請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4415
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林思洸(Sze-Kwan Lin) | |
dc.contributor.author | Ching-Lun Lin | en |
dc.contributor.author | 林靖倫 | zh_TW |
dc.date.accessioned | 2021-05-14T17:42:08Z | - |
dc.date.available | 2018-09-24 | |
dc.date.available | 2021-05-14T17:42:08Z | - |
dc.date.copyright | 2015-09-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-19 | |
dc.identifier.citation | 1. Nyman S, Lindhe J, Karring T, and Rylander H. New Attachment Following Surgical Treatment of Human Periodontal Disease. J Clin Periodontol. 1982;9: 290-6.
2. Gottlow J, Nyman S, Lindhe J, Karring T, and Wennstrom J. New Attachment Formation in the Human Periodontium by Guided Tissue Regeneration. Case Reports. J Clin Periodontol. 1986;13:604-16. 3. Andreasen JO, and Rud J. Modes of Healing Histologically after Endodontic Surgery in 70 Cases. Int J Oral Surg. 1972;1:148-60. 4. Grzesik WJ, and Narayanan AS. Cementum and Periodontal Wound Healing and Regeneration. Crit Rev Oral Biol Med. 2002;13:474-84. 5. Terranova VP, and Wikesjo UM. Extracellular Matrices and Polypeptide Growth Factors as Mediators of Functions of Cells of the Periodontium. A Review. J Periodontol. 1987;58:371-80. 6. Cochran DL, and Wozney JM. Biological Mediators for Periodontal Regeneration. Periodontol 2000. 1999;19:40-58. 7. Ripamonti U, and Reddi AH. Periodontal Regeneration: Potential Role of Bone Morphogenetic Proteins. J Periodontal Res. 1994;29:225-35. 8. Sigurdsson TJ, Lee MB, Kubota K, Turek TJ, Wozney JM, and Wikesjo UM. Periodontal Repair in Dogs: Recombinant Human Bone Morphogenetic Protein-2 Significantly Enhances Periodontal Regeneration. J Periodontol. 1995;66:131-8. 9. Wikesjo UM, Xiropaidis AV, Thomson RC, Cook AD, Selvig KA, and Hardwick WR. Periodontal Repair in Dogs: Space-Providing ePTFE Devices Increase rhBMP-2/ACS-Induced Bone Formation. J Clin Periodontol. 2003;30:715-25. 10. Wikesjo UM, Xiropaidis AV, Thomson RC, Cook AD, Selvig KA, and Hardwick WR. Periodontal Repair in Dogs: rhBMP-2 Significantly Enhances Bone Formation under Provisions for Guided Tissue Regeneration. J Clin Periodontol. 2003;30:705-14. 11. Khojasteh A, Behnia H, Naghdi N, Esmaeelinejad M, Alikhassy Z, and Stevens M. Effects of Different Growth Factors and Carriers on Bone Regeneration: A Systematic Review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116: 405-23. 12. Haidar ZS, Hamdy RC, and Tabrizian M. Delivery of Recombinant Bone Morphogenetic Proteins for Bone Regeneration and Repair. Part A: Current Challenges in Bmp Delivery. Biotechnol Lett. 2009;31:1817-24. 13. Lang NP, Lindhe J, Karring T. Clinical Periodontology and Implant Dentistry, 5th ed., Blackwell: Munksgaard, 2007, pp 87. 14. Jones E, and Yang X. Mesenchymal Stem Cells and Bone Regeneration: Current Status. Injury. 2011;42:562-8. 15. Herzog EL, Chai L, and Krause DS. Plasticity of Marrow-Derived Stem Cells. Blood. 2003;102:3483-93. 16. Song L, Young NJ, Webb NE, and Tuan RS. Origin and Characterization of Multipotential Mesenchymal Stem Cells Derived from Adult Human Trabecular Bone. Stem Cells Dev. 2005;14:712-21. 17. Shin YW, Im GI, Lee KB. Do Adipose Tissue-Derived Mesenchymal Stem Cells Have the Same Osteogenic and Chondrogenic Potential as Bone Marrow-Derived Cells? Osteoarthritis Cartilage. 2005;13:845-53. 18. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, and Chen TH. Isolation of Multipotent Mesenchymal Stem Cells from Umbilical Cord Blood. Blood. 2004;103:1669-75. 19. Baksh D, Yao R, and Tuan RS. Comparison of Proliferative and Multilineage Differentiation Potential of Human Mesenchymal Stem Cells Derived from Umbilical Cord and Bone Marrow. Stem Cells. 2007;25:1384-92. 20. Morrison SJ, and Scadden DT. The Bone Marrow Niche for Haematopoietic Stem Cells. Nature. 2014;505:327-34. 21. Yu L, Cecil J, Peng SB, Schrementi J, Kovacevic S, Paul D, Su EW, and Wang J. Identification and Expression of Novel Isoforms of Human Stromal Cell-Derived Factor 1. Gene. 2006;374:174-9. 22. Moll NM, and Ransohoff RM. CXCL12 and CXCR4 in Bone Marrow Physiology. Expert Rev Hematol. 2010;3:315-22. 23. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, and Penn MS. Effect of Stromal-Cell-Derived Factor 1 on Stem-Cell Homing and Tissue Regeneration in Ischaemic Cardiomyopathy. Lancet. 2003;362:697-703. 24. Zhang G, Nakamura Y, Wang X, Hu Q, Suggs LJ, and Zhang J. Controlled Release of Stromal Cell-Derived Factor-1 Alpha in Situ Increases C-Kit+ Cell Homing to the Infarcted Heart. Tissue Eng. 2007;13:2063-71. 25. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, and Khoury SJ. Directed Migration of Neural Stem Cells to Sites of Cns Injury by the Stromal Cell-Derived Factor 1alpha/Cxc Chemokine Receptor 4 Pathway. Proc Natl Acad Sci U S A. 2004;101:18117-22. 26. Li S, Deng L, Gong L, Bian H, Dai Y, and Wang Y. Upregulation of CXCR4 Favoring Neural-Like Cells Migration Via Akt Activation. Neurosci Res. 2010;67:293-9. 27. Hong F, Tuyama A, Lee TF, Loke J, Agarwal R, Cheng X, Garg A, Fiel MI, Schwartz M, Walewski J, Branch A, Schecter AD, and Bansal MB. Hepatic Stellate Cells Express Functional CXCR4: Role in Stromal Cell-Derived Factor-1alpha-Mediated Stellate Cell Activation. Hepatology. 2009;49:2055-67. 28. Liu Z, Lei Y, Han Q, Kang W, Zhang L, Lou S..G-CSF Enhanced SDF-1 Gradient between Bone Marrow and Liver Associated with Mobilization of Peripheral Blood CD34+ Cells in Rats with Acute Liver Failure. Dig Dis Sci. 2010;55:285-91. 29. Badillo AT, Chung S, Zhang L, Zoltick P, and Liechty KW. Lentiviral Gene Transfer of SDF-1alpha to Wounds Improves Diabetic Wound Healing. J Surg Res. 2007;143:35-42. 30. Rabbany SY, Pastore J, Yamamoto M, Miller T, Rafii S, Aras R, and Penn M. Continuous Delivery of Stromal Cell-Derived Factor-1 from Alginate Scaffolds Accelerates Wound Healing. Cell Transplant. 2010;19:399-408. 31. Hu C, Yong X, Li C, Lu M, Liu D, Chen L, Hu J, Teng M, Zhang D, Fan Y, and Liang G. CXCL12/CXCR4 Axis Promotes Mesenchymal Stem Cell Mobilization to Burn Wounds and Contributes to Wound Repair. J Surg Res. 2013;183:427-34. 32. Li X, Gao Z, and Wang J. Single Percutaneous Injection of Stromal Cell-Derived Factor-1 Induces Bone Repair in Mouse Closed Tibial Fracture Model. Orthopedics. 2011;34:450. 33. Zhou S, Liu X, Li Y, Yan J. Stromal Cell Derived Factor-1α Enhances Bone Formation Based on in Situ Recruitment: A Histologic and Histometric Study in Rabbit Calvaria. Biotechnol Lett. 2012;34:387-95. 34. Yang F, Ji W, Ma J, Bouma MJ, Boerman OC, Chen Z, van den Beucken JJ, Jansen JA. Incorporation of Stromal Cell-Derived Factor-1α in PCL/Gelatin Electrospun Membranes for Guided Bone Regeneration. Biomaterials. 2013;34:735-45. 35. Yang P, Du L1, Ge S. Stromal Cell-Derived Factor-1 Significantly Induces Proliferation, Migration, and Collagen Type I Expression in a Human Periodontal Ligament Stem Cell Subpopulation. J Periodontol. 2012;83:379-88. 36. Bonadio J, Smiley E, Patil P, and Goldstein S. Localized, Direct Plasmid Gene Delivery in vivo: Prolonged Therapy Results in Reproducible Tissue Regeneration. Nat Med. 1999;5:753-9. 37. Kafri T, van Praag H, Gage FH, and Verma IM. Lentiviral Vectors: Regulated Gene Expression. Mol Ther. 2000;1:516-21. 38. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C, Sergi Sergi L, Benedicenti F, Ambrosi A, Di Serio C, Doglioni C, von Kalle C, and Naldini L. Hematopoietic Stem Cell Gene Transfer in a Tumor-Prone Mouse Model Uncovers Low Genotoxicity of Lentiviral Vector Integration. Nat Biotechnol. 2006;24:687-96. 39. Matrai J, Chuah MK, and VandenDriessche T. Recent Advances in Lentiviral Vector Development and Applications. Mol Ther. 2010;18:477-90. 40. Felgner PL. Nonviral Strategies for Gene Therapy. Sci Am. 1997;276:102-6. 41. Massoud TF, and Gambhir SS. Molecular Imaging in Living Subjects: Seeing Fundamental Biological Processes in a New Light. Genes Dev. 2003;17:545-80. 42. Doyle TC, Burns SM, and Contag CH. In Vivo Bioluminescence Imaging for Integrated Studies of Infection. Cell Microbiol. 2004;6:303-17. 43. Sievers RE, Yu J, Lee RJ. Effects of Scaffold-Delivered SDF-1 Alpha Protein in Chronic Rat Myocardial Infarction Model. J. Med. Biol. Eng. 2014;34:224-9. 44. Brissault B, Kichler A, Guis C, Leborgne C, Danos O, and Cheradame H. Synthesis of Linear Polyethylenimine Derivatives for DNA Transfection. Bioconjug Chem. 2003;14:581-7. 45. Luo D, and Saltzman WM. Synthetic DNA Delivery Systems. Nat Biotechnol. 2000;18:33-7. 46. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, and Behr JP. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in Vivo: Polyethylenimine. Proc Natl Acad Sci U S A. 1995;92:7297-301. 47. Lungwitz U, Breunig M, Blunk T, and Gopferich A. Polyethylenimine-Based Non-Viral Gene Delivery Systems. Eur J Pharm Biopharm. 2005;60:247-66. 48. Sidi AA, Ohana P, Benjamin S, Shalev M, Ransom JH, Lamm D, Hochberg A, and Leibovitch I. Phase I/II Marker Lesion Study of Intravesical Bc-819 DNA Plasmid in H19 over Expressing Superficial Bladder Cancer Refractory to Bacillus Calmette-Guerin. J Urol. 2008;180:2379-83. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4415 | - |
dc.description.abstract | 引導組織再生術(guided tissue regeneration,GTR)已被廣泛應用於修復組織缺損的牙科手術治療中,但對於較大範圍的組織缺損,仍需缺損區有足夠的組織再生能力才可能癒合。過去利用在骨粉(bone graft)中加入生長因子(growth factor)來提升組織再生的能力,然而生長因子的使用仍面臨許多問題。但已知生長因子能夠促使幹細胞(stem cells)遷移(migration)、分化(differentiation),而利用吸引幹細胞以促進組織再生已成為目前主要的發展方向。基質細胞衍生因子-1α(stromal cell-derived factor-1α,SDF-1α)被認為是重要的幹細胞趨化素(chemokine),位在血管四周的間質幹細胞(mesenchymal stem cells,MSCs),能藉由產生基質細胞衍生因子-1α來維持造血幹細胞(hematopoietic stem cells,HSCs)的運送和成熟,與促進血管新生和骨再生都有相關。文獻也已證實其對軟組織和硬組織癒合都有正面影響,唯文獻多以蛋白質作為研究對象,蛋白質卻受限於作用效期短、安全性及成本昂貴等問題。因此本實驗以重新建構的SDF-1α質體(plasmid)取代SDF-1α蛋白質進行實驗,確認此質體確能釋放出SDF-1α蛋白質,並且和市售的SDF-1蛋白質一樣可以吸引幹細胞遷移。未來本實驗希望以聚乙烯亞胺(polyethylenimine,PEI)轉染(transfection)的方式,完成動物實驗,以期SDF-1α發揮未來在臨床上應用於再生技術上的優勢。 | zh_TW |
dc.description.abstract | Guided tissue regeneration (GTR) has been widely used to repair tissue defects in oral surgery. The healing tendency, however, won’t occur without enough tissue regenerative potential in wider range of defects. In the past, growth factors were added into bone graft to enhance tissue regeneration, but the use of growth factors still faces many problems. It is known that the growth factor can promote stem cell migration and differentiation. Attracting stem cells in order to promote tissue regeneration has become the main direction of development. Stromal cell-derived factor-1α (SDF-1α) is considered an important stem cell chemokine. Mesenchymal stem cells (MSCs), which are located in perivascular position, can generate SDF-1α to maintain the delivery and maturity of hematopoietic stem cells (HSCs); furthermore, promoting angiogenesis and bone regeneration are related. Literature has also been confirmed that SDF-1α has a positive impact on soft tissue and hard tissue healing, though most of the studies using SDF-1α protein as the research subject. Protein was restricted to the role of the short lasting time, safety and costly; therefore, the construction of SDF-1α plasmid to replace SDF-1α protein was done in this experiments. The experiment confirmed this plasmid DNA can release SDF-1α protein, moreover, it can attract stem cell migration as commercial SDF-1α protein does. In future prospect, it is expect to be able to use polyethyleneimine (PEI) transfection method to complete animal study, in order that SDF-1α plays to its advantages in regenerative technique of future clinical applications. | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:42:08Z (GMT). No. of bitstreams: 1 ntu-104-R01422020-1.pdf: 1142342 bytes, checksum: 13ad85eed681219ea9a37d12819d449b (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書............................................................................................i
誌謝...............................................................................................................ii 中文摘要........................................................................................................iii 英文摘要........................................................................................................iv 目錄..............................................................................................................vi 第一章 導論....................................................................................................1 1.1 引導組織再生術與生長因子.........................................................................1 1.2 幹細胞與組織再生......................................................................................3 1.3 基質細胞衍生因子-1α................................................................................4 1.4 基因傳遞與活體影像追蹤............................................................................6 1.4.1 生物載體…............................................................................................6 1.4.2 非病毒技術............................................................................................7 1.4.3 非侵入式活體分子影像系統與螢光選擇.....................................................7 第二章 實驗目的 .............................................................................................9 第三章 材料與方法.........................................................................................10 3.1 試劑與抗體.............................................................................................10 3.2 實驗細胞株.............................................................................................10 3.3 基因重組.................................................................................................11 3.3.1 重組基因片段放大….............................................................................11 3.3.2 DNA接合反應.......................................................................................11 3.3.3 大腸桿菌的轉型....................................................................................11 3.3.4 確認pLenti-C-mCherry........................................................................12 3.3.5 重組pLenti-T2A-C-mCherry.................................................................12 3.3.6 重組pLenti-SDF-1-T2A-C-mCherry......................................................12 3.3.7 純化小量質體.......................................................................................13 3.3.8 純化大量質體.......................................................................................13 3.4 細胞轉染.................................................................................................14 3.5 不含細胞培養基的收集.............................................................................14 3.6 確認mCherry螢光...................................................................................14 3.7 細胞內蛋白質的萃取................................................................................14 3.8 SDF-1α的酶聯免疫吸附試驗.....................................................................16 3.9 西方點墨法.............................................................................................16 3.10 幹細胞遷移試驗.....................................................................................17 第四章 實驗結果............................................................................................18 4.1 螢光顯微鏡下mCherry的螢光表現.............................................................18 4.2 細胞內的mCherry蛋白質表現...................................................................18 4.3 不含細胞培養基的SDF-1α表現.................................................................18 4.4 SDF-1α蛋白質刺激VEGF表現..................................................................19 4.5 幹細胞遷移試驗.......................................................................................19 第五章 結論..................................................................................................20 第六章 討論..................................................................................................21 5.1 SDF-1蛋白質和質體傳遞之異同................................................................21 5.2 細胞轉染與聚乙烯亞胺的臨床應用.............................................................22 參考文獻......................................................................................................24 附錄.............................................................................................................32 | |
dc.language.iso | zh-TW | |
dc.title | 以基質細胞衍生因子-1 alpha在再生技術中促進骨生成與傷口癒合 | zh_TW |
dc.title | Enhancement of bone formation and wound healing by stromal cell-derived factor-1 alpha in regenerative technique | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭生興,洪志遠 | |
dc.subject.keyword | 基質細胞衍生因子-1,間質幹細胞,引導組織再生術,基因傳遞,慢病毒載體, | zh_TW |
dc.subject.keyword | stromal cell-derived factor-1,mesenchymal stem cell,guided tissue regeneration,gene delivery,lentiviral vector, | en |
dc.relation.page | 36 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-08-19 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf | 1.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。