請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44158
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許翠瑛 | |
dc.contributor.author | Min-Jei Hsieh | en |
dc.contributor.author | 謝旻潔 | zh_TW |
dc.date.accessioned | 2021-06-15T02:42:34Z | - |
dc.date.available | 2014-09-15 | |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-11 | |
dc.identifier.citation | Adams, A., and Lindahl, T. (1975). Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. Proc Natl Acad Sci U S A 72, 1477-1481.
Adamson, A.L., Darr, D., Holley-Guthrie, E., Johnson, R.A., Mauser, A., Swenson, J., and Kenney, S. (2000). Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74, 1224-1233. Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Seguin, C., et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211. Booher, R.N., Holman, P.S., and Fattaey, A. (1997). Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J Biol Chem 272, 22300-22306. Braunagel, S.C., Parr, R., Belyavskyi, M., and Summers, M.D. (1998). Autographa californica nucleopolyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase. Virology 244, 195-211. Cahill, C.M., Tzivion, G., Nasrin, N., Ogg, S., Dore, J., Ruvkun, G., and Alexander-Bridges, M. (2001). Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem 276, 13402-13410. Chang, L.K., Chung, J.Y., Hong, Y.R., Ichimura, T., Nakao, M., and Liu, S.T. (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic acids research 33, 6528-6539. Chang, P.J., Chang, Y.S., and Liu, S.T. (1998). Role of Rta in the translation of bicistronic BZLF1 of Epstein-Barr virus. J Virol 72, 5128-5136. Chang, P.J., and Liu, S.T. (2001). Function of the intercistronic region of BRLF1-BZLF1 bicistronic mRNA in translating the zta protein of Epstein-Barr virus. J Virol 75, 1142-1151. Chang, Y., Tung, C.H., Huang, Y.T., Lu, J., Chen, J.Y., and Tsai, C.H. (1999). Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73, 8857-8866. Chen, Y.L., Chen, Y.J., Tsai, W.H., Ko, Y.C., Chen, J.Y., and Lin, S.F. (2009). The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle 8, 58-65. Chevallier-Greco, A., Gruffat, H., Manet, E., Calender, A., and Sergeant, A. (1989). The Epstein-Barr virus (EBV) DR enhancer contains two functionally different domains: domain A is constitutive and cell specific, domain B is transactivated by the EBV early protein R. J Virol 63, 615-623. Chevallier-Greco, A., Manet, E., Chavrier, P., Mosnier, C., Daillie, J., and Sergeant, A. (1986). Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J 5, 3243-3249. Clough, W. (1979). Deoxyribonuclease activity found in Epstein--Barr virus producing lymphoblastoid cells. Biochemistry 18, 4517-4521. Conklin, D.S., Galaktionov, K., and Beach, D. (1995). 14-3-3 proteins associate with cdc25 phosphatases. Proc Natl Acad Sci U S A 92, 7892-7896. Countryman, J., Jenson, H., Seibl, R., Wolf, H., and Miller, G. (1987). Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency. J Virol 61, 3672-3679. Countryman, J., and Miller, G. (1985). Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A 82, 4085-4089. Cox, M.A., Leahy, J., and Hardwick, J.M. (1990). An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivators. J Virol 64, 313-321. Darbinyan, A., Darbinian, N., Safak, M., Radhakrishnan, S., Giordano, A., and Khalili, K. (2002). Evidence for dysregulation of cell cycle by human polyomavirus, JCV, late auxiliary protein. Oncogene 21, 5574-5581. Davy, C., and Doorbar, J. (2007). G2/M cell cycle arrest in the life cycle of viruses. Virology 368, 219-226. Davy, C.E., Jackson, D.J., Raj, K., Peh, W.L., Southern, S.A., Das, P., Sorathia, R., Laskey, P., Middleton, K., Nakahara, T., et al. (2005). Human papillomavirus type 16 E1 E4-induced G2 arrest is associated with cytoplasmic retention of active Cdk1/cyclin B1 complexes. J Virol 79, 3998-4011. Dolyniuk, M., Pritchett, R., and Kieff, E. (1976a). Proteins of Epstein-Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein-Barr virus. J Virol 17, 935-949. Dolyniuk, M., Wolff, E., and Kieff, E. (1976b). Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J Virol 18, 289-297. Dunphy, W.G., and Kumagai, A. (1991). The cdc25 protein contains an intrinsic phosphatase activity. Cell 67, 189-196. Fanger, G.R., Widmann, C., Porter, A.C., Sather, S., Johnson, G.L., and Vaillancourt, R.R. (1998). 14-3-3 proteins interact with specific MEK kinases. J Biol Chem 273, 3476-3483. Fenech, M. (2002). Chromosomal biomarkers of genomic instability relevant to cancer. Drug Discov Today 7, 1128-1137. Fingeroth, J.D., Weis, J.J., Tedder, T.F., Strominger, J.L., Biro, P.A., and Fearon, D.T. (1984). Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A 81, 4510-4514. Gautier, J., Solomon, M.J., Booher, R.N., Bazan, J.F., and Kirschner, M.W. (1991). cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67, 197-211. Given, D., and Kieff, E. (1979). DNA of Epstein-Barr virus. VI. Mapping of the internal tandem reiteration. J Virol 31, 315-324. Glotzer, M., Murray, A.W., and Kirschner, M.W. (1991). Cyclin is degraded by the ubiquitin pathway. Nature 349, 132-138. Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59-74. Grozinger, C.M., and Schreiber, S.L. (2000). Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci U S A 97, 7835-7840. Gruffat, H., Duran, N., Buisson, M., Wild, F., Buckland, R., and Sergeant, A. (1992). Characterization of an R-binding site mediating the R-induced activation of the Epstein-Barr virus BMLF1 promoter. J Virol 66, 46-52. Gruffat, H., and Sergeant, A. (1994). Characterization of the DNA-binding site repertoire for the Epstein-Barr virus transcription factor R. Nucleic acids research 22, 1172-1178. Hammerschmidt, W., and Sugden, B. (1988). Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55, 427-433. Hardwick, J.M., Lieberman, P.M., and Hayward, S.D. (1988). A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62, 2274-2284. Hardwick, J.M., Tse, L., Applegren, N., Nicholas, J., and Veliuona, M.A. (1992). The Epstein-Barr virus R transactivator (Rta) contains a complex, potent activation domain with properties different from those of VP16. J Virol 66, 5500-5508. Hermeking, H., Lengauer, C., Polyak, K., He, T.C., Zhang, L., Thiagalingam, S., Kinzler, K.W., and Vogelstein, B. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1, 3-11. Hinds, P.W., Mittnacht, S., Dulic, V., Arnold, A., Reed, S.I., and Weinberg, R.A. (1992). Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70, 993-1006. Hsu, T.Y., Chang, Y., Wang, P.W., Liu, M.Y., Chen, M.R., Chen, J.Y., and Tsai, C.H. (2005). Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. The Journal of general virology 86, 317-322. Johnson, D.G., and Walker, C.L. (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 39, 295-312. Kallin, B., Sternas, L., Saemundssen, A.K., Luka, J., Jornvall, H., Eriksson, B., Tao, P.Z., Nilsson, M.T., and Klein, G. (1985). Purification of Epstein-Barr virus DNA polymerase from P3HR-1 cells. J Virol 54, 561-568. Kieff, E., Given, D., Powell, A.L., King, W., Dambaugh, T., and Raab-Traub, N. (1979). Epstein-Barr virus: structure of the viral DNA and analysis of viral RNA in infected cells. Biochim Biophys Acta 560, 355-373. Kikuta, H., Taguchi, Y., Tomizawa, K., Kojima, K., Kawamura, N., Ishizaka, A., Sakiyama, Y., Matsumoto, S., Imai, S., Kinoshita, T., et al. (1988). Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333, 455-457. Klein, G., Clifford, P., Klein, E., and Stjernsward, J. (1966). Search for tumor-specific immune reactions in Burkitt lymphoma patients by the membrane immunofluorescence reaction. Proc Natl Acad Sci U S A 55, 1628-1635. Kornitzer, D., Sharf, R., and Kleinberger, T. (2001). Adenovirus E4orf4 protein induces PP2A-dependent growth arrest in Saccharomyces cerevisiae and interacts with the anaphase-promoting complex/cyclosome. J Cell Biol 154, 331-344. Laronga, C., Yang, H.Y., Neal, C., and Lee, M.H. (2000). Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J Biol Chem 275, 23106-23112. Leffers, H., Madsen, P., Rasmussen, H.H., Honore, B., Andersen, A.H., Walbum, E., Vandekerckhove, J., and Celis, J.E. (1993). Molecular cloning and expression of the transformation sensitive epithelial marker stratifin. A member of a protein family that has been involved in the protein kinase C signalling pathway. J Mol Biol 231, 982-998. Lieberman, P.M., O'Hare, P., Hayward, G.S., and Hayward, S.D. (1986). Promiscuous trans activation of gene expression by an Epstein-Barr virus-encoded early nuclear protein. J Virol 60, 140-148. Lindahl, T., Adams, A., Andersson-Anvret, M., and Falk, L. (1978). Integration of Epstein-Barr virus DNA. IARC Sci Publ, 113-123. Littler, E., and Arrand, J.R. (1988). Characterization of the Epstein-Barr virus-encoded thymidine kinase expressed in heterologous eucaryotic and procaryotic systems. J Virol 62, 3892-3895. Luka, J., Kallin, B., and Klein, G. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94, 228-231. Lundgren, K., Walworth, N., Booher, R., Dembski, M., Kirschner, M., and Beach, D. (1991). mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64, 1111-1122. Manet, E., Allera, C., Gruffat, H., Mikaelian, I., Rigolet, A., and Sergeant, A. (1993). The acidic activation domain of the Epstein-Barr virus transcription factor R interacts in vitro with both TBP and TFIIB and is cell-specifically potentiated by a proline-rich region. Gene Expr 3, 49-59. Manet, E., Rigolet, A., Gruffat, H., Giot, J.F., and Sergeant, A. (1991). Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic acids research 19, 2661-2667. Marschall, M., Leser, U., Seibl, R., and Wolf, H. (1989). Identification of proteins encoded by Epstein-Barr virus trans-activator genes. J Virol 63, 938-942. Martin-Castellanos, C., and Moreno (1997). Recent advances on cyclins, CDKs and CDK inhibitors. Trends Cell Biol 7, 95-98. Matsuoka, A., Yamazaki, N., Suzuki, T., Hayashi, M., and Sofuni, T. (1992). Evaluation of the micronucleus test using a Chinese hamster cell line as an alternative to the conventional in vitro chromosomal aberration test. Mutat Res 272, 223-236. Matsushime, H., Quelle, D.E., Shurtleff, S.A., Shibuya, M., Sherr, C.J., and Kato, J.Y. (1994). D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 14, 2066-2076. Miller, R.L., Glaser, R., and Rapp, F. (1977). Studies of an Epstein-Barr virus-induced DNA polymerase. Virology 76, 494-502. Moore, A.E., Sabachewsky, L., and Toolan, H.W. (1955). Culture characteristics of four permanent lines of human cancer cells. Cancer Res 15, 598-602. Moore BE, Perez VJ. In: Carlson FD, editor.(1967) Physiological and biochemical aspects of nervous integration. Englewood Cliffs, NJ:Prentice-Hall; p. 343–59. Muslin, A.J., Tanner, J.W., Allen, P.M., and Shaw, A.S. (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889-897. Parker, L.L., and Piwnica-Worms, H. (1992). Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257, 1955-1957. Pines, J. (1999a). Cell cycle. Checkpoint on the nuclear frontier. Nature 397, 104-105. Pines, J. (1999b). Four-dimensional control of the cell cycle. Nat Cell Biol 1, E73-79. Prasad, G.L., Valverius, E.M., McDuffie, E., and Cooper, H.L. (1992). Complementary DNA cloning of a novel epithelial cell marker protein, HME1, that may be down-regulated in neoplastic mammary cells. Cell Growth Differ 3, 507-513. Quinlivan, E.B., Holley-Guthrie, E.A., Norris, M., Gutsch, D., Bachenheimer, S.L., and Kenney, S.C. (1993). Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1. Nucleic acids research 21, 1999-2007. Rosenthal, E.T., Hunt, T., and Ruderman, J.V. (1980). Selective translation of mRNA controls the pattern of protein synthesis during early development of the surf clam, Spisula solidissima. Cell 20, 487-494. Semmes, O.J., Chen, L., Sarisky, R.T., Gao, Z., Zhong, L., and Hayward, S.D. (1998). Mta has properties of an RNA export protein and increases cytoplasmic accumulation of Epstein-Barr virus replication gene mRNA. J Virol 72, 9526-9534. Shannon-Lowe, C.D., Neuhierl, B., Baldwin, G., Rickinson, A.B., and Delecluse, H.J. (2006). Resting B cells as a transfer vehicle for Epstein-Barr virus infection of epithelial cells. Proc Natl Acad Sci U S A 103, 7065-7070. Sherr, C.J., Kato, J., Quelle, D.E., Matsuoka, M., and Roussel, M.F. (1994). D-type cyclins and their cyclin-dependent kinases: G1 phase integrators of the mitogenic response. Cold Spring Harb Symp Quant Biol 59, 11-19. Sixbey, J.W., Vesterinen, E.H., Nedrud, J.G., Raab-Traub, N., Walton, L.A., and Pagano, J.S. (1983). Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306, 480-483. Stopper, H., Eckert, I., Wagener, P., and Schulz, W.A. (1997). Formation of micronuclei and inhibition of topoisomerase II in the comet assay in mammalian cells with altered DNA methylation. Recent Results Cancer Res 143, 183-193. Swenson, J.J., Mauser, A.E., Kaufmann, W.K., and Kenney, S.C. (1999). The Epstein-Barr virus protein BRLF1 activates S phase entry through E2F1 induction. J Virol 73, 6540-6550. Tovey, M.G., Lenoir, G., and Begon-Lours, J. (1978). Activation of latent Epstein-Barr virus by antibody to human IgM. Nature 276, 270-272. Tzivion, G., Shen, Y.H., and Zhu, J. (2001). 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene 20, 6331-6338. Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., Gamblin, S.J., Smerdon, S.J., and Cantley, L.C. (1997). The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961-971. Yang, H., Zhang, Y., Zhao, R., Wen, Y.Y., Fournier, K., Wu, H.B., Yang, H.Y., Diaz, J., Laronga, C., and Lee, M.H. (2006). Negative cell cycle regulator 14-3-3sigma stabilizes p27 Kip1 by inhibiting the activity of PKB/Akt. Oncogene 25, 4585-4594. Yao, Q.Y., Rickinson, A.B., and Epstein, M.A. (1985). A re-examination of the Epstein-Barr virus carrier state in healthy seropositive individuals. Int J Cancer 35, 35-42. Yates, J.L., Warren, N., and Sugden, B. (1985). Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313, 812-815. Zacny, V.L., Wilson, J., and Pagano, J.S. (1998). The Epstein-Barr virus immediate-early gene product, BRLF1, interacts with the retinoblastoma protein during the viral lytic cycle. J Virol 72, 8043-8051. Zhang, L., Chen, J., and Fu, H. (1999). Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc Natl Acad Sci U S A 96, 8511-8515. zur Hausen, H., O'Neill, F.J., Freese, U.K., and Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373-375. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44158 | - |
dc.description.abstract | Epstein-Barr virus (EBV)為人類傳染性單核球增多症及口腔髮狀白斑瘤的病原,亦被發現與許多人類癌症,例如巴氏淋巴瘤(Burkitt's lymphoma)、何杰金氏淋巴瘤(Hodgkin's lymphoma)及鼻咽癌(nasopharyngeal carcinoma, NPC)等有高度相關性。病毒通常會利用本身所產生的蛋白質,影響細胞週期運行所需的相關分子,達到有利於病毒複製的環境。在實驗室先前的研究中,已知EB病毒的特早期蛋白質Rta,具有轉活化p21啟動子之能力,使p21蛋白質表現量上升,p21蛋白質屬於cyclin-dependent kinase inhibitor (CKIs)的一員,Rta藉由轉活化p21啟動子使細胞週期停在G1時期,造成G1-arrest的現象。此外,從Rta cDNA microarray資料顯示,Rta的存在亦活化具有調控細胞週期能力的14-3-3 σ蛋白質。在本研究當中,進一步研究Rta是否會藉由調控14-3-3 σ蛋白質的表現而對細胞週期有所影響。首先,以即時同步偵測定量聚合酶連鎖反應及西方墨點法,確認Rta可在轉錄、轉譯的層面上調控14-3-3 σ蛋白質的表現。接著,欲探討Rta調控14-3-3 σ蛋白質之機制,以螢光酵素-報導基因檢測方法,觀察到Rta具有轉活化14-3-3 σ啟動子的能力,但此轉活化能力並不是透過14-3-3 σ啟動子上的一個putative Rta-responsive element (RRE)。欲觀察Rta調控14-3-3 σ蛋白質是否對細胞週期運行而有所影響,以免疫螢光染色法觀察到Rta可能透過14-3-3 σ蛋白質而影響CDK1、CDK2的入核,使其堆積在細胞質當中,干擾細胞週期的正常運作。此外,Rta亦會造成細胞週期當中G2/M期的遲緩,然而是否是透過14-3-3 σ而造成此現象,還需進一步之探討。在本研究當中,我們發現Rta除了可藉由調控p21之外,亦會藉由影響14-3-3 σ的表現量而共同影響細胞週期的運行。 | zh_TW |
dc.description.abstract | Epstein-Barr virus (EBV) is the etiologic agent responsible for infectious mononucleosis and oral hairy leukoplakia. It is also highly associated with several human malignancies, such as Burkitt’s lymphoma, Hodgkin’s lymphoma and nasopharyngeal carcinoma (NPC). Many researches have suggested that regulation of the cell cycle is one strategy frequently used by viruses to create a more favorable environment for viral replication. From the previous studies of our lab, we have demonstrated that EBV Rta had the ability to block cell cycle at the G1 phase through regulating the expression of p21 protein. Furthermore, data from a cDNA microarray indicated that Rta could upregulate 14-3-3 σ in transcriptional level. The 14-3-3 σ protein is reported to interact with many cell cycle-related molecules. In this study, we intend to elucidate whether Rta activates 14-3-3 σ expression to affect cell cycle progression. First, we confirmed that Rta could upregulate 14-3-3 σ mRNA and protein expression by using RT-Q-PCR and western blotting assay. Moreover, we found that Rta could transactivate the 14-3-3 σ promoter in a manner independent of its putative Rta-responsive element. In addition, we demonstrated that Rta affected the subcellular localization of CDK1 and CDK2 in 293-TREx-Rta cells via the upregulation of 14-3-3σ expression. Finally, we discovered that Rta also was able to interfere with the G2-M phase progression of cell cycle. Taken together, our results clearly suggest that EBV protein Rta acts through the transcriptional induction of 14-3-3 σ, in addition to p21, to influence cell cycle progression. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:42:34Z (GMT). No. of bitstreams: 1 ntu-98-R96445128-1.pdf: 2341805 bytes, checksum: aa1a4a3015bcb7681486c81db9547537 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 論文口試委員審定書…………………………………………i
中文摘要……………………………………………………… ii 英文摘要……………………………………………………… iii 導論……………………………………………………………1 實驗材料………………………………………………………9 實驗方法……………………………………………………… 14 結果…………………………………………………………… 22 討論……………………………………………………………27 圖表…………………………………………………………… 30 附錄…………………………………………………………… 42 參考文獻……………………………………………………… 43 | |
dc.language.iso | zh-TW | |
dc.title | EB病毒特早期蛋白質Rta活化14-3-3 σ表現及其對
細胞週期之影響 | zh_TW |
dc.title | Epstein-Barr virus immediate-early protein Rta activates
14-3-3 σ expression to regulate cell cycle progression | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳振陽,林素芳,許晉銓 | |
dc.subject.keyword | EB 病毒,Rta,細胞週期,14-3-3σ, | zh_TW |
dc.subject.keyword | Epstein-Barr virus,Rta,cell cycle,14-3-3σ, | en |
dc.relation.page | 51 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-11 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。