Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊德良
dc.contributor.authorChia-Shan Wuen
dc.contributor.author吳佳珊zh_TW
dc.date.accessioned2021-06-15T02:42:26Z-
dc.date.available2014-08-14
dc.date.copyright2009-08-14
dc.date.issued2009
dc.date.submitted2009-08-10
dc.identifier.citationReferences
[1] T. Ye, R. Mittal, H.S. Udaykumar and W. Shyy, 1999. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics 156, 209-240.
[2] H.S. Udaykumar, R. Mittal, P. Rampunggoon and A. Khanna, 2001. A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. Journal of Computational Physics 174, 345-380.
[3] P.G. Tucker and Z. Pan, 2000. A Cartesian cut cell method for incompressible viscous flow. Applied Mathematical Modeling 24, 591-606.
[4] C.S. Perskin, 1972. Flow pattern around heart valves: A numerical method. Journal of Computational Physics 10, 252-271.
[5] C.S. Perskin, 1977. Numerical analysis of blood flow in the heart. Journal of Computational Physics 25, 220-252.
[6] M.C Lai and C.S. Perskin, 2000. An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity. Journal of Computational Physics 160, 705-719
[7] D. Goldstein, R. Handler and L. Sirovich, 1993. Modeling a no-slip flow boundary with an external force field. Journal of Computational Physics 105, 354-366.
[8] E.M. Saiki and S. Birinsen, 1996. Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. Journal of Computational Physics 123, 450-465.
[9] J. Mohd-Yusof, 1997. Combined immersed-boundary/B-splines method for simulations of flow in complex geometries. CTR Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford University.
[10] E.A. Fadlun, R. Verzicco, P. Orlandi and J. Mohd-Yusof, 2000. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics 207, 35-60.
[11] A. Gilmanov and F. Sotiropoulos, 2005. A hybrid Cartesian/immersed boundary method for simulating flow with 3D, geometrically complex, moving boundary. Journal of Computational Physics 207, 457-492.
[12] S. Marella, S. Krishnan, H. Liu and H.S. Udaykumar, 2005. Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations. Journal of Computational Physics 210, 1-31.
[13] D.L. Young, C.L. Chiu and C.M. Fan, 2007. A hybrid Cartesian/immersed-boundary finite-element method for simulating heat and flow patterns in a two-roll mill. Numerical Heat Transfer Part B-Fundamentals 51, 251-274.
[14] Y.C. Lin, 2008. Navier-Stokes computations for high Reynolds number flows with immersed stationary and accelerating bodies. Doctoral Dissertation, Department of Civil Engineering, National Taiwan University.
[15] A.J. Chorin, 1968. Numerical solution of the Navier-Stokes equations. Mathematics of Computation 22, 745-762.
[16] R. Temam, 1968. Une de la solution des de Navier-Stokes. Bulletin de la de France 98, 115-152.
[17] D. Goldberg and V. Ruas, 1999. A numerical study of projection algorithms in the finite element simulation of three-dimensional viscous incompressible flow. International Journal for Numerical Methods in Fluids 30, 233-256.
[18] K.V. Roberts and N.O. Weiss, 1966. Convective difference schemes. Mathematics of Computation 20, 272-299.
[19] E. Turkel, S. Abarbanel, and D. Gottlieb, 1976. Multidimensional difference schemes with fourth-order accuracy. Journal of Computational Physics 21, 85-113.
[20] R. Courant, K. Friedrichs and M. Lewy, 1967. On the partial difference equations of mathematical physics. IBM Journal of Research & Development 11, 215-234.
[21] J.R. Pacheco, A. Pacheco-Vega, T. Rodic and R.E. Peck, 2005. Numerical simulations of heat transfer and fluid flow problems using an immersed-boundary finite-volume method on nonstaggered grids. Numerical Heat Transfer B 48, 1-24.
[22] H. , F. Durst, S. Becker and H. Lienhart, 1998. Low-Reynolds-number flow around an oscillating circular at low Keulegan-Carpenter numbers, Journal of Fluid Mechanics 360, 249-271.
[23] J. Yang and E. Balaras, 2006. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, Journal of Computational Physics 215, 12-40.
[24] J.I. Choi, R.C. Oberoi, J.R. Edwards and J.A. Rosati, 2007. An immersed boundary method for complex incompressible flows, Journal of computational physics 197, 2119-2130.
[25] Z. Wang, J. Fan and K. Cen, 2009. Immersed boundary method for the simulation of 2D viscous flow based on vorticity-velocity formulations, Journal of Computational Physics 228, 1504-1520.
[26] D.J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds numbers, 1959. Journal of Fluid Mechanics 6, 547-567.
[27] M. Coutanceau and R. Bouard, 1977. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. Journal of Fluid Mechanics 79 (2), 231-256.
[28] C.H.K. Williamson and G.L. Brown, 1998. A series in (1/ ) to represent the Strouhal-Reynolds number relationship of the cylinder wake. Journal of Fluids and Structures 12, 1073-1085
[29] D. Calhoun, 2002. A Cartesian Grid Method for Solving the Two-Dimensional Streamfunction-Vorticity Equations in Irregular Regions, Journal of Computational Physics 176, 231-275.
[30] D. Russell and Z.J. Wang, 2003. A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow, Journal of Computational Physics 191, 177-205.
[31] M.N. Linnick and H.F. Fasel, 2005. A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, Journal of Computational Physics 204, 157-192.
[32] M. Uhlmann, 2005. An immersed boundary method with direct forcing for the simulation of particulate flows, Journal of Computational Physics 209, 448-476.
[33] S. Xu and Z.J. Wang, 2006. An immersed interface method for simulating the interaction of a fluid with moving boundaries, Journal of Computational Physics 216, 454-493.
[34] S.W. Su, M.C. Lai and C.A. Lin, 2007. An immersed boundary technique for simulating complex flows with rigid boundary, Computers and Fluids 36, 313-324.
[35] A. Petter, O. Berthelsen and M. Faltinsen, 2008. A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries, Journal of Computational Physics 227, 4354-4397.
[36] C.W. Hirt, A.A. Amsden and J.L. Cook, 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds, Journal of Computational Physics 14, 227-253.
[37] M.C. Tompson, T. Leweke and K. Hourigan, 2007. Sphere-wall collisions: vortex dynamics and stability, Journal of Fluid Mechanics 575, 121-148.
[38] I. Eames and S.B. Dalziel, 2000. Dust resuspension by the flow around an impacting sphere. Journal of Fluid Mechanics 403, 305-328.
[39] T. Leweke, M.C. Tompson and K. Hourigan, 2004. Vortex dynamics associated with the collision of a sphere with a wall. Physics of Fluids 16, 74-77.
[40] R. Clift, J.R. Grace, M.E. Weber, 1978. Bubbles, drops and particles. Academic
[41] A.G. Tomboulides, and S.A. Orszag, 2000. Numerical investigation of transitional and weak turbulent flow past a sphere. Journal of Fluid Mechanics 416, 45-73.
[42] T.A. Johnson, and V.C. Patel, 1999. Flow past a sphere up to a Reynolds number of 300. Journal of Fluid Mechanics 378, 19-70.
[43] D. , and M. Provansal, 1999. Transition to turbulence in the wake of a sphere. Physical Review Letters 83, 80-83.
[44] J.S. Li, 2009. Interactions of a falling sphere and liquid vortices in laser-illuminated experiments. Master Thesis, Department of Civil Engineering, National Taiwan University.
[45] T. Leweke, L. Schouveiler, M.C. Thompson and K. Hourigan, 2008. Unsteady flow around impacting bluff bodies. Journal of Fluids and Structures 24, 1194-1203.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44155-
dc.description.abstract本論文主旨擬利用一套數值模式來模擬移動邊界問題,此模式是利用有限差分法結合混合卡式沉浸邊界模式,來求解含有移動物體的黏性不可壓縮流問題,其控制方程為奈維爾-史托克斯方程式。首先,將此模式分別應用在固定以及移動邊界的二維問題,其中用來驗證固定邊界的問題是模擬均勻流體流經無窮域的靜止圓柱,然而驗證移動邊界的問題則是利用圓柱在靜止流場中來回移動,並將其數值結果與文獻相比,藉此來驗證此套模式的正確性和可靠性。最後,將此模式應用在三維流場的移動邊界問題,而此問題主要是模擬圓球於流體中等速落下之三維流場,並且將結果與實驗數據相比。由此可得到在雷諾數大於500之後,流場已開始產生不對稱之現象,而當雷諾數等於800時,於三維渦度圖當中可觀察到球在撞擊牆之後,複合的渦環捲上原始的渦環並做三維的運動。由此可知,此數值模式的結果提供了在實驗上無法直接觀察到的三維運動現象。zh_TW
dc.description.abstractIn this thesis, the numerical model which is the finite-difference model with hybrid Cartesian/immersed boundary method is applied for solving the 2D and 3D Navier-Stokes equations with immersed and moving boundary on a fixed Cartesian grid. There are two studies in 2D which are carried out to verify the robustness of the present model with reference data from uniform flow past a stationary circular cylinder, and in-line oscillating circular cylinder in a fluid at rest. However, the numerical model is applied to simulate a moving boundary problem which is dropping sphere with constant velocity in 3D flow field. Therefore, the flow field is asymmetric at Reynolds numbers above 500 from both experimental and numerical results. Moreover, the flow field after impact at Reynolds number equals to 800, the combined vortex ring rolls upward to contact the primary vortex ring and acts as a 3D motion in all directions. Therefore, the numerical simulations can fill up the lack of the results in experiment within 3D visualization.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:42:26Z (GMT). No. of bitstreams: 1
ntu-98-R96521314-1.pdf: 16349524 bytes, checksum: d17a7154f04ceaa92f8c09eb09348655 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
Figure List VI
Table List X
Chapter 1 Introduction 1
1.1 Motivations and objectives 1
1.2 Literature review 2
1.3 Organization of the thesis 6
Chapter 2 Mathematical Formulations and Numerical Schemes 8
2.1 Governing equations 8
2.2 Grid type 10
2.3 Operator-splitting schemes 11
2.4 Hybrid Cartesian/immersed boundary method 16
2.5 Force calculation 18
Chapter 3 Numerical Validations 24
3.1 Uniform flow past a circular cylinder 24
3.1.1 Low Reynolds number (Re=40) 26
3.1.2 Moderate Reynolds number (Re=100) 27
3.2 In-line oscillating circular cylinder in a fluid at rest 28
3.2.1 Numerical configurations 29
3.2.2 Numerical results and discussions 31
Chapter 4 Application for the Moving Process of the Collision of a Sphere with a Wall in Fluid 44
4.1 Introduction 44
4.2 Brief descriptions of numerical configurations and physical behavior 45
4.3 Experimental details 47
4.4 Results and discussion 48
4.4.1 Reynolds number equals to 500 49
4.4.2 Reynolds number equals to 800 54
4.4.3 Asymmetry of Re equals to 500 and 800 58
Chapter 5 Conclusions and Future Research 78
5.1 Conclusions 78
5.2 Future research 81
References 83
dc.language.isoen
dc.subject奈維爾-史托克斯方程式zh_TW
dc.subject移動邊界zh_TW
dc.subject有限差分法zh_TW
dc.subject沉浸邊界zh_TW
dc.subject雷諾數zh_TW
dc.subjectimmersed boundary techniqueen
dc.subjectNavier-Stokes equationsen
dc.subjectReynolds numberen
dc.subjectMoving boundaryen
dc.subjectfinite-difference methoden
dc.title中雷諾數流場移動物體之數值計算zh_TW
dc.titleNumerical computations for moderate Reynolds number flows with a moving bodyen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖清標,范佳銘,繁田岳美,林英傑
dc.subject.keyword移動邊界,有限差分法,沉浸邊界,奈維爾-史托克斯方程式,雷諾數,zh_TW
dc.subject.keywordMoving boundary,finite-difference method,immersed boundary technique,Navier-Stokes equations,Reynolds number,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2009-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
15.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved