Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44196
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳水田(Shui-Tein Chen)
dc.contributor.authorChia-Che Tsaien
dc.contributor.author蔡佳哲zh_TW
dc.date.accessioned2021-06-15T02:44:25Z-
dc.date.available2010-08-14
dc.date.copyright2009-08-14
dc.date.issued2009
dc.date.submitted2009-08-10
dc.identifier.citation1. Wilasrusmee, C., Siddiqui, J., Bruch, D., Wilasrusmee, S., Kittur, S., and Kittur, D.S. (2002). In vitro immunomodulatory effects of herbal products. Am. Surg. 10, 860-864.
2. Craig, W.J. (1999). Health-promoting properties of common herbs. Am. J. Clin. Nutr. 3 Suppl, 491S-499S.
3. Ruan, W.J., Lai, M.D., and Zhou, J.G. (2006). Anticancer effects of Chinese herbal medicine, science or myth? J. Zhejiang Univ. Sci. B. 12, 1006-1014.
4. Tan, B.K., and Vanitha, J. (2004). Immunomodulatory and antimicrobial effects of some traditional chinese medicinal herbs: a review. Curr. Med. Chem. 11, 1423-1430.
5. Oh, J.H., Kang, L.L., Ban, J.O., Kim, Y.H., Kim, K.H., Han, S.B., and Hong, J.T. (2009). Anti-inflammatory effect of 4-O-methylhonokiol, a novel compound isolated from Magnolia officinalis through inhibition of NF-kappaB. Chem. Biol. Interact. 3, 506-514.
6. Yang, T.C., Zhang, S.W., Sun, L.N., Wang, H., and Ren, A.M. (2008). Magnolol attenuates sepsis-induced gastrointestinal dysmotility in rats by modulating inflammatory mediators. World J. Gastroenterol. 48, 7353-7360.
7. Bertelli, A.A., Mannari, C., Santi, S., Filippi, C., Migliori, M., and Giovannini, L. (2008). Immunomodulatory activity of shikimic acid and quercitin in comparison with oseltamivir (Tamiflu) in an in vitro model. J. Med. Virol. 4, 741-745.
8. Kaneko, M., Takimoto, H., Sugiyama, T., Seki, Y., Kawaguchi, K., and Kumazawa, Y. (2008). Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors. Immunopharmacol. Immunotoxicol. 4, 867-882.
9. Park, H.H., Lee, S., Son, H.Y., Park, S.B., Kim, M.S., Choi, E.J., Singh, T.S., Ha, J.H., Lee, M.G., Kim, J.E. et al. (2008). Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch. Pharm. Res. 10, 1303-1311.
10. Yang, Y., Paik, J.H., Cho, D., Cho, J.A., and Kim, C.W. (2008). Resveratrol induces the suppression of tumor-derived CD4+CD25+ regulatory T cells. Int. Immunopharmacol. 4, 542-547.
11. Yusuf, N., Nasti, T.H., Meleth, S., and Elmets, C.A. (2009). Resveratrol enhances cell-mediated immune response to DMBA through TLR4 and prevents DMBA induced cutaneous carcinogenesis. Mol. Carcinog. 8, 713-723.
12. Pervaiz, S., and Holme, A.L. (2009). Resveratrol: Its Biological Targets and Functional Activity. Antioxid. Redox Signal.
13. Yang, X., Guo, D., Zhang, J., and Wu, M. (2007). Characterization and anti-tumor activity of pollen polysaccharide. Int. Immunopharmacol. 3, 401-408.
14. Sergeev, A.V., Revazova, E.S., Denisova, S.I., Kalatskaia, O.V., and Rytenko, A.N. (1985). Immunomodulating and antitumor activity of polysaccharides of plant origin. Biull. Eksp. Biol. Med. 12, 741-743.
15. Wong, C.K., Leung, K.N., Fung, K.P., and Choy, Y.M. (1994). Immunomodulatory and anti-tumour polysaccharides from medicinal plants. J. Int. Med. Res. 6, 299-312.
16. Chang, R. (2002). Bioactive polysaccharides from traditional Chinese medicine herbs as anticancer adjuvants. J. Altern. Complement. Med. 5, 559-565.
17. Mainardi, T., Kapoor, S., and Bielory, L. (2009). Complementary and alternative medicine: herbs, phytochemicals and vitamins and their immunologic effects. J. Allergy Clin. Immunol. 2, 283-94; quiz 295-6.
18. Murakami, A., and Ohigashi, H. (2007). Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer 11, 2357-2363.
19. Sharma, D., Kumar, S.S., Raghu, R., Khanam, S., and Sainis, K.B. (2007). Differential modulation of mitogen driven proliferation and homeostasis driven proliferation of T cells by rapamycin, Ly294002 and chlorophyllin. Mol. Immunol. 11, 2831-2840.
20. Yun, C.H., Son, C.G., Chung, D.K., and Han, S.H. (2005). Chlorophyllin attenuates IFN-gamma expression in lipopolysaccharide-stimulated murine splenic mononuclear cells via suppressing IL-12 production. Int. Immunopharmacol. 13-14, 1926-1935.
21. Wang, S.Y., Hsu, M.L., Hsu, H.C., Tzeng, C.H., Lee, S.S., Shiao, M.S., and Ho, C.K. (1997). The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int. J. Cancer 6, 699-705.
22. Wang, G., Zhang, J., Mizuno, T., Zhuang, C., Ito, H., Mayuzumi, H., Okamoto, H., and Li, J. (1993). Antitumor active polysaccharides from the Chinese mushroom Songshan lingzhi, the fruiting body of Ganoderma tsugae. Biosci. Biotechnol. Biochem. 6, 894-900.
23. Paterson, R.R. (2006). Ganoderma - a therapeutic fungal biofactory. Phytochemistry 18, 1985-2001.
24. Boh, B., Berovic, M., Zhang, J., and Zhi-Bin, L. (2007). Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Annu. Rev. 265-301.
25. Chen, N.H., Liu, J.W., and Zhong, J.J. (2008). Ganoderic acid Me inhibits tumor invasion through down-regulating matrix metalloproteinases 2/9 gene expression. J. Pharmacol. Sci. 2, 212-216.
26. Lin, Z.B. (2005). Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J. Pharmacol. Sci. 2, 144-153.
27. Bao, X.F., Zhen, Y., Ruan, L., and Fang, J.N. (2002). Purification, characterization, and modification of T lymphocyte-stimulating polysaccharide from spores of Ganoderma lucidum. Chem. Pharm. Bull. (Tokyo) 5, 623-629.
28. Shao, B.M., Dai, H., Xu, W., Lin, Z.B., and Gao, X.M. (2004). Immune receptors for polysaccharides from Ganoderma lucidum. Biochem. Biophys. Res. Commun. 1, 133-141.
29. Shiao, M.S. (2003). Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities, and pharmacological functions. Chem. Rec. 3, 172-180.
30. Boh, B., Berovic, M., Zhang, J., and Zhi-Bin, L. (2007). Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Annu. Rev. 265-301.
31. Chan, W.K., Lam, D.T., Law, H.K., Wong, W.T., Koo, M.W., Lau, A.S., Lau, Y.L., and Chan, G.C. (2005). Ganoderma lucidum mycelium and spore extracts as natural adjuvants for immunotherapy. J. Altern. Complement. Med. 6, 1047-1057.
32. Ahmadi, K., and Riazipour, M. (2007). Effect of Ganoderma lucidum on cytokine release by peritoneal macrophages. Iran. J. Immunol. 4, 220-226.
33. Lin, Y.L., Lee, S.S., Hou, S.M., and Chiang, B.L. (2006). Polysaccharide purified from Ganoderma lucidum induces gene expression changes in human dendritic cells and promotes T helper 1 immune response in BALB/c mice. Mol. Pharmacol. 2, 637-644.
34. Lin, Y.L., Liang, Y.C., Lee, S.S., and Chiang, B.L. (2005). Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and p38 mitogen-activated protein kinase pathways. J. Leukoc. Biol. 2, 533-543.
35. Bao, X.F., Zhen, Y., Ruan, L., and Fang, J.N. (2002). Purification, characterization, and modification of T lymphocyte-stimulating polysaccharide from spores of Ganoderma lucidum. Chem. Pharm. Bull. (Tokyo) 5, 623-629.
36. Zhang, J., Tang, Q., Zimmerman-Kordmann, M., Reutter, W., and Fan, H. (2002). Activation of B lymphocytes by GLIS, a bioactive proteoglycan from Ganoderma lucidum. Life Sci. 6, 623-638.
37. Wang, Y.Y., Khoo, K.H., Chen, S.T., Lin, C.C., Wong, C.H., and Lin, C.H. (2002). Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg. Med. Chem. 4, 1057-1062.
38. Chen, H.S., Tsai, Y.F., Lin, S., Lin, C.C., Khoo, K.H., Lin, C.H., and Wong, C.H. (2004). Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides. Bioorg. Med. Chem. 21, 5595-5601.
39. Hua, K.F., Hsu, H.Y., Chao, L.K., Chen, S.T., Yang, W.B., Hsu, J., and Wong, C.H. (2007). Ganoderma lucidum polysaccharides enhance CD14 endocytosis of LPS and promote TLR4 signal transduction of cytokine expression. J. Cell. Physiol. 2, 537-550.
40. Lin, K.I., Kao, Y.Y., Kuo, H.K., Yang, W.B., Chou, A., Lin, H.H., Yu, A.L., and Wong, C.H. (2006). Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1. J. Biol. Chem. 34, 24111-24123.
41. Chien, C.M., Cheng, J.L., Chang, W.T., Tien, M.H., Tsao, C.M., Chang, Y.H., Chang, H.Y., Hsieh, J.F., Wong, C.H., and Chen, S.T. (2004). Polysaccharides of Ganoderma lucidum alter cell immunophenotypic expression and enhance CD56+ NK-cell cytotoxicity in cord blood. Bioorg. Med. Chem. 21, 5603-5609.
42. Singer, S.J. (1992). Intercellular communication and cell-cell adhesion. Science 5052, 1671-1677.
43. Yoshikai, Y. (2006). Crosstalk between innate and adaptive immunity. Nippon Rinsho 7, 1223-1228.
44. Akdis, C.A. (2008). New insights into mechanisms of immunoregulation in 2007. J. Allergy Clin. Immunol. 4, 700-709.
45. de Jong, D., and Enblad, G. (2008). Inflammatory cells and immune microenvironment in malignant lymphoma. J. Intern. Med. 6, 528-536.
46. Garrote, J.A., Gomez-Gonzalez, E., Bernardo, D., Arranz, E., and Chirdo, F. (2008). Celiac disease pathogenesis: the proinflammatory cytokine network. J. Pediatr. Gastroenterol. Nutr. S27-32.
47. Blanco, P., Palucka, A.K., Pascual, V., and Banchereau, J. (2008). Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 1, 41-52.
48. Giles, R., and Loberg, R.D. (2006). Can we target the chemokine network for cancer therapeutics? Curr. Cancer. Drug Targets 8, 659-670.
49. Del Vecchio, M., Bajetta, E., Canova, S., Lotze, M.T., Wesa, A., Parmiani, G., and Anichini, A. (2007). Interleukin-12: biological properties and clinical application. Clin. Cancer Res. 16, 4677-4685.
50. Jurisic, V., Stojacic-Djenic, S., Colovic, N., and Konjevic, G. (2008). The role of cytokine in regulation of the natural killer cell activity. Srp. Arh. Celok. Lek. 7-8, 423-429.
51. Weiss, J.M., Subleski, J.J., Wigginton, J.M., and Wiltrout, R.H. (2007). Immunotherapy of cancer by IL-12-based cytokine combinations. Expert Opin. Biol. Ther. 11, 1705-1721.
52. Balkwill, F. (2009). Tumour necrosis factor and cancer. Nat. Rev. Cancer. 5, 361-371.
53. Atkins, M.B. (2009). Treatment selection for patients with metastatic renal cell carcinoma: identification of features favoring upfront IL-2-based immunotherapy. Med. Oncol. 18-22.
54. Hoyer, K.K., Dooms, H., Barron, L., and Abbas, A.K. (2008). Interleukin-2 in the development and control of inflammatory disease. Immunol. Rev. 19-28.
55. Billiau, A., and Matthys, P. (2009). Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev. 2, 97-113.
56. Andoniou, C.E., Coudert, J.D., and Degli-Esposti, M.A. (2008). Killers and beyond: NK-cell-mediated control of immune responses. Eur. J. Immunol. 11, 2938-2942.
57. Klein, M. (1983). Immunological markers of human mononuclear cells. Clin. Biochem. 2, 128-133.
58. Sancho, D., Gomez, M., and Sanchez-Madrid, F. (2005). CD69 is an immunoregulatory molecule induced following activation. Trends Immunol. 3, 136-140.
59. Zola, H. (2000). Markers of cell lineage, differentiation and activation. J. Biol. Regul. Homeost. Agents 3, 218-219.
60. Tarnok, A., and Brockhoff, G. (2006). Cytomics emerging from cytometry. Cell Prolif. 5, 335-338.
61. Herrera, G., Diaz, L., Martinez-Romero, A., Gomes, A., Villamon, E., Callaghan, R.C., and O'connor, J.E. (2007). Cytomics: A multiparametric, dynamic approach to cell research. Toxicol. In. Vitro. 2, 176-182.
62. Valet, G. (2006). Cytomics as a new potential for drug discovery. Drug Discov. Today 17-18, 785-791.
63. Liu, J., Gunn, L., Hansen, R., and Yan, J. (2009). Combined yeast-derived beta-glucan with anti-tumor monoclonal antibody for cancer immunotherapy. Exp. Mol. Pathol. 3, 208-214.
64. Novak, M., and Vetvicka, V. (2009). Glucans as biological response modifiers. Endocr Metab. Immune Disord. Drug Targets 1, 67-75.
65. Tsoni, S.V., and Brown, G.D. (2008). beta-Glucans and dectin-1. Ann. N. Y. Acad. Sci. 45-60.
66. Adams, E.L., Rice, P.J., Graves, B., Ensley, H.E., Yu, H., Brown, G.D., Gordon, S., high-affinity interaction of dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. J. Pharmacol. Exp. Ther. 1, 115-123.
67. Palma, A.S., Feizi, T., Zhang, Y., Stoll, M.S., Lawson, A.M., Diaz-Rodriguez, E., Campanero-Rhodes, M.A., Costa, J., Gordon, S., Brown, G.D. et al. (2006). Ligands for the beta-glucan receptor, Dectin-1, assigned using 'designer' microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J. Biol. Chem. 9, 5771-5779.
68. Garay, R.P., Viens, P., Bauer, J., Normier, G., Bardou, M., Jeannin, J.F., and Chiavaroli, C. (2007). Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help. Eur. J. Pharmacol. 1-3, 1-17.
69. Kirschning, C.J., and Schumann, R.R. (2002). TLR2: cellular sensor for microbial and endogenous molecular patterns. Curr. Top. Microbiol. Immunol. 121-144.
70. Azuma, I., and Seya, T. (2001). Development of immunoadjuvants for immunotherapy of cancer. Int. Immunopharmacol. 7, 1249-1259.
71. Albersheim, P., An, J., Freshour, G., Fuller, M.S., Guillen, R., Ham, K.S., Hahn, M.G., Huang, J., O'Neill, M., and Whitcombe, A. (1994). Structure and function studies of plant cell wall polysaccharides. Biochem. Soc. Trans. 2, 374-378.
72. Ward, O.P., and Moo-Young, M. (1989). Enzymatic degradation of cell wall and related plant polysaccharides. Crit. Rev. Biotechnol. 4, 237-274.
73. Darvill, A.G., Albersheim, P., McNeil, M., Lau, J.M., York, W.S., Stevenson, T.T., Thomas, J., Doares, S., Gollin, D.J., and Chelf, P. (1985). Structure and function of plant cell wall polysaccharides. J. Cell Sci. Suppl. 203-217.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44196-
dc.description.abstract人類利用天然物作為預防以及治療疾病已有長久的歷史,本實驗利用單子葉植物小麥草以及靈芝多醣作為材料,鑑定其中具有免疫調控活性物質的結構與活性機制。利用細胞體篩選模式,我們發現小麥草的活性多醣成分WG-PS3 具有活化成人週邊血單核球細胞當中單核細胞、自然殺手細胞、T細胞之效果。WG-PS3直接活化單核細胞,提高CD69, CD80, CD86, IL-12, 以及TNF-a的表現。而WG-PS3 則利用直接活化單核細胞來間接影響NK細胞以及T細胞的活化。WG-PS3主要的結構型式為(a,b)-1,4-hexose, 利用HPLC的分離, 其中hepta-1,4-glucan 展現了顯著的免疫活化特性以及單核細胞的活化能力。
靈芝多醣F3是一個分子量大約500KD的巨分子,藉由細胞體篩選模式我們了解F3能直接活化成人週邊血單核球細胞當中單核細胞、自然殺手細胞、以及T細胞。利用史密斯降解法我們成功降解F3並且進一步分離降解產物。這些分離收集的降解產物都保留了活化單核細胞、自然殺手細胞、以及T細胞提高其CD69表現的能力,而其中一個部分F3S-G3擁有獨特的結構特徵 b-(1,4)-Glucorounic acid / Glucose oligomer 在NK細胞以及T細胞中表現顯著的IL-2細胞激素誘導能力。此外,F3S-G4也是值得注意的部分。F3S-G4的分子量大約是1000Dalton, 在細胞體篩選模式下發現其保留F3活化單核細胞、自然殺手細胞、T細胞之活性效果。F3S-G4可以成功的利用HPLC進行分離純化,可作為進一步鑑定特定完整結構的良好材料。
zh_TW
dc.description.abstractNatural products have played an important role throughout the world in preventing and treating human diseases throughout the history in different parts of the world. The Monocotyledoneae plant wheat grass and the Ganoderma lucidum polysaccharides were served as materials in this study to identify the molecules with immuno-modulating properties. By cytomic screening, the immuno-modulating behavior of the bioactive oligosaccharides (WG-PS3) from wheat grass has been described. WG-PS3 activated monocytes, T cells, and NK cells in human peripheral blood mononuclear cell (hPB-MNC). WG-PS3 was observed directly activate the purified monocytes by inducing the expression of CD69, CD80, CD86, IL-12, and TNF-a. In contrast, WG-PS3 indirectly affected NK and T cells only in the presence of monocytes. The structure of WG-PS3 was characterized suggesting repeating (a,b)-1,4-hexose. After HPLC separation, a hepta-1,4-glucan were identified from WG-PS3 and exhibited significantly ability to induce monocytes activation.
Ganoderma lucidum polysaccharides F3 were macromolecules with molecular weight around 500KD. F3 was found that processed the ability to directly induce NK cells, T cell, and monocytes activation by cytomic screening. By Smith degradation, we successfully degraded and fractionalized the F3. All of these fractions retained the CD69 induction activity to monocytes, T cells, and NK cells in hPB-MNC. However, a fraction F3S-G3 with structural signature of b-(1,4)-Glucorounic acid / Glucose oligomer was presented the specific immune property of low monocyte induction activity and high ability to stimulate IL-2 secretion in NK and T cells. In addition, the fraction F3S-G4 with low molecular weight around 1000 Dalton retained all the immuno-activating characteristics of F3 that described in above cytomic screening. The F3S-G4 involved heteroglycan and could be further separated by HPLC. Thus, the F3S-G4 may serve the materials for further analysis of defined structure.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:44:25Z (GMT). No. of bitstreams: 1
ntu-98-D93442006-1.pdf: 8361488 bytes, checksum: f5cb1f78cfd338b7a18fe46a9ac7355b (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTable and Contents
謝 誌 ii
中 文 摘 要 iv
Abstract v
Abbreviations viii
List of Figures ix
List of Tables xii
1. Introduction
1.1 Natural products and immune modulation …………………………………..1
1.2 Wheat grass ………………………………………………………………2
1.3 Ganoderma Lucidum ………………………………………………………...3
1.4 The immune system and immune modulation………………………………..6
1.5 Cytomic screening platform for immuno-modulating nature products ………8
2. Materials and Methods
2.1 Chemicals and Antibodies …………………………………………………..11
2.2 Extraction and purification of immuno-modulating molecules from wheat grass ……………………………………………………………………….11
2.3 Smith degradation of Ganoderma Lucidum polysaccharides F3…………….12
2.4 Isolation and Stimulation of Adult Human Peripheral Blood Mononuclear Cells (hPB-MNCs) ………………………………………………………......13
2.5 Isolation of Monocytes ,T Cells, and NK cells from hPB-MNCs………...…14
2.6 Detections of cell surface CD Marker Expression by Flow Cytometric Assay…………………………………………………………………………15
2.7 Determination of immune cells activation by Q-PCR assay ………………...16
2.8 Determination of Th1 cytokine concentrations in medium by ELISA………17
2.9 Analyze the sugar compositions and linkages by GC-MS…………………...18
2.10 NMR ………………………………………………………………………19
2.11 2-AB (2-aminobenzamide) labeling of oligosaccharides………………….19
2.12 Separation of 2-AB labeling of oligosaccharides by normal phase HPLC..19
3. Results
3.1 Design the cytomic screening strategy to identify immuno-modulating molecules from nature plants ………………………………………………..21
Part1 :
3.1-1 The immunological active property of wheat grass extracts………………23
3.1-2 Cytomic screening and the immuno-activating mechanism of WG-PS3….24
3.1-3 Structural characterization of WG-PS3…………………………………....27
3.1-4 Structural identification and immuno-modulating activity examination of WG-PS3 derived fractions after HPLC……………………………………28
Part2 :
3.2-1 Cytomic screening and the immuno-activating mechanism of Ganoderma lucidum polysaccharides F3………………………………………………31
3.2-2 Smith degradation of F3 and cytomic screening of the fractionized smith degradation products……………………………………………………...33
3.2-3 Structural characterization of F3S-G3…………………………………….35
3.2-4 F3S-G4, a smith degradation fraction with low molecular weight exhibited immuno-modulaitng activities…………………………………………….35

4. Discussions…………………………………………..………………………..37
Reference List…………..………………………………………………………..41
Figure and Legend ………..……………………………………………………47
Research publications …………………………………………………………90
dc.language.isoen
dc.subject小麥草zh_TW
dc.subject單核球細胞zh_TW
dc.subject免疫調控zh_TW
dc.subject寡醣zh_TW
dc.subject靈芝多醣zh_TW
dc.subjectmononuclear cellsen
dc.subjectGanoderma lucidum polysaccharidesen
dc.subjectoligosaccharidesen
dc.subjectimmuno-modulationen
dc.subjectwheat grassen
dc.title單子葉植物小麥草與靈芝多醣之免疫活性分子結構
與功能機制探討
zh_TW
dc.titleStructure and biological function of
immuno-modulating molecules of wheat grass and
Ganoderma lucidum polysaccharides
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳世雄(Shih-Hsiung Wu),羅禮強(Lee-Chiang Lo),施子弼(Tzi-Bi Shih),曾銘仁(Min - Jen Tseng)
dc.subject.keyword小麥草,靈芝多醣,寡醣,免疫調控,單核球細胞,zh_TW
dc.subject.keywordwheat grass,Ganoderma lucidum polysaccharides,oligosaccharides,immuno-modulation,mononuclear cells,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2009-08-10
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
8.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved