Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44213
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 萬本儒(Ben-Zu Wan) | |
dc.contributor.author | Tzu-Wei Kao | en |
dc.contributor.author | 高慈煒 | zh_TW |
dc.date.accessioned | 2021-06-15T02:45:15Z | - |
dc.date.available | 2019-12-31 | |
dc.date.copyright | 2009-08-11 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-10 | |
dc.identifier.citation | [1] S. Srinivasan and B. Kirby, Status of fuel cell technologies, 2006.
[2] F. Barbir, PEM Fuel Cells, 2006. [3] C. Song, 'Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century,' Catalysis Today, vol. 77, pp. 17-49, 2002. [4] D. L. Trimm and Z. I. Nsan, 'Onboard fuel conversion for hydrogen-fuel-cell-driven vechicles,' Catalysis Reviews, vol. 43, pp. 31-84, 2001. [5] J. H. Wee and K. Y. Lee, 'Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells,' Journal of Power Sources, vol. 157, pp. 128-135, 2006. [6] T. V. Choudhary and D. W. Goodman, 'CO-free fuel processing for fuel cell applications,' Catalysis Today, vol. 77, pp. 65-78, 2002. [7] D. S. Newsome, 'The water-gas shift reaction,' Catalysis Reviews, vol. 21, pp. 275-318, 1980. [8] D. C. Grenoble, M. M. Estadt, and D. F. Ollis, 'The chemistry and catalysis of the water gas shift reaction .1. The kinetics over supported metal-catalysts,' Journal of Catalysis, vol. 67, pp. 90-102, 1981. [9] J. J. Barbier and D. Duprez, 'Steam effects in three-way catalysis,' Applied Catalysis B: Environmental, vol. 4, pp. 105-140, 1994. [10] T. Shido and Y. Iwasawa, 'Reactant promoted reaction mechanism for water-gas shift reaction on Rh-doped CeO2,' Journal of Catalysis, vol. 141, pp. 71-81, 1993. [11] L. Carrette, K. A. Friedrich, and U. Stimming, 'Fuel cells: Principles, types, fuels, and applications,' Chemphyschem, vol. 1, pp. 162-193, 2000. [12] A. Faur Ghenciu, 'Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems,' Current Opinion in Solid State and Materials Science, vol. 6, pp. 389-399, 2002. [13] A. L. E. Wolf Vielstich (Editor), Hubert A. Gasteiger (Editor), Handbook of fuel cells vol. 3. Hoboken, N.J.: Wiley, 2003. [14] S. Lim, J. Bae, and K. Kim, 'Study of activity and effectiveness factor of noble metal catalysts for water-gas shift reaction,' International Journal of Hydrogen Energy, vol. 34, pp. 870-876, 2009. [15] H. Bohlbro, 'Kinetics of water gas conversion at atmospheric pressure,' Acta Chemica Scandinavica, vol. 15, pp. 502-520, 1961. [16] M. V. Twigg and M. S. Spencer, 'Deactivation of supported copper metal catalysts for hydrogenation reactions,' Applied Catalysis A: General, vol. 212, pp. 161-174, 2001. [17] P. J. Guo, L. F. Chen, Q. Y. Yang, M. H. Qiao, H. Li, H. X. Li, H. L. Xu, and K. N. Fan, 'Cu/ZnO/Al2O3 Water-gas shift catalysts for practical fuel cell applications: the performance in shut-down/start-up operation,' International Journal of Hydrogen Energy, vol. 34, pp. 2361-2368, 2009. [18] P. Hou, D. Meeker, and H. Wise, 'Kinetic studies with a sulfur-tolerant water gas shift catalyst,' Journal of Catalysis, vol. 80, pp. 280-285, 1983. [19] A. A. Andreev, V. J. Kafedjiysky, and R. M. Edreva-Kardjieva, 'Active forms for water-gas shift reaction on NiMo-sulfide catalysts,' Applied Catalysis A: General, vol. 179, pp. 223-228, 1999. [20] D. Nikolova, R. Edreva-Kardjieva, G. Gouliev, T. Grozeva, and P. Tzvetkov, 'The state of (K)(Ni)Mo/γ-Al2O3 catalysts after water-gas shift reaction in the presence of sulfur in the feed: XPS and EPR study,' Applied Catalysis A: General, vol. 297, pp. 135-144, 2006. [21] M. Lsaniecki, W. Zmierczak, G. Ohlmann, H. Pfeifer, and R. Fricke, 'Sulfur tolerant Ni-Mo-Y-zeolite catalysts for water-gas shift reaction,' Studies in Surface Science and Catalysis, vol. 65, pp. 377-386, 1991. [22] P. Panagiotopoulou and D. I. Kondarides, 'Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water-gas shift reaction,' Journal of Catalysis, vol. 225, pp. 327-336, 2004. [23] P. Panagiotopoulou and D. I. Kondarides, 'Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water-gas shift reaction,' Catalysis Today, vol. 112, pp. 49-52, 2006. [24] A. Basinska, T. P. Maniecki, and W. K. Jozwiak, 'Catalytic activity in water-gas shift reaction of platinum group metals supported on iron oxides,' Reaction Kinetics and Catalysis Letters, vol. 89, pp. 319-324, 2006. [25] T. Tabakova, F. Boccuzzi, M. Manzoli, J. W. Sobczak, V. Idakiev, and D. Andreeva, 'A comparative study of nanosized IB/ceria catalysts for low-temperature water-gas shift reaction,' Applied Catalysis A: General, vol. 298, pp. 127-143, 2006. [26] R. Burch, 'Gold catalysts for pure hydrogen production in the water-gas shift reaction: Activity, structure and reaction mechanism,' Phys. Chem. Chem. Phys., vol. 8, p. 5483, 2006. [27] D. Andreeva, V. Idakiev, T. Tabakova, A. Andreev, and R. Giovanoli, 'Low-temperature water-gas shift reaction on Au/α-Fe2O3 catalyst,' Applied Catalysis A: General, vol. 134, pp. 275-283, 1996. [28] H. Sakurai, A. Ueda, T. Kobayashi, and M. Haruta, 'Low-temperature water-gas shift reaction over gold deposited on TiO2,' Chemical Communications, pp. 271-272, 1997. [29] S. Galvagno and G. Parravano, 'Chemical reactivity of supported gold : IV. Reduction of NO by H2,' Journal of Catalysis, vol. 55, pp. 178-190, 1978. [30] T. Fukushima, S. Galvagno, and G. Parravano, 'Oxygen chemisorption on supported gold,' Journal of Catalysis, vol. 57, pp. 177-182, 1979. [31] J. Schwank, G. Parravano, and H. L. Gruber, 'An infrared study of CO adsorption on magnesia-supported ruthenium, gold, and bimetallic ruthenium-gold clusters,' Journal of Catalysis, vol. 61, pp. 19-28, 1980. [32] N. W. Cant and P. W. Fredrickson, 'Silver and gold catalyzed reactions of carbon monoxide with nitric oxide and with oxygen,' Journal of Catalysis, vol. 37, pp. 531-539, 1975. [33] S. A. Nyarady and R. E. Sievers, 'Selective catalytic oxidation of organic compounds by nitrogen dioxide,' Journal of the American Chemical Society, vol. 107, pp. 3726-3727, 1985. [34] G. C. Bond, P. A. Sermon, G. Webb, D. A. Buchanan, and P. B. Wells, 'Hydrogenation over supperted gold catalysts,' Journal of the Chemical Society-Chemical Communications, pp. 444-445, 1973. [35] H. Huber, D. McIntosh, and G. A. Ozin, 'Metal atom model for oxidation of carbon-monoxide to carbon-dioxide - gold atom carbon monoxide dioxygen reaction and gold atom carbon dioxide reaction,' Inorganic Chemistry, vol. 16, pp. 975-979, 1977. [36] M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, 'Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0-Degrees-C,' Chemistry Letters, pp. 405-408, 1987. [37] A. Haruta, 'When gold is not noble: Catalysis by nanoparticles,' Chemical Record, vol. 3, pp. 75-87, 2003. [38] G. K. Bethke and H. H. Kung, 'Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts,' Applied Catalysis a-General, vol. 194, pp. 43-53, 2000. [39] H. H. Kung, M. C. Kung, and C. K. Costello, 'Supported Au catalysts for low temperature CO oxidation,' Journal of Catalysis, vol. 216, pp. 425-432, 2003. [40] M. Haruta, 'Size- and support-dependency in the catalysis of gold,' Catalysis Today, vol. 36, pp. 153-166, 1997. [41] D. Andreeva, V. Idakiev, T. Tabakova, and A. Andreev, 'Low-Temperature Water-Gas Shift Reaction over Au/α-Fe2O3,' Journal of Catalysis, vol. 158, pp. 354-355, 1996. [42] G. C. Bond and D. T. Thompson, 'Catalysis by gold,' Catalysis Reviews: Science and Engineering, vol. 41, pp. 319-388, 1999. [43] M. Haruta, 'Catalysis of gold nanoparticles deposited on metal oxides,' Cattech, vol. 6, pp. 102-115, 2002. [44] S. Carabineiro and D. Thompson, 'Catalytic applications for gold nanotechnology,' in Nanocatalysis, 2007, pp. 377-489. [45] C. Mihut, C. Descorme, D. Duprez, and M. D. Amiridis, 'Kinetic and spectroscopic characterization of cluster-derived supported Pt-Au catalysts,' Journal of Catalysis, vol. 212, pp. 125-135, 2002. [46] Q. Xu, K. C. C. Kharas, and A. K. Datye, 'The preparation of highly dispersed Au/Al2O3 by aqueous impregnation,' Catalysis Letters, vol. 85, pp. 229-235, 2003. [47] M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, 'Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,' Journal of Catalysis, vol. 115, pp. 301-309, 1989. [48] J. W. Geus, P. G. G. Poncelet, and P. A. Jacobs, 'Production and Thermal Pretreatmewt of Supported Catalysts,' in Studies in Surface Science and Catalysis. vol. Volume 16: Elsevier, 1983, pp. 1-33. [49] D. Wang, Z. Hao, D. Cheng, X. Shi, and C. Hu, 'Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts,' Journal of Molecular Catalysis A: Chemical, vol. 200, pp. 229-238, 2003. [50] F. Moreau, G. C. Bond, and A. O. Taylor, 'Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents,' Journal of Catalysis, vol. 231, pp. 105-114, 2005. [51] Y.-M. Kang and B.-Z. Wan, 'Gold and iron supported on Y-type zeolite for carbon monoxide oxidation,' Catalysis Today, vol. 35, pp. 379-392, 1997. [52] M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, and R. J. G. Behm, 'CO oxidation over supported gold catalysts: 'Inert' and 'active' support materials and their role for the oxygen supply during reaction,' Journal of Catalysis, vol. 197, pp. 113-122, 2001. [53] G. Srinivas, J. Wright, C. S. Bai, and R. Cook, 'Au/metal oxides for low temperature CO oxidation,' in 11TH INTERNATIONAL CONGRESS ON CATALYSIS - 40TH ANNIVERSARY, PTS A AND B, 1996, pp. 427-433. [54] M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, and M. Haruta, 'Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2,' Catalysis Letters, vol. 51, pp. 53-58, 1998. [55] M. Okumura, K. Tanaka, A. Ueda, and M. Haruta, 'The reactivities of dimethylgold(III)beta-diketone on the surface of TiO2 - A novel preparation method for Au catalysts,' 1997, pp. 143-149. [56] M. Valden, X. Lai, and D. W. Goodman, 'Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,' Science, vol. 281, pp. 1647-1650, 1998. [57] A. Sanchez, S. Abbet, U. Heiz, W. D. Schneider, H. Hakkinen, R. N. Barnett, and U. Landman, 'When gold is not noble: Nanoscale gold catalysts,' Journal of Physical Chemistry A, vol. 103, pp. 9573-9578, 1999. [58] D. A. H. Cunningham, W. Vogel, H. Kageyama, S. Tsubota, and M. Haruta, 'The relationship between the structure and activity of nanometer size gold when supported on Mg(OH)2,' Journal of Catalysis, vol. 177, pp. 1-10, 1998. [59] T. Hayashi, K. Tanaka, and M. Haruta, 'Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen,' Journal of Catalysis, vol. 178, pp. 566-575, 1998. [60] F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, and T. Tabakova, 'FTIR study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts,' Journal of Catalysis, vol. 188, pp. 176-185, 1999. [61] T. Tabakova, V. Idakiev, D. Andreeva, and I. Mitov, 'Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction,' Appl. Catal., A, vol. 202, pp. 91-97, 2000. [62] D. Andreeva, V. Idakiev, T. Tabakova, L. Ilieva, P. Falaras, A. Bourlinos, and A. Travlos, 'Low-temperature water-gas shift reaction over Au/CeO2 catalysts,' Catal. Today, vol. 72, p. 51, 2002. [63] Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, 'Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts,' Science, vol. 301, pp. 935-938, 2003. [64] Z. Y. Yuan, V. Idakiev, A. Vantomme, T. Tabakova, T. Z. Ren, and B. L. Su, 'Mesoporous and nanostructured CeO2 as supports of nano-sized gold catalysts for low-temperature water-gas shift reaction,' Catal. Today, vol. 131, pp. 203-210, 2008. [65] D. Tibiletti, A. Amieiro-Fonseca, R. Burch, Y. Chen, J. M. Fisher, A. Goguet, C. Hardacre, P. Hu, and A. Thompsett, 'DFT and in situ EXAFS investigation of gold/ceria-zirconia low-temperature water gas shift catalysts: Identification of the nature of the active form of gold,' Journal of Physical Chemistry B, vol. 109, pp. 22553-22559, 2005. [66] R. Taha, D. Duprez, N. Mouaddib-Moral, and C. Gauthier, 'Oxygen storage capacity of three-way catalysts: a global test for catalyst deactivation,' 1998, pp. 549-558. [67] Y. Li, Q. Fu, and M. Flytzani-Stephanopoulos, 'Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts,' Applied Catalysis B: Environmental, vol. 27, pp. 179-191, 2000. [68] T. Tabakova, F. B. Boccuzzi, M. Manzoli, and D. Andreeva, 'FTIR study of low-temperature water-gas shift reaction on gold/ceria catalyst,' Applied Catalysis a-General, vol. 252, pp. 385-397, 2003. [69] T. Bunluesin, R. J. Gorte, and G. W. Graham, 'Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties,' Applied Catalysis B-Environmental, vol. 15, pp. 107-114, 1998. [70] G. Jacobs, S. Ricote, U. M. Graham, P. M. Patterson, and B. H. Davis, 'Low temperature water gas shift: Type and loading of metal impacts forward decomposition of pseudo-stabilized formate over metal/ceria catalysts,' in International Conference on Gas-Fuel 05, Brugge, BELGIUM, 2005, pp. 259-264. [71] Q. Fu, A. Weber, and M. Flytzani-Stephanopoulos, 'Nanostructured Au-CeO2 catalysts for low-temperature water-gas shift,' Catalysis Letters, vol. 77, pp. 87-95, 2001. [72] R. Leppelt, B. Schumacher, V. Plzak, M. Kinne, and R. J. Behm, 'Kinetics and mechanism of the low-temperature water-gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere,' Journal of Catalysis, vol. 244, pp. 137-152, 2006. [73] 蘇育正, 'Au/TiO2觸媒應用於水煤氣轉移反應與富氫氣體中選擇性氧化一氧化碳,' in 化學工程研究所: 國立台灣大學, 2006. [74] 蔡雨彤, 'Au/CeO2觸媒在水氣轉移反應上的應用,' in 化學工程研究所: 國立台灣大學, 2007. [75] N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, 'Spectral [1] S. Srinivasan and B. Kirby, Status of fuel cell technologies, 2006. [76] N. G. Khlebtsov, 'Determination of Size and Concentration of Gold Nanoparticles from Extinction Spectra,' Analytical Chemistry, vol. 80, pp. 6620-6625, 2008. [77] W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, 'Determination of size and concentration of gold nanoparticles from UV-Vis spectra,' Analytical Chemistry, vol. 79, pp. 4215-4221, 2007. [78] P. N. Njoki, I. I. S. Lim, D. Mott, H. Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C. J. Zhong, 'Size correlation of optical and spectroscopic properties for gold nanoparticles,' Journal of Physical Chemistry C, vol. 111, pp. 14664-14669, 2007. [79] I. Tuzovskaya, N. Bogdanchikova, A. Simakov, V. Gurin, A. Pestryakov, M. Avalos, and M. H. Farı´as, 'Structure and electronic states of gold species in mordenites,' Chemical Physics, vol. 338, pp. 23-32, 2007. [80] D. G. Duff and A. Baiker, 'Preparation and structural properties of ultrafine gold colloids for oxidation catalysis,' 1995, pp. 505-512. [81] K. Torigoe and K. Esumi, 'Preparation of colloidal gold by photoreduction of AuCl4: Cationic surfactant complexes,' Langmuir, vol. 8, pp. 59-63, Jan 1992. [82] Y. S. Su, M. Y. Lee, and S. D. Lin, 'XPS and DRS of Au/TiO2 catalysts: effect of pretreatment,' Catalysis Letters, vol. 57, pp. 49-53, 1999. [83] M. Lamallem, H. E. Ayadi, C. Gennequin, R. Cousin, S. Siffert, F. Aı¨ss, and A. Aboukaı¨s, 'Effect of the preparation method on Au/Ce-Ti-O catalysts activity for VOCs oxidation,' Catalysis Today, vol. 137, pp. 367-372, 2008. [84] M. Gustav, 'Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen ' Annalen der Physik, vol. 330, pp. 377-445, 1908. [85] C. F. Bohren, Absorption and scattering of light by small particles. New York :: Wiley, 1998. [86] C. G. Granqvist and O. Hunderi, 'Optical properties of ultrafine gold particles,' Physical Review B, vol. 16, p. 3513, 1977. [87] C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, 'Template synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape,' The Journal of Physical Chemistry, vol. 98, pp. 2963-2971, 1994. [88] P. B. Johnson and R. W. Christy, 'Optical Constants of the Noble Metals,' Physical Review B, vol. 6, pp. 4370-4379, 1972. [89] 林延儒, 'Au/CeO2觸媒在水氣轉移反應上的應用,' in 化學工程研究所: 國立台灣大學, 2008. [90] J. R. Anderson, Introduction to characterization and testing of catalysts. Sydney :: Academic Press, 1985. [91] 曾怡享, '奈米金屬氧化鈦觸媒光催化還原二氧化碳,' in 化學工程研究所: 國立台灣大學, 2003. [92] N. Serpone, D. Lawless, and R. Khairutdinov, 'Size effects on the photophysical properties of colloidal anatase TiO2 particles - size quantization or direct transitions in this indirect semiconductor,' Journal of Physical Chemistry, vol. 99, pp. 16646-16654, Nov 1995. [93] J. M. P. R. C. Reid, T. K. Sherwood, The Properties of Gases and Liquids, 3rd ed. New York, 1977. [94] Y. Denkwitz, A. Karpenko, V. Plzak, R. Leppelt, B. Schumacher, and R. J. Behm, 'Influence of CO2 and H2 on the low-temperature water-gas shift reaction on Au/CeO2 catalysts in idealized and realistic reformate,' Journal of Catalysis, vol. 246, pp. 74-90, 2007. [95] F. C. Meunier, D. Reid, A. Goguet, S. Shekhtman, C. Hardacre, R. Burch, W. Deng, and M. Flytzani-Stephanopoulos, 'Quantitative analysis of the reactivity of formate species seen by DRIFTS over a Au/Ce(La)O2 water-gas shift catalyst: First unambiguous evidence of the minority role of formates as reaction intermediates,' Journal of Catalysis, vol. 247, pp. 277-287, 2007. [96] G. Jacobs, U. M. Graham, E. Chenu, P. M. Patterson, A. Dozier, and B. H. Davis, 'Low-temperature water-gas shift: impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design,' Journal of Catalysis, vol. 229, pp. 499-512, 2005. [97] C. Binet, M. Daturi, and J. C. Lavalley, 'IR study of polycrystalline ceria properties in oxidised and reduced states,' Catalysis Today, vol. 50, pp. 207-225, Apr 1999. [98] A. G. o.-C. e. Alberto Sandoval, Rodolfo Zanella, Gabriela D´ıaz, Jos´e M. Saniger, 'Gold nanoparticles: Support effects for the WGS reaction,' Journal of Molecular Catalysis A, vol. 278, pp. 200-208, 2007. [99] S. Bernal, J. J. Calvino, G. A. Cifredo, J. M. Gatica, J. A. P. Omil, and J. M. Pintado, 'Hydrogen chemisorption on ceria: Influence of the oxide surface area and degree of reduction,' Journal of the Chemical Society-Faraday Transactions, vol. 89, pp. 3499-3505, 1993. [100] C. J. Weststrate, A. Resta, R. Westerstrom, E. Lundgren, A. Mikkelsen, and J. N. Andersen, 'CO adsorption on a Au/CeO2(111) model catalyst,' Journal of Physical Chemistry C, vol. 112, pp. 6900-6906, 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44213 | - |
dc.description.abstract | 本研究嘗試探討Au/CeO2 觸媒在不同前處理程序下的水氣轉移反應,分別以一氧化碳、氫氣及水氣在200℃水氣反應的溫度下前處理觸媒,期望找出最佳的前處理程序使其在實際應用上有更佳的表現。
本研究利用紫外-可見光(UV-Vis)光譜,由量測奈米金約在550nm波長處的振動吸收峰(surface plasmon bands)來估計金屬金的顆粒大小。研究結果顯示,此振動吸收峰的最高波長位置(lmax)和顆粒大小有密切的關係,吸收峰波長越長則顆粒越大。此外,吸收峰的吸收度(absorbance)和金在觸媒表面上的價態有關,吸收度越大則還原態的金越多。 本研究使用水氣轉移反應(WGSR)來測試Au/CeO2觸媒的活性,以高解析穿透式電子顯微鏡(HRTEM)觀察金在觸媒表面分佈情形,以紫外-可見光(UV-Vis)光譜衡量表面金顆粒大小,及以擴散反射式傅立葉紅外光譜儀(DRIFTS)偵測觸媒表面吸附物質。研究結果顯示,觸媒在200℃下經一氧化碳處理後活性最佳,而以水氣處理表現最差。UV-Vis鑑定顯示其活性大小和金觸媒上的振動波長有強烈的關係,以水氣處理的觸媒在反應後的波長最長,因此估計是因表面形成了大的金顆粒,而導致催化活性的下降;然而,金顆粒的成長並不是發生在前處理過程,而是發生在之後的水氣轉移反應。DRIFTS鑑定顯示此金顆粒的成長可能是擔體CeO2表面吸附的甲酸鹽類物質(formate species)所引起,該甲酸鹽類在以水氣前處理及反應程序後之觸媒上殘留的最多。 本研究結論出水氣轉移反應前先通以一氧化碳前處理Au/CeO2,會使觸媒擁有較佳的反應活性。 | zh_TW |
dc.description.abstract | The effect of Au/CeO2 pretreatment in CO, H2 or H2O atmosphere on the catalytic activity for water gas shift reaction (WGSR, a critical step in producing H2 from hydrocarbons) has been investigated. It was discovered that gold particle size is an essential property for gold catalytic activity. In order to determine the size of nano-particles of gold metal, the particle sizes were predicted by using plasmon band around 550 nm in UV-Vis spectra and by using the theoretical calculations in this research. The correlations of lmax (wavelength of maximum Plasmon band) and particle size were established. It is concluded that the higher lmax is measured, the larger gold particle size on the CeO2 surface should be. In addition, the higher absorbance is from the more reduced gold on the surface.
The activities of catalysts were examined by using WGSR tests at 200 ℃, and by HRTEM for observing gold particles, diffuse reflectance UV-Vis spectroscopy for measuring nano-gold plasmon bands and average particle sizes, and diffuse reflectance infrared Fourier Transform spectroscopy (DRIFTS) for detecting surface adsorbates. It was found that different pretreatments caused considerable different reaction activity for WGSR, and the lowest activity was from the pretreatment in H2O at 200 ℃. The study of diffuse reflectance UV-Vis spectroscopy indicated that the reaction activities for WGS were strongly correlated to the wavelength of plasmon bands. The highest wavelength (red shift) from Au/CeO2 after pretreatment under H2O and after WGSR suggests that the lowest catalytic activity was due to the largest gold nano-particles on CeO2 surface. However, the particle growing of nano-gold was not at H2O pretreatment step; rather, it was after the injection of CO into the reactor for WGSR. DRIFTS studies indicated that the particle growing of gold species was induced by the formate species on CeO2. The most active Au/CeO2 was from the pretreatment in CO atmosphere before WGSR at 200℃. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:45:15Z (GMT). No. of bitstreams: 1 ntu-98-R96524012-1.pdf: 4193762 bytes, checksum: ac1694567709d0433ad58cb73def54e4 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 摘要 ............................................... I
Abstract ........................................... II Table of contents .................................. IV List of Figures .................................... VIII List of Tables ..................................... XIII Chapter 1 Introduction ............................. - 1 - 1.1 Background of this research .....................- 1 - 1.1.1 The development of PEMFCs .................... - 2 - 1.1.2 Applications of WGSR in PEMFCs ............... - 8 - 1.1.3 Other applications of WGSR ................... - 12 - 1.2 Catalysts of water-gas shift reaction .......... - 14 - 1.2.1 Conventional catalysts of HTS and LTS ........ - 14 - 1.2.2 Catalysts of sour gas shift reaction ......... - 17 - 1.2.3 Catalysts of noble metals .................... - 19 - 1.3 Summary ........................................ - 22 - Chapter 2 Catalysis by gold ........................ - 23 - 2.1 Development of gold catalysts .................. - 23 - 2.2 Effects for activity of novel gold catalysts ... - 26 - 2.2.1 Preparation methods .......................... - 26 - 2.2.2 Supports ..................................... - 31 - 2.2.3 Particle size ................................ - 32 - 2.2.4 Structure .................................... - 33 - 2.3 Gold catalysts for WGSR ........................ - 36 - 2.3.1 History of gold catalysts for WGSR ........... - 36 - 2.3.2 Mechanisms of WGSR on Au/CeO2 ................ - 37 - 2.4 Objectives and scopes .......................... - 40 - Chapter 3 UV-Vis spectra simulation ................ - 41 - 3.1 Motivation ..................................... - 41 - 3.2 Review the simulation of UV-Vis spectra ........ - 45 - 3.3 Theoretical models and parameters .............. - 48 - 3.4 Refractive index ............................... - 54 - 3.5 Gold particles in water medium ................. - 56 - 3.6 Gold particles in CeO2 medium .................. - 62 - Chapter 4 Experimental ............................. - 66 - 4.1 Preparation method of gold catalysts ........... - 66 - 4.1.1 Modification of support CeO2 ................. - 66 - 4.1.2 Preparation of supported gold catalysts ...... - 67 - 4.1.2.1 Preparation method of Au/CeO2 .............. - 67 - 4.1.2.2 Preparation method of Au/TiO2 .............. - 69 - 4.2 Characterization of supported gold catalysts ... - 71 - 4.3 Catalytic activity ............................. - 76 - 4.3.1 Reactant gas ................................. - 76 - 4.3.2 Equipment of catalytic test .................. - 77 - 4.4 Definition and Calculation ..................... - 82 - 4.4.1 Definition of conversion ..................... - 82 - 4.4.2 Calculation of equilibrium constant .......... - 83 - 4.5 Chemicals, reactants and equipments ............ - 87 - Chapter 5 Effects of catalyst pretreatment on the activity for WGSR ........................................... - 89 - 5.1 Pretreatment in CO, H2 and H2O on Au/CeO2 before WGSR ............................................... - 90 - 5.1.1 Activity measurements ........................ - 90 - 5.1.2 Characterization ............................. - 92 - 5.1.2.1 UV-Vis spectra of Au/CeO2 after various pretreatments and after WGSR ....................... - 92 - 5.1.2.2 Particle sizes of gold on Au/CeO2 after various pretreatment and before WGSR ....................... - 94 - 5.1.2.3 DRIFTS of pretreated Au/CeO2 before and after WGSR ............................................... - 100 - 5.1.2.4 Summary .................................... - 103 - 5.2 Pretreatment effects on H2 reduced Au/CeO2 ..... - 105 - 5.2.1 Activity measurements ........................ - 106 - 5.2.2 Characterization ............................. - 108 - 5.2.2.1 UV-Vis spectra of H2 reduced Au/CeO2 after various pretreatments and after WGSR ....................... - 108 - 5.2.2.2 DRIFTS of H2 reduced Au/CeO2 after various pretreatments and after WGSR ....................... - 110 - 5.3 Discussion ..................................... - 112 - 5.3.1 Correlations ................................. - 112 - 5.3.2 Mechanisms ................................... - 114 - 5.4 Pretreatments of CO and H2O on Au/TiO2 ......... - 118 - 5.4.1 Activity measurements ........................ - 118 - 5.4.2 UV-Vis spectra of Au/TiO2 after various pretreatment and after WGSR ..................................... - 122 - 5.4.3 Discussion ................................... - 125 - Chapter 6 Conclusions .............................. - 126 - Reference .......................................... - 127 - Appendices..............................................i Appendix I Optical constant for bulk gold [88] ........ i Appendix II Program code of Matlab .................... ii | |
dc.language.iso | en | |
dc.title | Au/CeO2 觸媒的鑑定及水氣轉移反應上的應用 | zh_TW |
dc.title | Characterization of Au/CeO2 and the Application in
Water-Gas Shift Reaction | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳紀聖(Chi-Sheng Wu),郭錦龍(Chin-Lung Kuo) | |
dc.subject.keyword | 奈,米金,觸媒,水氣轉移反應,二氧化鈰,前處理,紫外-可見,光光譜, | zh_TW |
dc.subject.keyword | nano-gold catalysts,water gas shift reaction (WGSR),CeO2,pretreatment,UV-Vis spectra, | en |
dc.relation.page | 135 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
Appears in Collections: | 化學工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-98-1.pdf Restricted Access | 4.1 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.