasing profile of SN-38 (high dose) loaded with hydrogel under different pH at 20% polymer concentration ............................................32 Fig. 11B. 100% scale releasing profile of SN-38 (high dose) loaded eith hydrogel under different pH at 20% polymer concentration ..................................32 Fig. 12A. Tumor growth of CPT-11 experiment group ............................................33 Fig. 12B. Body weight of CPT-11 experiment group ...............................................33 Fig.13A. Tumor growth of SN-38 experiment group ...............................................34 Fig. 13B. Body weights of SN-38 experiment group ...............................................34 | |
| dc.language.iso | en | |
| dc.subject | 可注射性水膠 | zh_TW |
| dc.subject | 藥物釋放 | zh_TW |
| dc.subject | 溫度敏感性 | zh_TW |
| dc.subject | 三段式共聚合物 | zh_TW |
| dc.subject | 生物可分解性 | zh_TW |
| dc.subject | 喜樹鹼 | zh_TW |
| dc.subject | injectable hydrogel | en |
| dc.subject | drug delivery | en |
| dc.subject | camptothecin | en |
| dc.subject | triblock copolymers | en |
| dc.subject | biodegradable | en |
| dc.subject | thermosensitive | en |
| dc.title | 具熱敏感性,生物可分解性,可注射性高分子作為喜樹鹼載體之研究 | zh_TW |
| dc.title | Thermosensitive, injectable, biodegradable, triblock copolymer hydrogel as carriers for camptothecin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊禎明,婁培人,賴秉杉 | |
| dc.subject.keyword | 溫度敏感性,生物可分解性,三段式共聚合物,喜樹鹼,藥物釋放,可注射性水膠, | zh_TW |
| dc.subject.keyword | thermosensitive,biodegradable,triblock copolymers,camptothecin,drug delivery,injectable hydrogel, | en |
| dc.relation.page | 35 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
