請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44221完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡錦華(Ching-Hwa Tsai) | |
| dc.contributor.author | Hsin-Yi Chiu | en |
| dc.contributor.author | 邱馨誼 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:45:40Z | - |
| dc.date.available | 2012-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-10 | |
| dc.identifier.citation | Amon, W., U. K. Binne, et al. (2004). 'Lytic cycle gene regulation of Epstein-Barr virus.' J Virol 78(24): 13460-9.
Andersson-Anvret, M., N. Forsby, et al. (1979). 'Relationship between the Epstein-Barr virus genome and nasopharyngeal carcinoma in Caucasian patients.' Int J Cancer 23(6): 762-7. Avantaggiati, M. L., V. Ogryzko, et al. (1997). 'Recruitment of p300/CBP in p53-dependent signal pathways.' Cell 89(7): 1175-84. Baer, R., A. T. Bankier, et al. (1984). 'DNA sequence and expression of the B95-8 Epstein-Barr virus genome.' Nature 310(5974): 207-11. Bhende, P. M., W. T. Seaman, et al. (2004). 'The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome.' Nat Genet 36(10): 1099-104. Binne, U. K., W. Amon, et al. (2002). 'Promoter sequences required for reactivation of Epstein-Barr virus from latency.' J Virol 76(20): 10282-9. Bode, A. M. and Z. Dong (2004). 'Post-translational modification of p53 in tumorigenesis.' Nat Rev Cancer 4(10): 793-805. Bolden, J. E., M. J. Peart, et al. (2006). 'Anticancer activities of histone deacetylase inhibitors.' Nat Rev Drug Discov 5(9): 769-84. Borras, A. M., J. L. Strominger, et al. (1996). 'Characterization of the ZI domains in the Epstein-Barr virus BZLF1 gene promoter: role in phorbol ester induction.' J Virol 70(6): 3894-901. Brooks, C. L. and W. Gu (2003). 'Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation.' Curr Opin Cell Biol 15(2): 164-71. Brooks, C. L. and W. Gu (2006). 'p53 ubiquitination: Mdm2 and beyond.' Mol Cell 21(3): 307-15. Bryant, H. and P. J. Farrell (2002). 'Signal Transduction and Transcription Factor Modification during Reactivation of Epstein-Barr Virus from Latency.' J Virol 76(20): 10290-8. Butler, L. M., D. B. Agus, et al. (2000). 'Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo.' Cancer Res 60(18): 5165-70. Castagna, M., Y. Takai, et al. (1982). 'Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters.' J Biol Chem 257(13): 7847-51. Chai, F., A. Evdokiou, et al. (2000). 'Involvement of p21(Waf1/Cip1) and its cleavage by DEVD-caspase during apoptosis of colorectal cancer cells induced by butyrate.' Carcinogenesis 21(1): 7-14. Chang, L. K. and S. T. Liu (2000). 'Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation.' Nucleic Acids Res 28(20): 3918-25. Chang, S. S., Y. C. Lo, et al. (2008). 'Critical role of p53 in histone deacetylase inhibitor-induced Epstein-Barr virus Zta expression.' J Virol 82(15): 7745-51. Chang, Y., C. H. Tung, et al. (1999). 'Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes.' J Virol 73(10): 8857-66. Chen, L., W. Fischle, et al. (2001). 'Duration of nuclear NF-kappaB action regulated by reversible acetylation.' Science 293(5535): 1653-7. Chen, W., S. Huang, et al. (1998). 'Levels of p53 in Epstein-Barr virus-infected cells determine cell fate: apoptosis, cell cycle arrest at the G1/S boundary without apoptosis, cell cycle arrest at the G2/M boundary without apoptosis, or unrestricted proliferation.' Virology 251(2): 217-26. Chien, Y. C., J. Y. Chen, et al. (2001). 'Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men.' N Engl J Med 345(26): 1877-82. Chrysomali, E., J. S. Greenspan, et al. (1996). 'Apoptosis-associated proteins in oral hairy leukoplakia.' Oral Dis 2(4): 279-84. Clayton, A. L., C. A. Hazzalin, et al. (2006). 'Enhanced histone acetylation and transcription: a dynamic perspective.' Mol Cell 23(3): 289-96. Countryman, J. and G. Miller (1985). 'Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA.' Proc Natl Acad Sci U S A 82(12): 4085-9. Coutts, A. S. and N. B. La Thangue (2005). 'The p53 response: emerging levels of co-factor complexity.' Biochem Biophys Res Commun 331(3): 778-85. Dumaz, N. and D. W. Meek (1999). 'Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2.' EMBO J 18(24): 7002-10. Faggioni, A., C. Zompetta, et al. (1986). 'Calcium modulation activates Epstein-Barr virus genome in latently infected cells.' Science 232(4757): 1554-6. Feederle, R., M. Kost, et al. (2000). 'The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators.' EMBO J 19(12): 3080-9. Flemington, E. and S. H. Speck (1990). 'Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1.' J Virol 64(3): 1227-32. Flemington, E. and S. H. Speck (1990). 'Identification of phorbol ester response elements in the promoter of Epstein-Barr virus putative lytic switch gene BZLF1.' J Virol 64(3): 1217-26. Giaccone, G., J. Battey, et al. (1992). 'Neuromedin B is present in lung cancer cell lines.' Cancer Res 52(9 Suppl): 2732s-2736s. Glozak, M. A., N. Sengupta, et al. (2005). 'Acetylation and deacetylation of non-histone proteins.' Gene 363: 15-23. Greenspan, J. S., D. Greenspan, et al. (1985). 'Replication of Epstein-Barr virus within the epithelial cells of oral 'hairy' leukoplakia, an AIDS-associated lesion.' N Engl J Med 313(25): 1564-71. Grogan, E., H. Jenson, et al. (1987). 'Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells.' Proc Natl Acad Sci U S A 84(5): 1332-6. Grunstein, M. (1997). 'Histone acetylation in chromatin structure and transcription.' Nature 389(6649): 349-52. Gu, W. and R. G. Roeder (1997). 'Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain.' Cell 90(4): 595-606. Gui, C. Y., L. Ngo, et al. (2004). 'Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1.' Proc Natl Acad Sci U S A 101(5): 1241-6. Gulley, M. L., M. P. Burton, et al. (1998). 'Epstein-Barr virus infection is associated with p53 accumulation in nasopharyngeal carcinoma.' Hum Pathol 29(3): 252-9. Gustafsson, A., V. Levitsky, et al. (2000). 'Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells.' Blood 95(3): 807-14. Hanto, D. W., G. Frizzera, et al. (1985). 'Epstein-Barr virus, immunodeficiency, and B cell lymphoproliferation.' Transplantation 39(5): 461-72. Hardwick, J. M., P. M. Lieberman, et al. (1988). 'A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen.' J Virol 62(7): 2274-84. Haupt, Y., R. Maya, et al. (1997). 'Mdm2 promotes the rapid degradation of p53.' Nature 387(6630): 296-9. Henle, W., V. Diehl, et al. (1967). 'Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells.' Science 157(792): 1064-5. Hollstein, M., K. Rice, et al. (1994). 'Database of p53 gene somatic mutations in human tumors and cell lines.' Nucleic Acids Res 22(17): 3551-5. Hollstein, M., D. Sidransky, et al. (1991). 'p53 mutations in human cancers.' Science 253(5015): 49-53. Hong, G. K., M. L. Gulley, et al. (2005). 'Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model.' J Virol 79(22): 13993-4003. Jung, E. J., Y. M. Lee, et al. (2007). 'Lytic induction and apoptosis of Epstein-Barr virus-associated gastric cancer cell line with epigenetic modifiers and ganciclovir.' Cancer Lett 247(1): 77-83. Kadonaga, J. T. (1998). 'Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines.' Cell 92(3): 307-13. Kenagy, D. N., Y. Schlesinger, et al. (1995). 'Epstein-Barr virus DNA in peripheral blood leukocytes of patients with posttransplant lymphoproliferative disease.' Transplantation 60(6): 547-54. Kieff, E. and A. B. Rickinson (2001). Epstein-Barr virus. Fields' virology. D. M. Knipe and P. M. Howley, Lippincott Williams & Wilkins, Philadelphia, Pa: 2511-2573. Kikuta, H., Y. Taguchi, et al. (1988). 'Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease.' Nature 333(6172): 455-7. Kirchmaier, A. L. and B. Sugden (1995). 'Plasmid maintenance of derivatives of oriP of Epstein-Barr virus.' J Virol 69(2): 1280-3. Koutsodontis, G., I. Tentes, et al. (2001). 'Sp1 plays a critical role in the transcriptional activation of the human cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by the p53 tumor suppressor protein.' J Biol Chem 276(31): 29116-25. Koutsodontis, G., E. Vasilaki, et al. (2005). 'Physical and functional interactions between members of the tumour suppressor p53 and the Sp families of transcription factors: importance for the regulation of genes involved in cell-cycle arrest and apoptosis.' Biochem J 389(Pt 2): 443-55. Kraus, R. J., J. G. Perrigoue, et al. (2003). 'ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus.' J Virol 77(1): 199-207. Lagger, G., A. Doetzlhofer, et al. (2003). 'The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene.' Mol Cell Biol 23(8): 2669-79. Lavin, M. F. and N. Gueven (2006). 'The complexity of p53 stabilization and activation.' Cell Death Differ 13(6): 941-50. Leder, A. and P. Leder (1975). 'Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells.' Cell 5(3): 319-22. Levine, A. J. (1997). 'p53, the cellular gatekeeper for growth and division.' Cell 88(3): 323-31. Liang, C. L., J. L. Chen, et al. (2002). 'Epstein-Barr virus BZLF1 gene is activated by transforming growth factor-beta through cooperativity of Smads and c-Jun/c-Fos proteins.' J Biol Chem 277(26): 23345-57. Lin, C. T., W. Y. Chan, et al. (1993). 'Characterization of seven newly established nasopharyngeal carcinoma cell lines.' Lab Invest 68(6): 716-27. Liu, S., A. M. Borras, et al. (1997). 'Binding of the ubiquitous cellular transcription factors Sp1 and Sp3 to the ZI domains in the Epstein-Barr virus lytic switch BZLF1 gene promoter.' Virology 228(1): 11-8. Liu, S., P. Liu, et al. (1997). 'Cyclosporin A-sensitive induction of the Epstein-Barr virus lytic switch is mediated via a novel pathway involving a MEF2 family member.' EMBO J 16(1): 143-53. Ljungman, M. (2000). 'Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress.' Neoplasia 2(3): 208-25. Lucas, K. G., R. L. Burton, et al. (1998). 'Semiquantitative Epstein-Barr virus (EBV) polymerase chain reaction for the determination of patients at risk for EBV-induced lymphoproliferative disease after stem cell transplantation.' Blood 91(10): 3654-61. Luka, J., B. Kallin, et al. (1979). 'Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate.' Virology 94(1): 228-31. Luo, J., F. Su, et al. (2000). 'Deacetylation of p53 modulates its effect on cell growth and apoptosis.' Nature 408(6810): 377-81. Martinez-Balbas, M. A., U. M. Bauer, et al. (2000). 'Regulation of E2F1 activity by acetylation.' EMBO J 19(4): 662-71. Metzenberg, S. (1990). 'Levels of Epstein-Barr virus DNA in lymphoblastoid cell lines are correlated with frequencies of spontaneous lytic growth but not with levels of expression of EBNA-1, EBNA-2, or latent membrane protein.' J Virol 64(1): 437-44. Middleton, T. and B. Sugden (1994). 'Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein-Barr virus replication protein EBNA1.' J Virol 68(6): 4067-71. Mueller, N., A. Evans, et al. (1989). 'Hodgkin's disease and Epstein-Barr virus. Altered antibody pattern before diagnosis.' N Engl J Med 320(11): 689-95. Murata, T., Y. Sato, et al. (2009). 'TORC2, a coactivator of cAMP-response element-binding protein, promotes Epstein-Barr virus reactivation from latency through interaction with viral BZLF1 protein.' J Biol Chem 284(12): 8033-41. Murono, S., T. Yoshizaki, et al. (1999). 'Association of Epstein-Barr virus infection with p53 protein accumulation but not bcl-2 protein in nasopharyngeal carcinoma.' Histopathology 34(5): 432-8. Niemhom, S., S. Kitazawa, et al. (2000). 'Co-expression of p53 and bcl-2 may correlate to the presence of epstein-barr virus genome and the expression of proliferating cell nuclear antigen in nasopharyngeal carcinoma.' Cancer Lett 160(2): 199-208. Pazin, M. J. and J. T. Kadonaga (1997). 'What's up and down with histone deacetylation and transcription?' Cell 89(3): 325-8. Pellizzaro, C., D. Coradini, et al. (2001). 'Modulation of cell cycle-related protein expression by sodium butyrate in human non-small cell lung cancer cell lines.' Int J Cancer 91(5): 654-7. Preciado, M. V., P. A. Chabay, et al. (2002). 'Epstein Barr virus associated pediatric nasopharyngeal carcinoma: its correlation with p53 and bcl-2 expression.' Med Pediatr Oncol 38(5): 345-8. Ragoczy, T., L. Heston, et al. (1998). 'The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes.' J Virol 72(10): 7978-84. Rahman, M. M., A. Kukita, et al. (2003). 'Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages.' Blood 101(9): 3451-9. Resnick, L., J. S. Herbst, et al. (1988). 'Regression of oral hairy leukoplakia after orally administered acyclovir therapy.' JAMA 259(3): 384-8. Riggs, M. G., R. G. Whittaker, et al. (1977). 'n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells.' Nature 268(5619): 462-4. Roth, S. Y., J. M. Denu, et al. (2001). 'Histone acetyltransferases.' Annu Rev Biochem 70: 81-120. Roy, S., K. Packman, et al. (2005). 'Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells.' Cell Death Differ 12(5): 482-91. Roy, S. and M. Tenniswood (2007). 'Site-specific acetylation of p53 directs selective transcription complex assembly.' J Biol Chem 282(7): 4765-71. Ruf, I. K. and D. R. Rawlins (1995). 'Identification and characterization of ZIIBC, a complex formed by cellular factors and the ZII site of the Epstein-Barr virus BZLF1 promoter.' J Virol 69(12): 7648-57. Saemann, M. D., G. A. Bohmig, et al. (2000). 'Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production.' FASEB J 14(15): 2380-2. Sakaguchi, K., H. Sakamoto, et al. (1997). 'Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53.' Biochemistry 36(33): 10117-24. Scolnick, D. M., N. H. Chehab, et al. (1997). 'CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein.' Cancer Res 57(17): 3693-6. Shao, J. Y., Y. H. Li, et al. (2004). 'Comparison of plasma Epstein-Barr virus (EBV) DNA levels and serum EBV immunoglobulin A/virus capsid antigen antibody titers in patients with nasopharyngeal carcinoma.' Cancer 100(6): 1162-70. Shaw, J. E., L. F. Levinger, et al. (1979). 'Nucleosomal structure of Epstein-Barr virus DNA in transformed cell lines.' J Virol 29(2): 657-65. Shimizu, N. and K. Takada (1993). 'Analysis of the BZLF1 promoter of Epstein-Barr virus: identification of an anti-immunoglobulin response sequence.' J Virol 67(6): 3240-5. Sixbey, J. W., E. H. Vesterinen, et al. (1983). 'Replication of Epstein-Barr virus in human epithelial cells infected in vitro.' Nature 306(5942): 480-3. Smeenk, L., S. J. van Heeringen, et al. (2008). 'Characterization of genome-wide p53-binding sites upon stress response.' Nucleic Acids Res 36(11): 3639-54. Speck, S. H., T. Chatila, et al. (1997). 'Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene.' Trends Microbiol 5(10): 399-405. Stevens, S. J., E. A. Verschuuren, et al. (2001). 'Frequent monitoring of Epstein-Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients.' Blood 97(5): 1165-71. Sun, C. C. and D. A. Thorley-Lawson (2007). 'Plasma cell-specific transcription factor XBP-1s binds to and transactivates the Epstein-Barr virus BZLF1 promoter.' J Virol 81(24): 13566-77. Szekely, L., K. Pokrovskaja, et al. (1995). 'Resting B-cells, EBV-infected B-blasts and established lymphoblastoid cell lines differ in their Rb, p53 and EBNA-5 expression patterns.' Oncogene 10(9): 1869-74. Takada, K. (1984). 'Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines.' Int J Cancer 33(1): 27-32. Thiagalingam, S., K. H. Cheng, et al. (2003). 'Histone deacetylases: unique players in shaping the epigenetic histone code.' Ann N Y Acad Sci 983: 84-100. Thornborrow, E. C. and J. J. Manfredi (2001). 'The tumor suppressor protein p53 requires a cofactor to activate transcriptionally the human BAX promoter.' J Biol Chem 276(19): 15598-608. Toledo, F. and G. M. Wahl (2006). 'Regulating the p53 pathway: in vitro hypotheses, in vivo veritas.' Nat Rev Cancer 6(12): 909-23. Tovey, M. G., G. Lenoir, et al. (1978). 'Activation of latent Epstein-Barr virus by antibody to human IgM.' Nature 276(5685): 270-2. Tsuji, N. and M. Kobayashi (1978). 'Trichostatin C, a glucopyranosyl hydroxamate.' J Antibiot (Tokyo) 31(10): 939-44. Tsuji, N., M. Kobayashi, et al. (1976). 'A new antifungal antibiotic, trichostatin.' J Antibiot (Tokyo) 29(1): 1-6. Vousden, K. H. and X. Lu (2002). 'Live or let die: the cell's response to p53.' Nat Rev Cancer 2(8): 594-604. Wang, Y. C., J. M. Huang, et al. (1997). 'Characterization of proteins binding to the ZII element in the Epstein-Barr virus BZLF1 promoter: transactivation by ATF1.' Virology 227(2): 323-30. Wegel, E. and P. Shaw (2005). 'Gene activation and deactivation related changes in the three-dimensional structure of chromatin.' Chromosoma 114(5): 331-7. Weiss, L. M., L. A. Movahed, et al. (1989). 'Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin's disease.' N Engl J Med 320(8): 502-6. Widmer, J., K. S. Fassihi, et al. (1996). 'Identification of a second human acetyl-CoA carboxylase gene.' Biochem J 316 ( Pt 3): 915-22. Yang, J., Y. Kawai, et al. (2001). 'Sodium butyrate induces transcription from the G alpha(i2) gene promoter through multiple Sp1 sites in the promoter and by activating the MEK-ERK signal transduction pathway.' J Biol Chem 276(28): 25742-52. Yoshida, M., M. Kijima, et al. (1990). 'Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A.' J Biol Chem 265(28): 17174-9. Yoshida, M., S. Nomura, et al. (1987). 'Effects of trichostatins on differentiation of murine erythroleukemia cells.' Cancer Res 47(14): 3688-91. Yuan, Z. L., Y. J. Guan, et al. (2005). 'Stat3 dimerization regulated by reversible acetylation of a single lysine residue.' Science 307(5707): 269-73. Zeng, Y., L. G. Zhang, et al. (1985). 'Prospective studies on nasopharyngeal carcinoma in Epstein-Barr virus IgA/VCA antibody-positive persons in Wuzhou City, China.' Int J Cancer 36(5): 545-7. Zhang, Q., D. Gutsch, et al. (1994). 'Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency.' Mol Cell Biol 14(3): 1929-38. Zhao, Y., S. Lu, et al. (2006). 'Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1).' Mol Cell Biol 26(7): 2782-90. zur Hausen, H., F. J. O'Neill, et al. (1978). 'Persisting oncogenic herpesvirus induced by the tumour promotor TPA.' Nature 272(5651): 373-5. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44221 | - |
| dc.description.abstract | 在許多與EB病毒相關的疾病組織中,觀察到p53 過量累積的情形。此外,在這些病患的血清中又可偵測到較高力價的抗EB病毒溶裂期產物之抗體,因此本論文欲探討p53 對於誘導EB病毒再活化進入溶裂期過程中所扮演的角色。
在此研究中,本實驗室先前的研究,已證實在去乙醯酶抑制劑 (HDAC inhibitor)引起鼻咽癌上皮細胞株之EB病毒再活化能力的過程中,p53是重要的因子。進一步研究結果顯示,p53在促使EB病毒再活化之重要樞杻的Zta蛋白質表現過程中扮演重要角色。利用基因減弱試驗 (knockdown) 和報導者分析 (reporter assay),證實p53在活化Zta啟動子的過程扮演關鍵性因子。後續的研究著重於釐清在調控Zta啟動子的分子機制。本論文中,進一步利用site-directed mutagenesis的方法構築一系列片段型和突變型Zta啟動子報導質體,經過報導者分析試驗,定位出足以活化Zta啟動子的重要反應區域,ZID區域。透過DNA親和性沉澱試驗 (DNA affinity precipitation assay, DAPA) 證實p53可以結合於此Zta啟動子重要反應區域,ZID區域。本研究結果亦發現另一轉錄因子──Sp1,同樣可以結合於此特定的DNA區域。此外,進一步利用共同免疫沉澱法 (Co-Immunoprecipitation) 證實p53和Sp1兩個轉錄因子之間具有交互作用的現象。更甚者,使用Sp1的常用抑制劑以及突變型的Sp1作為競爭野生型Sp1的作用,還有Sp1基因減弱試驗,証明Sp1在Zta蛋白質的表現,甚至是Zta啟動子的活化亦扮演要角。 總結,在HDAC抑制劑誘導EB病毒再活化過程中,確認p53和Sp1皆在Zta啟動子層面扮演重要的調控角色,故可以推測p53和Sp1也許以協同調控之方式活化Zta啟動子。本論文研究,試圖窺探p53和Sp1在Zta啟動子上的分子機制,也為p53於病毒和宿主交互關係中提供一個嶄新的視野。 | zh_TW |
| dc.description.abstract | The previous studies reported that p53 usually accumulates in some EBV-infected cells and that high titer antibodies against EBV lytic products are commonly observed in the sera of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) individuals, suggesting that there is a correlation between p53 and EBV reactivation.
Indeed, we have demonstrated that p53 is a critical factor for HDAC inhibitors-induced EBV reactivation in NPC cells. In brief, p53 is especially critical for the expression of Zta transactivator, an immediate early gene which plays vital roles in initiating viral replication. By means of the siRNA approaches and reporter assay, we currently found certain critical events occur on Zta promoter (Zp) which is affected by p53. In this thesis, we try to further reveal the molecular mechanism how p53 regulates the expression of Zta at transcriptional level. Through serial deletion and mutation of the Zp reporter constructs, we defined a specific DNA region, ZID element, which is essential for Zp activation upon HDAC inhibitors treatment. Data from DNA affinity precipitation assay (DAPA) proved the binding of p53 on this specific DNA element, ZID element of Zp. Moreover, we found that another transcription factor, Sp1, also could associate with this specific DNA region. In addition, we demonstrated the interaction between p53 and Sp1 by Co-Immunoprecipitation (Co-IP). Furthermore, using the chemical inhibitor, the dominant negative form of Sp1, Sp1 specific siRNA as well as through genetic manipulation of this putative Sp1 site, we demonstrated the importance of Sp1 for Zp activity. In conclusion, both p53 and Sp1 act as important regulators on Zta promoter in the HDAC inhibitor-induced EBV reactivation. To our knowledge, this is the first report that p53 and Sp1 can interact with each other and bind on Zp promoter to transactivate its activity. This report could let us pry into the molecular behavior of p53 and Sp1 on Zta promoter, and it provides a novel insight into the role of p53 in virus-host interaction. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:45:40Z (GMT). No. of bitstreams: 1 ntu-98-R96445107-1.pdf: 1252368 bytes, checksum: a095cde26c3cbb08286422ef2ef5a402 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝....…………………………………………………………………………….........I
中文摘要....……………………………………………………………………………III ABSTRACT..................................................................................................................IV 目錄....…………………………………………………………………………….......Ⅴ 序論....……………………………………………………………………………..........1 一、Epstein-Barr病毒(EBV).....……………………………………………………...1 1. EB病毒簡史..........................................................................................................1 2. EB病毒生活史:潛伏期 (Latent stage)與溶裂期 (Lytic cycle)........................1 2.1 EB病毒潛伏期基因表現................................................................................2 2.2 EB病毒溶裂期基因表現................................................................................2 3. EB病毒溶裂期與人類疾病之相關性..................................................................2 4. EB病毒溶裂期之再活化 (Reactivation).............................................................3 4.1 誘導EB病毒再活化之刺激物......................................................................3 4.2 Zta啟動子(Zp)活化之相關研究.....................................................................4 二、組蛋白去乙醯酶抑制劑 (Histone deacetylase inhibitor, HDACi) ......................5 1. HDAC簡介............................................................................................................6 2. HDAC調控機制....................................................................................................6 2.1 Histone substrate...............................................................................................6 2.2 Non-histone substrate........................................................................................7 3. HDAC抑制劑 (HDACi) 簡介.............................................................................8 3.1 Sodium Butyrate (SB).......................................................................................8 3.2 Trichostatin A (TSA).........................................................................................8 4. HDAC抑制劑作用機制........................................................................................9 三、抑癌蛋白質p53.....................................................................................................9 1. p53蛋白質簡介.....................................................................................................9 2. p53蛋白質結構.....................................................................................................9 3. p53蛋白質的調控機轉........................................................................................10 4. p53蛋白質與EB病毒感染之關係.....................................................................10 研究目的.........................................................................................................................12 研究材料.........................................................................................................................13 一、藥品(Chemical)................................................................................................13 二、套組試劑(Kit)...................................................................................................15 三、質體(Plasmid)...................................................................................................15 四、抗體(Antibody,詳見表一)............................................................................17 五、酵素 (Enzyme) .....................................................................................................17 六、溶液 (Buffer) ........................................................................................................17 七、引子﹙Primer,詳見表二﹚.................................................................................19 八、探針(Probe ,詳見表三)................................................................................19 研究方法.........................................................................................................................20 一、質體大量製備.......................................................................................................20 二、定點突變法 (Site-directed mutagenesis).............................................................21 三、細胞培養 (Cell culture) .......................................................................................22 四、細胞轉染 (Cell transfection) ...............................................................................23 五、報導者分析 (Reporter Assay) .............................................................................23 六、西方墨點法 (Western blotting) ...........................................................................24 七、染色質沉澱試驗 (Chromatin-Immunoprecipitation Assay) ...............................25 八、細胞核萃取液之製備 (Nuclear extract) .............................................................26 九、DNA親合性沉澱試驗 (DNA precipitation Assay) ............................................27 十、免疫沉澱試驗 (Immunoprecipitation Assay) .....................................................28 十一、RNA萃取法 (RNA extraction) .......................................................................28 十二、基因表現減弱試驗 (Gene Knockdown) ...........................................................29 十三、細胞核質分離 (Nuclear/Cytoplasm fraction) ..................................................30 結 果.........................................................................................................................31 一、HDAC抑制劑誘導EB病毒再活化的過程之分析............................................31 1. HDAC抑制劑促進Zta啟動子的活化,對於Rta啟動子則無作用................31 2. p53蛋白質不影響在Zta啟動子上組蛋白之乙醯化程度.................................31 3.在細胞內或細胞外的試驗分析,p53蛋白質具結合於Zta啟動子之能力......32 4. HDAC抑制劑誘導Zta表現過程中,Zta啟動子-99 ~ -91是重要反應區域.33 二、p53蛋白質在HDAC抑制劑誘導EB病毒再活化的過程中所扮演之角色....35 1. p53與Sp1蛋白質具結合於Zta啟動子之-99~-80 (ZID)區域的能力................35 2. p53與Sp1蛋白質的交互作用............................................................................36 三、Sp1蛋白質在HDAC抑制劑誘導EB病毒再活化的過程中之重要性............38 1. Sp1蛋白質影響HDAC抑制劑誘導EB病毒再活化的能力............................38 2. Sp1蛋白質影響HDAC抑制劑誘導Zta轉活化子的表現................................39 3. Sp1蛋白質影響HDAC抑制劑誘導Zta啟動子(-99~+12)的活化過程...........40 討 論.........................................................................................................................42 圖 表.........................................................................................................................50 參考文獻.........................................................................................................................75 | |
| dc.language.iso | zh-TW | |
| dc.subject | Sp1 | zh_TW |
| dc.subject | Zta啟動子 | zh_TW |
| dc.subject | p53 | zh_TW |
| dc.subject | EBV再活化 | zh_TW |
| dc.subject | Zta promoter | en |
| dc.subject | Sp1 | en |
| dc.subject | p53 | en |
| dc.subject | EBV reactivation | en |
| dc.title | 探查p53和Sp1在組蛋白去乙醯酶抑制劑誘導EB病毒再活化過程中調控轉活化子Zta表現之機制 | zh_TW |
| dc.title | Regulation of cellular factors, p53 and Sp1, on Zta expression upon HDACi-induced EBV reactivation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳小梨(Show-Li Chen),鄧述諄(Shu-Chun Teng) | |
| dc.subject.keyword | p53,Sp1,Zta啟動子,EBV再活化, | zh_TW |
| dc.subject.keyword | p53,Sp1,Zta promoter,EBV reactivation, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
