Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44193
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor傅立成
dc.contributor.authorChih-Hung Linen
dc.contributor.author林志鴻zh_TW
dc.date.accessioned2021-06-15T02:44:16Z-
dc.date.available2012-01-21
dc.date.copyright2010-01-21
dc.date.issued2009
dc.date.submitted2009-08-10
dc.identifier.citation[1] S. Goldin-Meadow, 'The role of gesture in communication and thinking,' Trends in Cognitive Sciences, vol. 3, pp. 419-429, 1999.
[2] Y. Nam and K. Wohn, 'Recognition of space-time hand-gestures using hidden Markov model,' pp. 51–58, 1996.
[3] R.-H. Liang and M. Ouhyoung, 'A real-time continuous gesture recognition system for sign language,' IEEE International Conference on Automatic Face and Gesture Recognition, pp. 558-567, 1998.
[4] L. Hyeon-Kyu and J. H. Kim, 'An HMM-based threshold model approach for gesture recognition,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 21, pp. 961-973, 1999.
[5] J. W. Deng and H. T. Tsui, 'An HMM-based approach for gesture segmentation and recognition,' Pattern Recognition, 2000. Proceedings. 15th International Conference on, pp. 679-682 vol.3, 2000.
[6] J. A. Ward, P. Lukowicz, and G. Troster, 'Gesture spotting using wrist worn microphone and 3-axis accelerometer,' Proceedings of the 2005 joint conference on Smart objects and ambient intelligence: innovative context-aware services: usages and technologies Grenoble, France: ACM, 2005.
[7] S. Calinon and A. Billard, 'Recognition and reproduction of gestures using a probabilistic framework combining PCA, ICA and HMM,' Proceedings of the 22nd international conference on Machine learning Bonn, Germany: ACM, 2005.
[8] J. Kela, P. Korpipaa, J. Mantyjarvi, S. Kallio, G. Savino, L. Jozzo, and S. Marca, 'Accelerometer-based gesture control for a design environment,' Personal and Ubiquitous Computing, vol. 10, pp. 285-299, 2006.
[9] L. Kratz, M. Smith, and F. J. Lee, 'Wiizards: 3D gesture recognition for game play input,' Proceedings of the 2007 conference on Future Play Toronto, Canada: ACM, 2007.
[10] H. Yang, A. Park, and S. Lee, 'Gesture spotting and recognition for human-robot interaction,' IEEE transactions on Robotics, vol. 23, pp. 256-270, 2007.
[11] H. Junker, O. Amft, P. Lukowicz, and G. Troster, 'Gesture spotting with body-worn inertial sensors to detect user activities,' Pattern Recognition, vol. 41, pp. 2010-2024, 2008.
[12] T. Schlömer, mer, B. Poppinga, N. Henze, and S. Boll, 'Gesture recognition with a Wii controller,' Proceedings of the 2nd international conference on Tangible and embedded interaction Bonn, Germany: ACM, 2008.
[13] T. Stiefmeier, D. Roggen, and G. Troster, 'Gestures are strings: Efficient online gesture spotting and classification using string matching,' International conference on Body area networks table of contents, 2007.
[14] J. Davis and M. Shah, 'Recognizing hand gestures,' Lecture Notes in Computer Science, vol. 800, pp. 331-340, 1994.
[15] P. Hong, M. Turk, and T. S. Huang, 'Constructing finite state machines for fast gesture recognition,' Pattern Recognition, 2000. Proceedings. 15th International Conference on, pp. 691-694 vol.3, 2000.
[16] H. Kang, C. Woo Lee, and K. Jung, 'Recognition-based gesture spotting in video games,' Pattern Recognition Letters, vol. 25, pp. 1701-1714, 2004.
[17] A. Corradini, 'Dynamic time warping for off-line recognition of a small gesture vocabulary,' IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, pp. 82-89, 2001.
[18] L. Hong and M. Greenspan, 'Multi-scale gesture recognition from time-varying contours,' IEEE International Conference on Computer Vision, pp. 236-243 Vol. 1, 2005.
[19] E. W. Huang and L. C. Fu, 'Gesture Stroke Recognition Using Computer Vision and Linear Accelerometer,' Automatic Face and Gesture Recognition, IEEE International on, 2008.
[20] C.-H. Lin, E.-W. Huang, and L.-C. Fu, 'Fast Accelerometer-Based Continuous Gesture Recognition Using Kernel-Based Matching Method,' International Conference on Human-Computer Interaction: Springer, 2009.
[21] S. P. Smith and A. K. Jain, 'A test to determine the multivariate normality of a data set,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, pp. 757-761, 1988.
[22] W. Day and H. Edelsbrunner, 'Efficient algorithms for agglomerative hierarchical clustering methods,' Journal of classification, vol. 1, pp. 7-24, 1984.
[23] K. Grauman and T. Darrell, 'The pyramid match kernel: discriminative classification with sets of image features,' IEEE International Conference onomputer Vision pp. 1458-1465 Vol. 2, 2005.
[24] H. Sakoe and S. Chiba, 'Dynamic programming algorithm optimization for spoken word recognition,' Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 26, pp. 43-49, 1978.
[25] 'Wii at Nitendo,' http://wii.nintendo.com.
[26] H. Sakoe and S. Chiba, 'Frequency analyzer comprising a digital band-pass and a digital low-pass filter section both operable in a time-division fashion,' 1979.
[27] X. Cao and R. Balakrishnan, 'VisionWand: interaction techniques for large displays using a passive wand tracked in 3D,' ACM symposium on User interface software and technology Vancouver, Canada: ACM, 2003.
[28] J. O. Wobbrock, A. D. Wilson, and Y. Li, 'Gestures without libraries, toolkits or training: a $1 recognizer for user interface prototypes,' ACM symposium on User interface software and technology Newport, Rhode Island, USA: ACM, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44193-
dc.description.abstractHuman gesture is commonly used in daily communication between humans, and there are more and more studies trying to utilize gestures in human computer interaction. Because the advance of wireless and accelerometer technologies, accelerometer which is constrained by the environment compared with other sensing devices is getting more and more interested in these studies. In this thesis, we introduce an accelerometer-based gesture recognition system which is composed of gesture characteristic database and continuous gesture recognition. In the gesture characteristic database, we propose a method to construct a gesture characteristic database which can handle intra-class variations of human hand gestures. In the continuous gesture recognition part, a kernel based matching method and a dynamic time warping based method are proposed to recognize gestures in human hand motions. We here design two different gesture sets in the experiments, and the experiment results show that our system can recognize continuous hand gestures quickly and accurately.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:44:16Z (GMT). No. of bitstreams: 1
ntu-98-R95922072-1.pdf: 564406 bytes, checksum: e6e90e6e6d888191adaa73517520fae1 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Problem Description 3
1.3 System Overview 5
1.4 Organization 8
1.5 Related Works 8
1.5.1 Gesture Model Construction 9
1.5.2 Gesture Spotting 10
1.5.3 Gesture Classification 11
Chapter 2 Preliminary 13
2.1 Polar Coordinate System 13
2.2 Multivariate Gaussian Distribution 15
2.3 Agglomerative Hierarchical Clustering 16
2.4 Pyramid Matching Kernel 18
2.5 Dynamic Time Warping 21
Chapter 3 Gesture Characteristic Database 25
3.1 Overview 25
3.2 Feature Extraction 26
3.2.1 Signal Preprocessing 26
3.2.2 Acceleration Trajectory in Cartesian Coordinate System 28
3.2.3 Acceleration Trajectory in Polar Coordinate System 29
3.3 Gesture Characteristic Modeling 30
Chapter 4 Continuous Gesture Recognition 35
4.1 Overview 35
4.2 Gesture Spotting 36
4.2.1 Motion Detection 36
4.2.2 Candidate Searching 38
4.3 Gesture Classification 43
4.4 Continuous Gesture Recognition Algorithm 47
Chapter 5 Experiment 49
5.1 Environment Description 49
5.2 Gesture Sample Collection 50
5.3 Gesture Characteristic Training 51
5.4 Experiment Result 52
5.4.1 Performance of isolated gesture Recognition 53
5.4.2 Performance of continuous gesture Recognition 55
Chapter 6 Conclusion 57
REFERENCE 59
dc.language.isoen
dc.subject手勢辨識zh_TW
dc.subject人機互動zh_TW
dc.subject加速度感測器zh_TW
dc.subjectHCIen
dc.subjectAccelerometeren
dc.subjectGesture Recognitionen
dc.title應用在人機互動中基於加速度感測器之連續手勢辨識zh_TW
dc.titleAccelerometer-Based Continuous Gesture Recognition For Human Computer Interactionen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee歐陽明,洪一平,蘇木春,李蔡彥
dc.subject.keyword人機互動,加速度感測器,手勢辨識,zh_TW
dc.subject.keywordHCI,Accelerometer,Gesture Recognition,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2009-08-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
551.18 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved