Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4423
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳丕燊(Pisin Chen)
dc.contributor.authorYu-Chiao Changen
dc.contributor.author張玉樵zh_TW
dc.date.accessioned2021-05-14T17:42:10Z-
dc.date.available2016-08-25
dc.date.available2021-05-14T17:42:10Z-
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citation[1] General Relativity, ed. S. W. Hawking and W. Israel (Cambridge
University Press, 1979): 790.
[2] S. Weinberg, arXiv:0903.0568 [hep-th].
[3] S. Weinberg, PoS C D09, 001 (2009) [arXiv:0908.1964 [hep-th]].
[4] S. Weinberg, Phys. Rev. D 81, 083535 (2010) [arXiv:0911.3165 [hepth]].
[5] H. Kawai, Y. Kitazawa and M. Ninomiya, Nucl. Phys. B 404, 684
(1993) [arXiv:hep-th/9303123].
[6] M. Reuter, Phys. Rev. D 57, 971 (1998) [arXiv:hep-th/9605030].
[7] W. Souma, Prog. Theor. Phys. 102, 181 (1999) [arXiv:hepth/
9907027].
[8] O. Lauscher and M. Reuter, Phys. Rev. D 65, 025013 (2002)
[arXiv:hep-th/0108040].
[9] O. Lauscher and M. Reuter, Class. Quant. Grav. 19, 483 (2002)
[arXiv:hep-th/0110021].
[10] D. F. Litim, Phys. Rev. Lett. 92, 201301 (2004) [arXiv:hepth/
0312114].
[11] M. Niedermaier, Class. Quant. Grav. 24, R171 (2007) [arXiv:grqc/
0610018].
[12] A. Codello, R. Percacci and C. Rahmede, Int. J. Mod. Phys. A 23, 143
(2008) [arXiv:0705.1769 [hep-th]].
[13] A. Codello, R. Percacci and C. Rahmede, Annals Phys. 324, 414 (2009)
[arXiv:0805.2909 [hep-th]].
[14] D. Benedetti, P. F. Machado and F. Saueressig, Mod. Phys. Lett. A
24, 2233 (2009) [arXiv:0901.2984 [hep-th]].
[15] A. Bonanno and M. Reuter, Phys. Rev. D 62, 043008 (2000)
[arXiv:hep-th/0002196].
[16] A. Bonanno and M. Reuter, Phys. Rev. D 73, 083005 (2006)
[arXiv:hep-th/0602159].
[17] K. Falls, D. F. Litim and A. Raghuraman, arXiv:1002.0260 [hep-th].
[18] Y. F. Cai and D. A. Easson, JCAP 1009, 002 (2010) [arXiv:1007.1317
[hep-th]].
[19] A. Bonanno and M. Reuter, Phys. Lett. B 527, 9 (2002) [arXiv:astroph/
0106468].
[20] A. Bonanno and M. Reuter, Phys. Rev. D 65, 043508 (2002)
[arXiv:hep-th/0106133].
[21] M. Reuter and H. Weyer, JCAP 0412, 001 (2004) [arXiv:hepth/
0410119].
[22] M. Hindmarsh, D. Litim and C. Rahmede, arXiv:1101.5401 [gr-qc].
[23] B. Koch, Phys. Lett. B 663, 334 (2008) [arXiv:0707.4644 [hep-ph]].
[24] B. Koch and I. Ramirez, Class. Quant. Grav. 28, 055008 (2011)
[arXiv:1010.2799 [gr-qc]].
[25] M. Reuter and H. Weyer, Phys. Rev. D 69, 104022 (2004) [arXiv:hepth/
0311196].
[26] A. Bonanno, A. Contillo and R. Percacci, arXiv:1006.0192 [gr-qc].
[27] S. H. Tye and J. Xu, Phys. Rev. D 82, 127302 (2010) [arXiv:1008.4787
[hep-th]].
[28] A. Bonanno and M. Reuter, arXiv:1011.2794 [hep-th].
[29] C. Wetterich, Phys. Lett. B 301, 90 (1993)
[30] M. Reuter, Phys. Rev. D 57, 971 (1998)
[31] P. Jordan, Z. Phys. 157, 112 (1959).
[32] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
[33] J. c. Hwang, Phys. Rev. D 53, 762 (1996) [arXiv:gr-qc/9509044].
[34] J. c. Hwang and H. Noh, Phys. Rev. D 54, 1460 (1996).
[35] S. Tsujikawa and B. Gumjudpai, Phys. Rev. D 69, 123523 (2004)
[arXiv:astro-ph/0402185].
[36] D. F. Litim, Phys. Lett. B 486, 92 (2000) [arXiv:hep-th/0005245].
[37] D. F. Litim, Phys. Rev. D 64, 105007 (2001) [arXiv:hep-th/0103195].
[38] V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rept.
215, 203 (1992).
[39] A. Contillo, Phys. Rev. D 83, 085016 (2011) [arXiv:1011.4618 [gr-qc]].
[40] S. Weinberg, in General Relativity: An Einstein centenary survey,
Eds. S.W. Hawking and W. Israel, Cambridge University Press (1979),
p. 790.
[41] D. F. Litim, On xed points of quantum gravity, AIP Conf. Proc. 841
(2006) 322 [hep-th/0606044].
[42] M. Niedermaier, The asymptotic safety scenario in quantum gravity:
An introduction, Class. Quant. Grav. 24 (2007) R171 [gr-qc/0610018].
[43] M. Niedermaier and M. Reuter, The Asymptotic Safety Scenario in
Quantum Gravity, Living Rev. Relativity 9 (2006) 5.
[44] R. Percacci, Asymptotic Safety, in 'Approaches to Quantum Gravity:
Towards a New Understanding of Space, Time and Matter' ed. D. Oriti,
Cambridge University Press, 0709.3851 [hep-th].
[45] M. Reuter, Nonperturbative Evolution Equation for Quantum Gravity,
Phys. Rev. D 57 (1998) 971 [hep-th/9605030].
[46] W. Souma, Non-trivial ultraviolet xed point in quantum gravity, Prog.
Theor. Phys. 102 (1999) 181 [hep-th/9907027]; Gauge and cuto func-
tion dependence of the ultraviolet xed point in quantum gravity, grqc/
0006008.
[47] O. Lauscher and M. Reuter, Ultraviolet xed point and generalized
ow
equation of quantum gravity, Phys. Rev. D 65 (2002) 025013 [hepth/
0108040].
[48] O. Lauscher and M. Reuter, Is quantum Einstein gravity nonper-
turbatively renormalizable?, Class. Quant. Grav. 19 (2002) 483 [hepth/
0110021]; Flow equation of quantum Einstein gravity in a higher-
derivative truncation, Phys. Rev. D 66 (2002) 025026 [hep-th/0205062].
[49] M. Reuter and F. Saueressig, Renormalization group
ow of quan-
tum gravity in the Einstein-Hilbert truncation, Phys. Rev. D 65 (2002)
065016 [hep-th/0110054].
[50] R. Percacci and D. Perini, Constraints on matter from asymptotic
safety, Phys. Rev. D 67 (2003) 081503 [hep-th/0207033]; Asymptotic
safety of gravity coupled to matter, Phys. Rev. D 68 (2003) 044018
[hep-th/0304222].
[51] D. F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004)
201301 [hep-th/0312114].
[52] A. Bonanno and M. Reuter, Proper time
ow equation for gravity,
JHEP 0502 (2005) 035 [hep-th/0410191].
[53] P. Fischer and D. F. Litim, Fixed points of quantum gravity in extra
dimensions, Phys. Lett. B 638 (2006) 497 [hep-th/0602203].
[54] P. Fischer and D. F. Litim, Fixed points of quantum gravity in higher
dimensions, AIP Conf. Proc. 861 (2006) 336 [hep-th/0606135].
[55] A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f(R)-
gravity, Int. J. Mod. Phys. A 23 (2008) 143 [0705.1769 [hep-th]]; Inves-
tigating the Ultraviolet Properties of Gravity with a Wilsonian Renor-
malization Group Equation, 0805.2909 [hep-th].
[56] P. F. Machado and F. Saueressig, On the renormalization group
ow
of f(R)-gravity, Phys. Rev. D 77 (2008) 124045 [0712.0445 [hep-th]].
[57] P. Forgacs and M. Niedermaier, A xed point for truncated quantum
Einstein gravity, hep-th/0207028.
[58] M. Niedermaier, On the renormalization of truncated quantum Ein-
stein gravity, JHEP 0212 (2002) 066 [hep-th/0207143], Dimensionally
reduced gravity theories are asymptotically safe, Nucl. Phys. B 673
(2003) 131 [hep-th/0304117].
[59] R. Gastmans, R. Kallosh and C. Tru n, Quantum Gravity Near Two-
Dimensions, Nucl. Phys. B 133 (1978) 417
111
[60] S. M. Christensen and M. J. Du , Quantum Gravity In Two + Epsilon
Dimensions, Phys. Lett. B 79 (1978) 213.
[61] H. Kawai, Y. Kitazawa and M. Ninomiya, Scaling exponents in quan-
tum gravity near two-dimensions, Nucl. Phys. B 393 (1993) 280 [hepth/
9206081].
[62] T. Aida and Y. Kitazawa, Two-loop prediction for scaling exponents in
(2+epsilon)-dimensional quantum gravity, Nucl. Phys. B 491 (1997)
427 [hep-th/9609077].
[63] A. Codello and R. Percacci, Fixed Points of Higher Derivative Gravity,
Phys. Rev. Lett. 97 (2006) 221301 [hep-th/0607128].
[64] R. Percacci, Further evidence for a gravitational xed point, Phys. Rev.
D 73 (2006) 041501 [hep-th/0511177].
[65] H. W. Hamber, On the gravitational scaling dimensions, Phys. Rev.
D 61 (2000) 124008 [hep-th/9912246]; Phases of 4-d simplicial quan-
tum gravity, Phys. Rev. D 45 (1992) 507; H. W. Hamber and
R. M. Williams, Non-perturbative gravity and the spin of the lattice
graviton, Phys. Rev. D 70 (2004) 124007 [hep-th/0407039].
[66] H. W. Hamber and R. M. Williams, Quantum gravity in large dimen-
sions, Phys. Rev. D 73 (2006) 044031 [hep-th/0512003].
[67] J. Ambjorn, J. Jurkiewicz and R. Loll, Emergence of a 4D world
from causal quantum gravity, Phys. Rev. Lett. 93, 131301 (2004) [hepth/
0404156]; Spectral dimension of the universe, Phys. Rev. Lett. 95
(2005) 171301 [hep-th/0505113].
[68] J. F. Donoghue, Leading quantum correction to the Newtonian poten-
tial, Phys. Rev. Lett. 72 (1994) 2996 [gr-qc/9310024].
[69] C. P. Burgess, Quantum gravity in everyday life: General relativity as
an e ective eld theory, Living Rev. Rel. 7 (2004) 5 [gr-qc/0311082].
[70] B. Bergerho , F. Freire, D. F. Litim, S. Lola and C. Wetterich,
Phase diagram of superconductors, Phys. Rev. B 53 (1996) 5734 [hepph/
9503334];
B. Bergerho , D. F. Litim, S. Lola and C. Wetterich, Phase transition
of N component superconductors, Int. J. Mod. Phys. A 11 (1996) 4273
[cond-mat/9502039].
112
[71] I. F. Herbut and Z. Tesanovic, Critical
uctuations in superconductors
and the magnetic eld penetration depth, Phys. Rev. Lett. 76 (1996)
4588 [cond-mat/9605185].
[72] D. I. Kazakov, Ultraviolet xed points in gauge and SUSY eld theories
in extra dimensions JHEP 0303 (2003) 020 [hep-th/0209100].
[73] H. Gies, Renormalizability of gauge theories in extra dimensions, Phys.
Rev. D 68 (2003) 085015 [hep-th/0305208].
[74] T. R. Morris, Renormalizable extra-dimensional models, JHEP 0501
(2005) 002 [hep-ph/0410142].
[75] D. F. Litim, Wilsonian
ow equation and thermal eld theory, hepph/
9811272.
[76] D. F. Litim and J. M. Pawlowski, On gauge invariant Wilsonian
ows,
in The Exact Renormalization Group, Eds. Krasnitz et al, World Sci
(1999) 168 [hep-th/9901063].
[77] C. Bagnuls and C. Bervillier, Exact renormalization group equations:
An introductory review, Phys. Rept. 348 (2001) 91 [hep-th/0002034].
[78] J. Berges, N. Tetradis and C. Wetterich, Non-perturbative renormali-
sation
ow in quantum eld theory and statistical physics, Phys. Rept.
363 (2002) 223 [hep-ph/0005122].
[79] J. Polonyi, Lectures on the functional renormalization group method,
Centr. Eur. Sci. J. Phys. 1 (2002) 1 [hep-th/0110026].
[80] J. M. Pawlowski, Aspects of the functional renormalisation group, Annals
Phys. 322 (2007) 2831 [hep-th/0512261].
[81] H. Gies, Introduction to the functional RG and applications to gauge
theories, hep-ph/0611146.
[82] D. F. Litim, Optimisation of the exact renormalisation group, Phys.
Lett. B486 (2000) 92 [hep-th/0005245]; Mind the gap, Int. J. Mod.
Phys. A 16 (2001) 2081 [hep-th/0104221]; Convergence and stability
of the renormalisation group, Acta Phys. Slov.52 (2002) 635 [hepth/
0208117].
[83] C. Wetterich, Exact evolution equation for the e ective potential, Phys.
Lett. B 301 (1993) 90.
113
[84] D. F. Litim, Optimised renormalisation group
ows, Phys. Rev. D 64
(2001) 105007 [hep-th/0103195].
[85] D. F. Litim, Universality and the renormalisation group, JHEP 0507
(2005) 005 [hep-th/0503096].
[86] D. F. Litim and J. M. Pawlowski, Perturbation theory and renormalisa-
tion group equations, Phys. Rev. D 65 (2002) 081701 [hep-th/0111191].
[87] D. F. Litim and J. M. Pawlowski, Completeness and consistency of
renormalisation group
ows, Phys. Rev. D 66 (2002) 025030 [hepth/
0202188].
[88] D. F. Litim, Critical exponents from optimised renormalisation group
ows, Nucl. Phys. B 631 (2002) 128 [hep-th/0203006]; Derivative ex-
pansion and renormalisation group
ows, JHEP 0111 (2001) 059 [hepth/
0111159].
[89] J. M. Pawlowski, D. F. Litim, S. Nedelko and L. von Smekal, Infrared
behaviour and xed points in Landau gauge QCD, Phys. Rev. Lett. 93
(2004) 152002 [hep-th/0312324];
[90] V. Branchina, K. A. Meissner and G. Veneziano, The price of an exact,
gauge-invariant RG-
ow equation, Phys. Lett. B 574 (2003) 319 [hepth/
0309234];
J. M. Pawlowski, Geometrical e ective action and Wilsonian
ows,
hep-th/0310018.
[91] K. Symanzik, Small Distance Behavior In Field Theory And Power
Counting, Commun. Math. Phys. 18 (1970) 227.
[92] M. Reuter and C. Wetterich, E ective average action for gauge the-
ories and exact evolution equations, Nucl. Phys. B 417 (1994) 181;
Gluon condensation in nonperturbative
ow equations, Phys. Rev. D
56 (1997) 7893 [hep-th/9708051]; H. Gies, Running coupling in Yang-
Mills theory: A
ow equation study, Phys. Rev. D 66 (2002) 025006
[hep-th/0202207].
[93] D. F. Litim and J. M. Pawlowski, Flow equations for Yang-Mills the-
ories in general axial gauges, Phys. Lett. B 435 (1998) 181 [hepth/
9802064]; Renormalisation group
ows for gauge theories in axial
gauges, JHEP 0209 (2002) 049 [hep-th/0203005].
114
[94] F. Freire, D. F. Litim and J. M. Pawlowski, Gauge invariance and
background eld formalism in the exact renormalisation group, Phys.
Lett. B 495, 256 (2000) [hep-th/0009110].
[95] D. F. Litim and J. M. Pawlowski, Wilsonian
ows and background
elds, Phys. Lett. B 546 (2002) 279 [hep-th/0208216].
[96] J. M. Pawlowski, On Wilsonian
ows in gauge theories, Int. J. Mod.
Phys. A 16 (2001) 2105.
[97] S. P. Robinson, Normalization conventions for Newton's constant and
the Planck scale in arbitrary spacetime dimension, gr-qc/0609060.
[98] O. Lauscher and M. Reuter, Fractal spacetime structure in asymptoti-
cally safe gravity, JHEP 0510 (2005) 050 [hep-th/0508202].
[99] A. Bonanno and M. Reuter, Quantum gravity e ects near the null
black hole singularity, Phys. Rev. D 60 (1999) 084011 [gr-qc/9811026];
Renormalization group improved black hole spacetimes, Phys. Rev. D
62 (2000) 043008 [hep-th/0002196]; Spacetime structure of an evapo-
rating black hole in quantum gravity, Phys. Rev. D 73 (2006) 083005
[hep-th/0602159].
[100] M. Reuter and F. Saueressig, From big bang to asymptotic de Sitter:
Complete cosmologies in a quantum gravity framework, JCAP 0509
(2005) 012 [hep-th/0507167].
[101] A. Bonanno and M. Reuter, Entropy signature of the running cosmo-
logical constant, JCAP 0708 (2007) 024 [0706.0174 [hep-th]].
[102] E. Bentivegna, A. Bonanno and M. Reuter, Confronting the IR Fixed
Point Cosmology with High Redshift Supernova Data, JCAP 0401
(2004) 001 [astro-ph/0303150].
[103] F. Girelli, S. Liberati, R. Percacci and C. Rahmede, Modi ed disper-
sion relations from the renormalization group of gravity,, Class. Quant.
Grav. 24 (2007) 3995 [gr-qc/0607030].
[104] D. F. Litim and T. Plehn, Signatures of gravitational xed points at the
LHC, Phys. Rev. Lett. 100 (2008) 131301 [0707.3983 [hep-ph]]; Virtual
Gravitons at the LHC, 0710.3096 [hep-ph].
[105] J. Hewett and T. Rizzo, Collider Signals of Gravitational Fixed Points,
JHEP 0712 (2007) 009 [0707.3182 [hep-ph]].
115
[106] B. Koch, Renormalization group and black hole production in large
extra dimensions, Phys. Lett. B 663/4 (2008) 334 [0707.4644 [hepph]].
[107] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, The hierarchy prob-
lem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263
[hep-ph/9803315].
[108] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, New
dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys.
Lett. B 436 (1998) 257 [hep-ph/9804398].
[109] G. F. Giudice, R. Rattazzi and J. D. Wells, Quantum gravity and extra
dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hepph/
9811291].
[110] T. Han, J. D. Lykken and R. J. Zhang, On Kaluza-Klein states
from large extra dimensions, Phys. Rev. D 59 (1999) 105006, [hepph/
9811350].
[111] J. L. Hewett, Indirect collider signals for extra dimensions, Phys. Rev.
Lett. 82 (1999) 4765, [hep-ph/9811356].
[112] G. F. Giudice, T. Plehn and A. Strumia, Graviton collider e ects in
one and more large extra dimensions, Nucl. Phys. B 706 (2005) 455
[hep-ph/0408320].
[113] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[114] A. D. Linde, Phys. Lett. B 108, 389 (1982).
[115] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
[116] A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
[117] L. Z. Fang, Phys. Lett. B 95, 154 (1980).
[118] K. Sato, Mon. Not. Roy. Astron. Soc. 195, 467 (1981).
[119] E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 192,
18 (2011) [arXiv:1001.4538 [astro-ph.CO]].
[120] P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5076 [astroph.
CO].
116
[121] P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5084 [astroph.
CO].
[122] [ATLAS Collaboration], ATLASCONF-2012-093, 2012.
[123] [CMS Collaboration], CMS-HIG-12-020, 2012.
[124] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008)
[arXiv:0710.3755 [hep-th]].
[125] A. De Simone, M. P. Hertzberg and F. Wilczek, Phys. Lett. B 678, 1
(2009) [arXiv:0812.4946 [hep-ph]].
[126] J. L. Cervantes-Cota and H. Dehnen, Nucl. Phys. B 442, 391 (1995)
[astro-ph/9505069].
[127] A. O. Barvinsky, A. Y. .Kamenshchik, C. Kiefer, A. A. Starobinsky and
C. Steinwachs, JCAP 0912, 003 (2009) [arXiv:0904.1698 [hep-ph]].
[128] C. P. Burgess, H. M. Lee and M. Trott, JHEP 0909, 103 (2009)
[arXiv:0902.4465 [hep-ph]].
[129] J. L. F. Barbon and J. R. Espinosa, Phys. Rev. D 79, 081302 (2009)
[arXiv:0903.0355 [hep-ph]].
[130] R. N. Lerner and J. McDonald, JCAP 1004, 015 (2010)
[arXiv:0912.5463 [hep-ph]].
[131] C. P. Burgess, H. M. Lee and M. Trott, JHEP 1007, 007 (2010)
[arXiv:1002.2730 [hep-ph]].
[132] F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, JHEP
1101, 016 (2011) [arXiv:1008.5157 [hep-ph]].
[133] M. Atkins and X. Calmet, Phys. Lett. B 697, 37 (2011)
[arXiv:1011.4179 [hep-ph]].
[134] R. Horvat, Phys. Lett. B 699, 174 (2011) [arXiv:1101.0721 [hep-ph]].
[135] S. Weinberg, in Understanding the Fundamental Constituents of Mat-
ter, ed. A. Zichichi (Plenum Press, New York, 1977).
[136] S. Weinberg, in General Relativity, ed. S. W. Hawking and W. Israel
(Cambridge University Press, 1979): 790.
[137] S. Weinberg, PoS C D09, 001 (2009) [arXiv:0908.1964 [hep-th]].
117
[138] S. Weinberg, Phys. Rev. D 81, 083535 (2010) [arXiv:0911.3165 [hepth]].
[139] M. Reuter, Phys. Rev. D 57, 971 (1998) [arXiv:hep-th/9605030].
[140] W. Souma, Prog. Theor. Phys. 102, 181 (1999) [arXiv:hepth/
9907027].
[141] A. Bonanno and M. Reuter, Phys. Rev. D 65, 043508 (2002)
[arXiv:hep-th/0106133].
[142] O. Lauscher and M. Reuter, Phys. Rev. D 65, 025013 (2001)
[arXiv:hep-th/0108040].
[143] D. F. Litim, Phys. Rev. Lett. 92, 201301 (2004) [arXiv:hepth/
0312114].
[144] A. Codello and R. Percacci, Phys. Rev. Lett. 97, 221301 (2006) [hepth/
0607128].
[145] Y. F. Cai and D. A. Easson, JCAP 1009, 002 (2010) [arXiv:1007.1317
[hep-th]].
[146] M. Niedermaier, Class. Quant. Grav. 24, R171 (2007) [arXiv:grqc/
0610018].
[147] R. Percacci, in Approaches to quantum gravity, ed. D. Oriti: 111-128
[arXiv:0709.3851 [hep-th]].
[148] Y. -F. Cai and D. A. Easson, Int. J. Mod. Phys. D 21, 1250094 (2013)
[arXiv:1202.1285 [hep-th]].
[149] M. Shaposhnikov and C. Wetterich, Phys. Lett. B 683, 196 (2010)
[arXiv:0912.0208 [hep-th]].
[150] Y. F. Cai and D. A. Easson, Phys. Rev. D 84, 103502 (2011)
[arXiv:1107.5815 [hep-th]].
[151] A. Bonanno, Phys. Rev. D 85, 081503 (2012) [arXiv:1203.1962 [hepth]].
[152] M. Hindmarsh and I. D. Saltas, Phys. Rev. D 86, 064029 (2012)
[arXiv:1203.3957 [gr-qc]].
[153] S. Mollerach, Phys. Rev. D 42, 313 (1990).
118
[154] A. D. Linde and V. F. Mukhanov, Phys. Rev. D 56, 535 (1997) [astroph/
9610219].
[155] K. Enqvist and M. S. Sloth, Nucl. Phys. B 626, 395 (2002) [hepph/
0109214].
[156] D. H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002) [hepph/
0110002].
[157] T. Moroi and T. Takahashi, Phys. Lett. B 522, 215 (2001) [Erratumibid.
B 539, 303 (2002)] [hep-ph/0110096].
[158] T. Kunimitsu and J. Yokoyama, Phys. Rev. D 86, 083541 (2012)
[arXiv:1208.2316 [hep-ph]].
[159] K. -Y. Choi and Q. -G. Huang, arXiv:1209.2277 [hep-ph].
[160] A. De Simone and A. Riotto, arXiv:1208.1344 [hep-ph].
[161] A. De Simone, H. Perrier and A. Riotto, arXiv:1210.6618 [hep-ph].
[162] G. Dvali, A. Gruzinov and M. Zaldarriaga, Phys. Rev. D 69, 023505
(2004) [astro-ph/0303591].
[163] G. Dvali, A. Gruzinov and M. Zaldarriaga, Phys. Rev. D 69, 083505
(2004) [astro-ph/0305548].
[164] L. Kofman, astro-ph/0303614.
[165] K. Ichikawa, T. Suyama, T. Takahashi and M. Yamaguchi, Phys. Rev.
D 78, 063545 (2008) [arXiv:0807.3988 [astro-ph]].
[166] J. Garcia-Bellido and D. Wands, Phys. Rev. D 53, 5437 (1996) [astroph/
9511029].
[167] S. Groot Nibbelink and B. J. W. van Tent, Class. Quant. Grav. 19,
613 (2002) [hep-ph/0107272].
[168] F. Di Marco, F. Finelli and R. Brandenberger, Phys. Rev. D 67, 063512
(2003) [astro-ph/0211276].
[169] D. Langlois, Phys. Rev. D 59, 123512 (1999) [astro-ph/9906080].
[170] C. Gordon, D. Wands, B. A. Bassett and R. Maartens, Phys. Rev. D
63, 023506 (2000) [astro-ph/0009131].
119
[171] K. A. Malik and D.Wands, Phys. Rept. 475, 1 (2009) [arXiv:0809.4944
[astro-ph]].
[172] Y. Wang, arXiv:1303.1523 [hep-th].
[173] D. Langlois and T. Takahashi, arXiv:1301.3319 [astro-ph.CO].
[174] H. Assadullahi, H. Firouzjahi, M. H. Namjoo and D. Wands,
arXiv:1301.3439 [hep-th].
[175] S. Enomoto, K. Kohri and T. Matsuda, arXiv:1301.3787 [hep-ph].
[176] Y. -F. Cai and Y. Wang, Phys. Rev. D 82, 123501 (2010)
[arXiv:1005.0127 [hep-th]].
[177] J. M. Maldacena, JHEP 0305, 013 (2003) [astro-ph/0210603].
[178] M. Zaldarriaga, Phys. Rev. D 69 (2004) 043508 [astro-ph/0306006].
[179] C. M. Will, Living Rev. Rel. 17 (2014) 4 [arXiv:1403.7377 [gr-qc]].
[180] A. Y. Kamenshchik, U. Moschella and V. Pasquier, Phys. Lett. B 511,
265 (2001).
[181] N. Bilic, G. B. Tupper and R. D. Viollier, Phys. Lett. B 535, 17 (2002).
[182] M. d. C. Bento, O. Bertolami and A. A. Sen, Phys. Rev. D 67, 063003
(2003).
[183] C. M. Will, Living Rev. Rel. 17 (2014) 4 [arXiv:1403.7377 [gr-qc]].
[184] F. W. Hehl, P. Von Der Heyde, G. D. Kerlick and J. M. Nester, Rev.
Mod. Phys. 48 (1976) 393.
[185] D. V. Ahluwalia and D. Grumiller, JCAP 0507 (2005) 012 [hepth/
0412080].
[186] D. V. Ahluwalia and D. Grumiller, Phys. Rev. D 72 (2005) 067701
[hep-th/0410192].
[187] D. V. Ahluwalia, C. Y. Lee and D. Schritt, Phys. Rev. D 83 (2011)
065017 [arXiv:0911.2947 [hep-ph]].
[188] C. G. Boehmer, Annalen Phys. 16 (2007) 38 [gr-qc/0607088].
[189] C. G. Boehmer and J. Burnett, Phys. Rev. D 78 (2008) 104001
[arXiv:0809.0469 [gr-qc]].
120
[190] N. J. Pop lawski, Phys. Rev. D 85 (2012) 107502 [arXiv:1111.4595 [grqc]].
[191] N. J. Pop lawski, Phys. Lett. B 690 (2010) 73 [arXiv:0910.1181 [gr-qc]].
[192] M. Betoule et al. [SDSS Collaboration], Astron. Astrophys. 568 (2014)
A22 [arXiv:1401.4064 [astro-ph.CO]].
[193] E. Aubourg, S. Bailey, J. E. Bautista, F. Beutler, V. Bhardwaj,
D. Bizyaev, M. Blanton and M. Blomqvist et al., arXiv:1411.1074
[astro-ph.CO].
[194] P. A. R. Ade et al. [Planck Collaboration], arXiv:1502.01589 [astroph.
CO].
[195] B. Ratra, P. J. E. Peebles Phys. Rev. D 37 (1988) 3406
[196] R. R. Caldwell, Phys. Lett. B 545 (2002) 23 [astro-ph/9908168].
[197] B. Feng, X. L. Wang and X. M. Zhang, Phys. Lett. B 607 (2005) 35
[astro-ph/0404224].
[198] M. Visser, Lorentzian Wormhole from Einstein to Hawking (Springer-
Verlag, 2002)
[199] A. A. Starobinsky, Grav. Cosmol. 6 (2000) 157 [astro-ph/9912054].
[200] R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev.
Lett. 91 (2003) 071301 [astro-ph/0302506].
[201] P. F. Gonz alez-D az, Phys. Lett. B 586 (2004) 1 [astro-ph/0312579].
[202] P. F. Gonz alez-D az, Phys. Rev. D 69 (2004) 063522 [hep-th/0401082].
[203] V. Gorini, A. Y. Kamenshchik, U. Moschella and V. Pasquier, Phys.
Rev. D 69 (2004) 123512 [hep-th/0311111].
[204] J. D. Barrow, Class. Quant. Grav. 21 (2004) L79 [gr-qc/0403084].
[205] S. Nojiri, S. D. Odintsov and S. Tsujikawa, Phys. Rev. D 71 (2005)
063004 [hep-th/0501025].
[206] M. Bouhmadi-L opez, P. F. Gonz alez-D az and P. Mart n-Moruno, Int.
J. Mod. Phys. D 17 (2008) 2269 [arXiv:0707.2390 [gr-qc]].
[207] M. Bouhmadi-L opez, P. F. Gonz alez-D az and P. Mart n-Moruno,
Phys. Lett. B 659 (2008) 1 [gr-qc/0612135].
121
[208] S. Nojiri and S. D. Odintsov, Phys. Rev. D 72 (2005) 023003 [hepth/
0505215].
[209] S. Nojiri and S. D. Odintsov, Phys. Rev. D 70 (2004) 103522 [hepth/
0408170].
[210] S. Nojiri and S. D. Odintsov, Phys. Rev. D 78 (2008) 046006
[arXiv:0804.3519 [hep-th]].
[211] K. Bamba, S. Nojiri and S. D. Odintsov, JCAP 0810 (2008) 045
[arXiv:0807.2575 [hep-th]].
[212] T. V. Ruzmaikina, A. A. Ruzmaikin Sov. Phys. JETP 30 (1970) 372
[213] H. Stefan ci c, Phys. Rev. D 71 (2005) 084024 [astro-ph/0411630].
[214] M. Bouhmadi-L opez, Nucl. Phys. B 797 (2008) 78 [astro-ph/0512124].
[215] P. H. Frampton, K. J. Ludwick, R. J. Scherrer Phys. Rev. D 84 (2011)
063003
[216] M. Bouhmadi-L opez, A. Errahmani, P. Mart n-Moruno, T. Ouali and
Y. Tavakoli, Int. J. Mod. Phys. D 24 (2015) 1550078 [arXiv:1407.2446
[gr-qc]].
[217] S. M. Carroll, M. Ho man and M. Trodden, Phys. Rev. D 68 (2003)
023509 [astro-ph/0301273].
[218] E. O. Kahya and V. K. Onemli, Phys. Rev. D 76 (2007) 043512 [grqc/
0612026].
[219] C. G. Boehmer, Phys. Rev. D 77 (2008) 123535 [arXiv:0804.0616 [astroph]].
[220] C. G. Boehmer and A. Mussa, Gen. Rel. Grav. 43 (2011) 3033
[arXiv:1010.1367 [gr-qc]].
[221] C. G. Boehmer and J. Burnett, Mod. Phys. Lett. A 25 (2010) 101
[arXiv:0906.1351 [gr-qc]].
[222] A. Basak, J. R. Bhatt, S. Shankaranarayanan, JCAP 2013 (2013)
[arXiv:1212.3445]
[223] L. Fabbri and S. Vignolo, Int. J. Theor. Phys. 51 (2012) 3186
[arXiv:1201.5498 [gr-qc]].
122
[224] C. G. Boehmer, J. Burnett, D. F. Mota and D. J. Shaw, JHEP 1007
(2010) 053 [arXiv:1003.3858 [hep-th]].
[225] H. Wei, Phys. Lett. B 695 (2011) 307 [arXiv:1002.4230 [gr-qc]].
[226] N. J. Pop lawski, Class. Quant. Grav. 31 (2014) 065005
[arXiv:1305.6977 [gr-qc]].
[227] M. E. Peskin, D. V. Schroeder, An Introduction to Quantum Field
Theory (Westview, 1995)
[228] D. V. Ahluwalia, [arXiv:1305.7509 [hep-th]].
[229] C. G. Boehmer, Annalen Phys. 16 (2007) 325 [gr-qc/0701087].
[230] T. M. Davis, J. R. Ray, Phys. Rev. D 9 1 (1972)
[231] J. B. Gri ths, J. Phys. A 12 12 (1979)
[232] A. Dimakis, F. M.-Hoissen Phys. Lett. A 92 9 (1982)
[233] Y. C. Chang, M. Bouhmadi-L opez, P. Chen, work in progress
[234] Y. C. Chang, M. Bouhmadi-L opez, P. Chen, work in progress
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4423-
dc.description.abstract本論文主要將討論粒子物理與宇宙中兩個加速膨脹時期的關聯:第一為早期
宇宙中的暴漲模型,第二是晚期宇宙的暗能量模型。關於暴漲模型,我們知道暴
漲理論為現今宇宙物理學一個重要的假說,儘管尚未被觀測所證實,但因暴漲理
論可以良好地解釋一些大爆炸理論未能解釋的宇宙學現象,因此普遍被宇宙學家
所接受。然而暴漲理論本身的來源至今仍未有定論。偉恩伯格博士於1979 年提
出之漸進安全重力論,該理論認為重力常數跟宇宙常數可能並非常數,而會隨能
量尺度改變而改變的參數,藉由量子場論中重整群的技巧,重力常數等參數將在
高能量時流動到一個固定點,如此一來可以避免量子重力理論所遭遇到在高能量
時發散產生奇異點的問題。等效地來說,漸進重力論是一個高能量完備且可重整
的重力理論。該理論將誘導出一個新的純量場,我們考慮將此純量場作為引發暴
漲的暴漲子,並同時考慮有希格子存在效應下所引發之雙場暴漲模型的物理,包
含宇宙學背景演化、膨脹規模、以及暴漲退場進入輻射支配時期的機制。我們認
為此暴漲子在暴漲末期將衰變成其他粒子,其衰變率由希格子的場值所控制,衰
變結束後,牛頓重力常數及宇宙常數將回歸到符合觀測的觀測值。此外我們也研究此雙場模型的非線性量子起伏所產生的太初曲率微擾之頻譜與非高斯項,並且
與近期普朗克衛星所發表的資料做比較。雖然觀測資料限制了本模型的參數空間,
但本模型仍然提供了一個可能的關於粒子物理與宇宙學暴漲理論的有趣連結。
關於暗能量部份,暗能量主要是解釋我們所觀測到晚期宇宙的加速膨脹現象。
與暴漲理論類似,暗能量的來源至今未有定論。本論文將討論一個可能的解釋暗
能量來源的模型。我們考慮一個非表準模型的旋量場,稱做ELKO 旋量場或暗旋
量場,該旋量場為2005 年Dr. Ahluwalia-Khalilova 和Dr. Grumiller 所提出。
不同於狄拉克旋量場,暗旋量場可以與撓場有更多交互作用,該交互作用即可能
是暗能量的來源。我們考慮暗旋量場在愛因斯坦-卡當重力底下與撓場的交互作
用,並研究其宇宙學演化。儘管假設該場的動能項具有幻能量的形式,我們發現
該模型並不像其他幻能量模型一樣遭遇到各種暗能量奇異點的問題。此模型並且
滿足能量條件定理,因此在量子層面也是穩定的。而我們的研究顯示最終擾場將消失,宇宙將進入德希特宇宙時期。
為求完整性,本論文將儘可能介紹所用到的宇宙學知識,從廣義相對論開始,
接著暴漲理論的基本知識、宇宙學微擾、非高斯性、漸進安全重力論、漸進安全
重力所引發的暴漲模型與普朗克衛星觀測資料的比較、愛因斯坦卡當重力論、暗
能量、暗旋量場及其暗能量模型與觀測之比較等等。最後我們將總結本論文並且
討論其未來相關的發展。
zh_TW
dc.description.abstractIn this dissertation, we will study mainly two models, the first one is on inflation and second is on the dark energy. For the inationary model, we
consider a model inspired on asymptotic safe gravity which can induce a scalar fi eld and we identify it as the inflaton. We also study the presence
of another scalar eld which can be interpreted as the Higgs fi eld. We assume
the reheating of the inflaton is controlled by the Higgs field. Firstly,
we study the background trajectories of this model and it shows that our
model may provide su fficient inflationary e-folds and a graceful exit to a radiation dominated phase. Then we study the possibility of generating primordial curvature perturbations through the Standard Model Higgs boson.
This can be achieved under the choice of fi nely tuned parameters by making
use of the modulated reheating mechanism. The primordial non-Gaussianity
is expected to be sizable in this model. Though tightly constrained by the
newly released Planck cosmic microwave background data, this model provides
a potentially interesting connection between collider and early Universe
physics.
As for the dark energy, we consider a class of dynamical dark energy
models which are constructed through an extended version of fermion fields called the Elko spinors, which are spin one half with mass dimension one. We
wonder that if the Elko spinor interacts with torsion fields in a homogeneous and
isotropic universe, then we do not expect quantum instability in this kind
of dark energy model even though the fermion possesses a negative kinetic
energy. In other words, this dark energy model will asymptotically approach
the equation of state w = 1 from above without crossing the phantom
divide. Therefore, the stability is preserved, i.e. no phantom fi eld will be
created. Furthermore, we analyze as well the presence of some pressureless
cold dark matter, and the result is unchanged, in this two components system.
At late time, the torsion fi elds will vanish as the Elko spinors dilute, the
equation of state will still converge to w = 1 and the Hubble parameter
will approach a constant, the universe will eventually enter a de Sitter phase
with or without the presence of this dark matter.
To make it as self-contained as possible, this dissertation will contain
the essential knowledge and relative important issues about these two models, including the general relativity, Einstein-Cartan theory, the cosmological
inflation, the cosmological perturbations, the asymptotic safe gravity, the Higgs-modulated inflation model, the dark energy in cosmology, the Elko spinors, the dark energy of phantom dark spinor with torsion. Finally, we will briefly conclude this dissertation and discuss their future perspectives.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:42:10Z (GMT). No. of bitstreams: 1
ntu-104-F95222075-1.pdf: 1123019 bytes, checksum: f8ce1c0537b19a8e0c142a002faf45af (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents1 Introduction 1
1.1 A Brief History of the Universe . . . . . . . . . . . . . . . . . . . . . 1
1.2 The First 10^-10 Seconds . . . . . . . . . . . . . . . . . . . . . 3
2 General Relativity 4
2.1 The Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Einstein Equation . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Einstein-Cartan Gravity . . . . . . . . . . . . . . . . . . . . . 12
3 A Review of Inflation in Standard Cosmology 16
3.1 Big Bang Puzzles . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 The Physics of Inflation . . . . . . . . . . . . . . . . . . . . . 18
3.3 The FRW Universe . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Reheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Quantum Fluctuations and Cosmological Perturbations . . . . 25
3.7 Initial Conditions for Standard Cosmology . . . . . . . . . . . 35
3.8 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 Non-Gaussianities . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 Asymptotic Safe Gravity 41
4.1 Asymptotic Safety . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Functional Renormalization Group . . . . . . . . . . . . . . . 43
5 Higgs Modulated Reheating of RG improved Inflation 48
5.1 A Model of Asymptotic Safe Gravity . . . . . . . . . . . . . . 48
5.2 The f(R) Correspondence . . . . . . . . . . . . . . . . . . . . 50
5.3 Classical Equivalence to the JBD Theory . . . . . . . . . . . . 52
5.4 R2 In
ationary Cosmology . . . . . . . . . . . . . . . . . . . . 53
i
5.5 Background Evolution . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Slow-roll Inflation . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.7 Higgs Dependent Decay after In
ation . . . . . . . . . . . . . 59
5.8 Adiabatic and Entropy Perturbations During In
ation . . . . 62
5.9 Higgs Modulated Reheating . . . . . . . . . . . . . . . . . . . 65
5.10 Observables at Linear Order . . . . . . . . . . . . . . . . . . . 67
5.11 Non-Gaussianities . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.12 Constraint on Model Parameters by Planck . . . . . . . . . . . 72
6 Review on Dark Energy in Cosmology 76
6.1 Cosmological Constant . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Quintessence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Chaplygin Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7 Dark Energy Model by Dark Spinor with Torsion 87
7.1 The ELKO Spinors . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 A Dark Energy Model of Phantom ELKO Spinors with Torsion 91
7.3 Cosmological Evolution of the Phantom ELKO Spinor . . . . 97
8 Conclusions and Future Perspectives 106
dc.language.isoen
dc.subject暗能量zh_TW
dc.subject希格子zh_TW
dc.subject漸進安全重力zh_TW
dc.subject暗旋量場zh_TW
dc.subject暴漲zh_TW
dc.subjectAsymptotic safe gravityen
dc.subjectDark energyen
dc.subjectDark spinoren
dc.subjectInflationen
dc.subjectHiggsen
dc.title從早期宇宙到晚期宇宙與粒子物理的關聯zh_TW
dc.titleConnecting Particle Physics with the Universe from Early Time to Late Timeen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee泉圭介(Keisuke Izumi),瑪莉安(Mariam Bouhmadi-Lopez),顧哲安(Je-An Gu),耿朝強
dc.subject.keyword暴漲,希格子,漸進安全重力,暗旋量場,暗能量,zh_TW
dc.subject.keywordInflation,Higgs,Asymptotic safe gravity,Dark spinor,Dark energy,en
dc.relation.page123
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf1.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved