請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4414完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾賢忠 | |
| dc.contributor.author | Yi-Ying Chen | en |
| dc.contributor.author | 陳宜萾 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:42:08Z | - |
| dc.date.available | 2020-09-24 | |
| dc.date.available | 2021-05-14T17:42:08Z | - |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-19 | |
| dc.identifier.citation | Barrett, D. M., Singh, N., Porter, D. L., Grupp, S. A., and June, C. H. (2014). Chimeric antigen receptor therapy for cancer. Annual Review of Medicine 65, 333-347.
Bauer, S., Adrian, N., Fischer, E., Kleber, S., Stenner, F., Wadle, A., Fadle, N., Zoellner, A., Bernhardt, R., Knuth, A., et al. (2006). Structure-activity profiles of Ab-derived TNF fusion proteins. Journal of Immunology (Baltimore, Md : 1950) 177, 2423-2430. Bogusław, S., Krystyna, B.-S., and Ewelina, K. (2014). Introduction to molecular biology of influenza A viruses. Acta Biochimica Polonica 61, 397-401. Boulo, S., Akarsu, H., Ruigrok, R. W. H., and Baudin, F. (2007). Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Research 124, 12-21. Bouvier, N. M., and Lowen, A. C. (2010). Animal models for influenza virus pathogenesis and transmission. Viruses 2, 1530-1563. Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W. J., Topalian, S. L., Hwu, P., Drake, C. G., Camacho, L. H., Kauh, J., Odunsi, K., et al. (2012). Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. The New England Journal of Medicine 366, 2455-2465. Braster, R., O'Toole, T., and van Egmond, M. (2014). Myeloid cells as effector cells for monoclonal antibody therapy of cancer. Methods (San Diego, Calif) 65, 28-37. Burton, D. R. (2002). Antibodies, viruses and vaccines. Nature Reviews Immunology 2, 706-713. Chiu, C., and Openshaw, P. J. (2015). Antiviral B cell and T cell immunity in the lungs. Nature Immunology 16, 18-26. Chodorge, M., Züger, S., Stirnimann, C., Briand, C., Jermutus, L., Grütter, M. G., and Minter, R. R. (2012). A series of Fas receptor agonist antibodies that demonstrate an inverse correlation between affinity and potency. Cell Death and Differentiation 19, 1187-1195. Corti, D., Voss, J., Gamblin, S. J., Codoni, G., Macagno, A., Jarrossay, D., Vachieri, S. G., Pinna, D., Minola, A., Vanzetta, F., et al. (2011). A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850-856. Cuesta, Á. M., Sánchez-Martín, D., Sanz, L., Bonet, J., Compte, M., Kremer, L., Blanco, F. J., Oliva, B., and Álvarez-Vallina, L. (2009). In Vivo Tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences. PLOS ONE 4, e5381. Cuesta, Á. M., Sainz-Pastor, N., Bonet, J., Oliva, B., and Álvarez-Vallina, L. (2010). Multivalent antibodies: when design surpasses evolution. Trends in Biotechnology 28, 355-362. Deyev, S. M., Waibel, R., Lebedenko, E. N., Schubiger, A. P., and Pluckthun, A. (2003). Design of multivalent complexes using the barnase*barstar module. Nature Biotechnology 21, 1486-1492. Dolezal, O., Pearce, L. A., Lawrence, L. J., McCoy, A. J., Hudson, P. J., and Kortt, A. A. (2000). ScFv multimers of the anti-neuraminidase antibody NC10: shortening of the linker in single-chain Fv fragment assembled in V(L) to V(H) orientation drives the formation of dimers, trimers, tetramers and higher molecular mass multimers. Protein Engineering 13, 565-574. Domingo, E., and Holland, J. J. (1997). RNA virus mutaions and fitness for suevival. Annual Review of Microbiology 51, 78-151. Dreyfus, C., Laursen, N. S., Kwaks, T., Zuijdgeest, D., Khayat, R., Ekiert, D. C., Lee, J. H., Metlagel, Z., Bujny, M. V., Jongeneelen, M., et al. (2012). Highly conserved protective epitopes on influenza B viruses. Science 337, 6. Du, L., Zhao, G., Zhang, X., Liu, Z., Yu, H., Zheng, B. J., Zhou, Y., and Jiang, S. (2010). Development of a safe and convenient neutralization assay for rapid screening of influenza HA-specific neutralizing monoclonal antibodies. Biochemical and Biophysical Research Communications 397, 580-585. Duan, Y., Gu, H., Chen, R., Zhao, Z., Zhang, L., Xing, L., Lai, C., Zhang, P., Li, Z., Zhang, K., et al. (2014). Response of mice and ferrets to a monovalent influenza A (H7N9) split vaccine. PLOS ONE 9, e99322. Dunand, C. J., Leon, P. E., Kaur, K., Tan, G. S., Zheng, N. Y., Andrews, S., Huang, M., Qu, X., Huang, Y., Salgado-Ferrer, M., et al. (2015). Preexisting human antibodies neutralize recently emerged H7N9 influenza strains. The Journal of Clinical Investigation. Ekiert, D. C., Bhabha, G., Elsliger, M. A., Friesen, R. H., Jongeneelen, M., Throsby, M., Goudsmit, J., and Wilson, I. A. (2009). Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246-251. Ekiert, D. C., Friesen, R. H., Bhabha, G., Kwaks, T., Jongeneelen, M., Yu, W., Ophorst, C., Cox, F., Korse, H. J., Brandenburg, B., et al. (2011). A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333, 7. Ekiert, D. C., Kashyap, A. K., Steel, J., Rubrum, A., Bhabha, G., Khayat, R., Lee, J. H., Dillon, M. A., O/'Neil, R. E., Faynboym, A. M., et al. (2012). Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489, 526-532. Fan, C. Y., Huang, C. C., Chiu, W. C., Lai, C. C., Liou, G. G., Li, H. C., and Chou, M. Y. (2008). Production of multivalent protein binders using a self-trimerizing collagen-like peptide scaffold. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 22, 3795-3804. Fouchier, R. A. M., Bestebroer, T. M., Herfst, S., Van Der Kemp, L., Rimmelzwaan, G. F., and Osterhaus, A. D. M. E. (2000). Detection of Influenza A Viruses from Different Species by PCR Amplification of Conserved Sequences in the Matrix Gene. Journal of Clinical Microbiology 38, 4096-4101. Francis, T., Pearson, H. E., Salk, J. E., and Brown, P. N. (1944). Immunity in human subjects artificially infected with influenza virus, type B. American Journal of Public Health and the Nations Health 34, 317-334. Fries, L. F., Smith, G. E., and Glenn, G. M. (2013). A recombinant viruslike particle influenza A (H7N9) vaccine. The New England Journal of Medicine 369, 2564-2566. Friesen, R. H., Lee, P. S., Stoop, E. J., Hoffman, R. M., Ekiert, D. C., Bhabha, G., Yu, W., Juraszek, J., Koudstaal, W., Jongeneelen, M., et al. (2014). A common solution to group 2 influenza virus neutralization. Proceedings of the National Academy of Sciences of the United States of America 111, 445-450. Fujii, I. (2004). Antibody affinity maturation by random mutagenesis. in Antibody Engineering, B.C. Lo, ed. (Humana Press), pp. 345-359. Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Chen, J., Jie, Z., Qiu, H., Xu, K., et al. (2013). Human infection with a novel avian-origin influenza A (H7N9) virus. New England Journal of Medicine 368, 1888-1897. Goldenberg, D. M., Rossi, E. A., Sharkey, R. M., McBride, W. J., and Chang, C. H. (2008). Multifunctional antibodies by the dock-and-lock method for improved cancer imaging and therapy by pretargeting. Journal of Nuclear Medicine 49, 158-163. Gould, L. H., Sui, J., Foellmer, H., Oliphant, T., Wang, T., Ledizet, M., Murakami, A., Noonan, K., Lambeth, C., Kar, K., et al. (2005). Protective and therapeutic capacity of human single-chain Fv-Fc fusion proteins against West Nile virus. Journal of Virology 79, 14606-14613. Gravel, C., Elmgren, C., Muralidharan, A., Hashem, A. M., Jaentschke, B., Xu, K., Widdison, J., Arnold, K., Farnsworth, A., Rinfret, A., et al. (2015). Development and applications of universal H7 subtype-specific antibodies for the analysis of influenza H7N9 vaccines. Vaccine 33, 1129-1134. Guo, Y., Rumschlag-Booms, E., Wang, J., Xiao, H., Yu, J., Wang, J., Guo, L., Gao, G. F., Cao, Y., Caffrey, M., and Rong, L. (2009). Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza. Virology Journal 6, 39. Harmsen, M. M., and De Haard, H. J. (2007). Properties, production, and applications of camelid single-domain antibody fragments. Applied Microbiology and Biotechnology 77, 13-22. Hodi, F. S., O'Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J. C., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine 363, 711-723. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G., and Webster, R. G. (2000). A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of the National Academy of Sciences of the United States of America 97, 6108-6113. Holliger, P., Prospero, T., and Winter, G. (1993). 'Diabodies': small bivalent and bispecific antibody fragments. Proceedings of the National Academy of Sciences of the United States of America 90, 6444-6448. Hu, S., Shively, L., Raubitschek, A., Sherman, M., Williams, L. E., Wong, J. Y., Shively, J. E., and Wu, A. M. (1996). Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Research 56, 3055-3061. Hudis, C. A. (2007). Trastuzumab — Mechanism of action and use in clinical practice. New England Journal of Medicine 357, 39-51. Huhalov, A., and Chester, K. A. (2004). Engineered single chain antibody fragments for radioimmunotherapy. The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the So 48, 279-288. Hust, M., Jostock, T., Menzel, C., Voedisch, B., Mohr, A., Brenneis, M., Kirsch, M. I., Meier, D., and Dubel, S. (2007). Single chain Fab (scFab) fragment. BMC Biotechnology 7, 14. Kageyama, T., Fujisaki, S., Takashita, E., Xu, H., Yamada, S., Uchida, Y., Neumann, G., Saito, T., Kawaoka, Y., and Tashiro, M. (2013). Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill. Kanegae, Y., Sugita, S., Endo, A., Ishida, M., Senya, S., Osako, K., Nerome, K., and Oya, A. (1990). Evolutionary pattern of the hemagglutinin gene of influenza B viruses isolated in Japan: cocirculating lineages in the same epidemic season. Journal of Virology 64, 2860-2865. Kashyap, A. K., Steel, J., Rubrum, A., Estelles, A., Briante, R., Ilyushina, N. A., Xu, L., Swale, R. E., Faynboym, A. M., Foreman, P. K., et al. (2010). Protection from the 2009 H1N1 pandemic influenza by an antibody from combinatorial survivor-based libraries. PLOS pathogens 6, e1000990. Kenneth, M. (2011). Janeway's Immunobiology. Kipriyanov, S. M., Moldenhauer, G., Schuhmacher, J., Cochlovius, B., Von der Lieth, C. W., Matys, E. R., and Little, M. (1999). Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. Journal of Molecular Biology 293, 41-56. Klasse, P. J., and Sattentau, Q. J. (2002). Occupancy and mechanism in antibody-mediated neutralization of animal viruses. The Journal of General Virology 83, 2091-2108. Kontermann, R. E. (2005). Recombinant bispecific antibodies for cancer therapy. Acta Pharmacol Sin 26, 1-9. Krammer, F., and Palese, P. (2015). Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 14, 167-182. Kwakkenbos, M. J., Diehl, S. A., Yasuda, E., Bakker, A. Q., van Geelen, C. M. M., Lukens, M. V., van Bleek, G. M., Widjojoatmodjo, M. N., Bogers, W. M. J. M., Mei, H., et al. (2010). Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat Med 16, 123-128. Lee, E. C., Liang, Q., Ali, H., Bayliss, L., Beasley, A., Bloomfield-Gerdes, T., Bonoli, L., Brown, R., Campbell, J., Carpenter, A., et al. (2014). Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat Biotech 32, 356-363. Leung, H.-C., Chan, C. C.-S., Poon, V. K.-M., Zhao, H.-J., Cheung, C.-Y., Ng, F., Huang, J.-D., and Zheng, B.-J. (2015). An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus. Emerging Microbes Infections 4, e22. Li, Q., Zhou, L., Zhou, M., Chen, Z., Li, F., Wu, H., Xiang, N., Chen, E., Tang, F., Wang, D., et al. (2014). Epidemiology of human infections with avian influenza A(H7N9) virus in China. The New England Journal of Medicine 370, 520-532. Li, S. L., Liang, S. J., Guo, N., Wu, A. M., and Fujita-Yamaguchi, Y. (2000). Single-chain antibodies against human insulin-like growth factor I receptor: expression, purification, and effect on tumor growth. Cancer Immunology, Immunotherapy : CII 49, 243-252. Lima, A. B., Macedo, L. T., and Sasse, A. D. (2011). Addition of bevacizumab to chemotherapy in advanced non-small cell lung cancer: a systematic review and meta-analysis. PLOS ONE 6, e22681. Liu, Y., Paquette, S. G., Zhang, L., Leon, A. J., Liu, W., Xiuming, W., Huang, L., Wu, S., Lin, P., Chen, W., et al. (2015). The third wave: H7N9 endemic reassortant viruses and patient clusters. Journal of Infection in Developing Countries 9, 122-127. Loregian, A., Mercorelli, B., Nannetti, G., Compagnin, C., and Palu, G. (2014). Antiviral strategies against influenza virus: towards new therapeutic approaches. Cellular and Molecular Life Sciences : CMLS 71, 3659-3683. Lu, J., Wu, J., Guan, D., Yi, L., Zeng, X., Zou, L., Liang, L., Ni, H., Zhang, X., Lin, J., and Ke, C. (2014). Genetic changes of reemerged influenza A(H7N9) viruses, China. Emerging Infectious Diseases 20, 1582-1583. Mallajosyula, V., Citron, M., Ferrara, F., Lu, X., Callahan, C., Heidecker, G. J., Sarma, S. P., Flynn, J. A., Temperton, N. J., Liang, X., and Varadarajan, R. (2014). Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proceedings of the National Academy of Sciences of the United States of America 111, 10. Mallery, D. L., McEwan, W. A., Bidgood, S. R., Towers, G. J., Johnson, C. M., and James, L. C. (2010). Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proceedings of the National Academy of Sciences of the United States of America 107, 19985-19990. Marasco, W. A., and Sui, J. (2007). The growth and potential of human antiviral monoclonal antibody therapeutics. Nature Biotechnology 25, 1421-1434. Millman, A. J., Havers, F., Iuliano, A. D., Davis, C. T., Sar, B., Sovann, L., Chin, S., Corwin, A. L., Vongphrachanh, P., Douangngeun, B., et al. (2015). Detecting spread of avian influenza A(H7N9) virus beyond China. Emerging Infectious Diseases 21, 741-749. Mok, C. K., Lee, H. H., Lestra, M., Nicholls, J. M., Chan, M. C., Sia, S. F., Zhu, H., Poon, L. L., Guan, Y., and Peiris, J. S. (2014). Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. Journal of Virology 88, 3568-3576. Molesti, E., Cattoli, G., Ferrara, F., Böttcher-Friebertshäuser, E., Terregino, C., and Temperton, N. (2013). The production and development of H7 Influenza virus pseudotypes for the study of humoral responses against avian viruses. Journal of Molecular and Genetic Medicine 7, 6. Pielak, R. M., Schnell, J. R., and Chou, J. J. (2009). Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proceedings of the National Academy of Sciences of the United States of America 106, 7379-7384. Rogers, G. N., Paulson, J. C., Daniels, R. S., Skehel, J. J., Wilson, I. A., and Wiley, D. C. (1983). Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304, 76-78. Roopenian, D. C., and Akilesh, S. (2007). FcRn: the neonatal Fc receptor comes of age. Nature Reviews Immunology 7, 715-725. Rowe, T., Abernathy, R. A., Hu-Primmer, J., Thompson, W. W., Lu, X., Lim, W., Fukuda, K., Cox, N. J., and Katz, J. M. (1999). Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. Journal of Clinical Microbiology 37, 937-943. Rumschlag-Booms, E., and Rong, L. (2013). Influenza a virus entry: implications in virulence and future therapeutics. Advances in Virology 2013, 121924. Sanz, L., Blanco, B., and Álvarez-Vallina, L. (2004). Antibodies and gene therapy: teaching old ‘magic bullets’ new tricks. Trends in Immunology 25, 85-91. Schoonjans, R., Willems, A., Schoonooghe, S., Fiers, W., Grooten, J., and Mertens, N. (2000). Fab chains as an efficient heterodimerization scaffold for the production of recombinant bispecific and trispecific antibody derivatives. Journal of Immunology (Baltimore, Md : 1950) 165, 7050-7057. Shi, J., Deng, G., Liu, P., Zhou, J., Guan, L., Li, W., Li, X., Guo, J., Wang, G., Fan, J., et al. (2013). Isolation and characterization of H7N9 viruses from live poultry markets - Implication of the source of current H7N9 infection in humans. Chinese Science Bulletin. Smith, J. H., Nagy, T., Barber, J., Brooks, P., Tompkins, S. M., and Tripp, R. A. (2011). Aerosol inoculation with a sub-lethal influenza virus leads to exacerbated morbidity and pulmonary disease pathogenesis. Viral Immunology 24, 131-142. Smith, K., Garman, L., Wrammert, J., Zheng, N. Y., Capra, J. D., Ahmed, R., and Wilson, P. C. (2009). Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nature Protocols 4, 372-384. Smith, S. A., Zhou, Y., Olivarez, N. P., Broadwater, A. H., de Silva, A. M., and Crowe, J. E., Jr. (2012). Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection. Journal of Virology 86, 2665-2675. Subbarao, K., and Joseph, T. (2007). Scientific barriers to developing vaccines against avian influenza viruses. Nature Reviews Immunology 7, 267-278. Sui, J., Hwang, W. C., Perez, S., Wei, G., Aird, D., Chen, L.-m., Santelli, E., Stec, B., Cadwell, G., Ali, M., et al. (2009). Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature Structural Molecular Biology 16, 265-273. Tahtis, K., Lee, F.-T., Smyth, F. E., Power, B. E., Renner, C., Brechbiel, M. W., Old, L. J., Hudson, P. J., and Scott, A. M. (2001). Biodistribution properties of 111Indium-labeled C-functionalized trans-cyclohexyl diethylenetriaminepentaacetic acid humanized 3S193 diabody and F(ab')2 constructs in a breast carcinoma xenograft model. Clinical Cancer Research 7, 1061-1072. Topp, M. S., Gokbuget, N., Stein, A. S., Zugmaier, G., O'Brien, S., Bargou, R. C., Dombret, H., Fielding, A. K., Heffner, L., Larson, R. A., et al. (2015). Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. The Lancet Oncology 16, 57-66. Traggiai, E., Becker, S., Subbarao, K., Kolesnikova, L., Uematsu, Y., Gismondo, M. R., Murphy, B. R., Rappuoli, R., and Lanzavecchia, A. (2004). An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10, 871-875. Wang, X., Katayama, A., Wang, Y., Yu, L., Favoino, E., Sakakura, K., Favole, A., Tsuchikawa, T., Silver, S., Watkins, S. C., et al. (2011). Functional characterization of an scFv-Fc antibody that immunotherapeutically targets the common cancer cell surface proteoglycan CSPG4. Cancer Research 71, 7410-7422. Wu, Y., Bi, Y., Vavricka, C. J., Sun, X., Zhang, Y., Gao, F., Zhao, M., Xiao, H., Qin, C., He, J., et al. (2013). Characterization of two distinct neuraminidases from avian-origin human-infecting H7N9 influenza viruses. Cell Res 23, 1347-1355. Wu, Y., Wu, Y., Tefsen, B., Shi, Y., and Gao, G. F. (2014). Bat-derived influenza-like viruses H17N10 and H18N11. Trends in Microbiology 22, 183-191. Yen, H. L., Zhou, J., Choy, K. T., Sia, S. F., Teng, O., Ng, I. H., Fang, V. J., Hu, Y., Wang, W., Cowling, B. J., et al. (2014). The R292K mutation that confers resistance to neuraminidase inhibitors leads to competitive fitness loss of A/Shanghai/1/2013 (H7N9) influenza virus in ferrets. The Journal of Infectious Diseases 210, 1900-1908. Zhirnov, O. P., Klenk, H. D., and Wright, P. F. (2011). Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral Research 92, 27-36. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4414 | - |
| dc.description.abstract | H7N9新型禽流感病毒在2013年春天自中國爆發感染人類病例,並向鄰國蔓延,包括台灣。截至2015年6月為止,總感染人數累積高達653人,其中227人死亡,死亡率為37%。H7N9屬於A型流感病毒,為RNA單股病毒,包含了8個基因,可轉譯出11種病毒蛋白,其中包括了表現在病毒膜上的兩種主要蛋白,即血球凝集素(hemagglutinin)以及神經氨酸酶(neuraminidase)。根據這兩種蛋白的基因序列及其抗原特型不同,可將A型流感病毒進一步分成兩大類,而H7N9病毒屬於第二群。目前對於H7N9的治療方式,仍是在感染初期給予神經氨酸酶抑制劑。而季節性流感疫苗所產生的中和性抗體,對於H7N9病毒的中和效果相當有限。此外,病人感染H7N9後病情惡化相當迅速,因此需要更有效率的治療方式。目前針對流感病毒最有效且最有潛力的治療方法之一便是人類治療性中和抗體,不僅可以單獨使用,亦可與神經氨酸酶抑制劑併用來達到加成性治療效果,這在感染後尚未產生H7N9病毒中和抗體前,尤其重要。 在2015年4月9日,一名感染H7N9之53歲台灣男性病患,從蘇州返回台灣之後,出現呼吸困難以及發燒的感染症狀。於4月20日到台大醫院就醫並住院接受治療之後康復出院。台大在與生物技術開發中心合作之下,我們分離此病人血液中的記憶B淋巴球和漿細胞,克隆它們的抗體基因和表達純化抗體。在約80支克隆的H7N9單株抗體中,有三支對於H7N9病毒有顯著的中和能力,且各有一支分別對H1N1及H3N2有交叉中和效果。因此,我的研究目地是針對這三支抗體的作用和抗原決定位點鑑定做了進一步的分析,以及建立偽病毒系統進行功能性探討。我們首先克隆和表達全長以及三聚體的H7,轉殖細胞後用流式細胞儀及免疫螢光染色來檢測抗體辨認程度。也表達和純化H7全長、片段和三聚體重組蛋白供酵素免疫分析法來判斷抗體對H7的抗原辨認位置。另外,建立抗體中和病毒類顆粒試驗,來鑑定抗體廣效中和能力,並希望能應用到動物實驗。總結,我們利用單B淋巴球抗體基因克隆方式成功篩選到H7中和抗體,可供做流感病毒治療性中和抗體。這種方法也可應用於其他種類病毒,透過給予抗體被動免疫的方式,提高防疫效果。 | zh_TW |
| dc.description.abstract | H7N9 is an emerging avian influenza A virus that can infect humans. As of June, a total of 653 human infections, resulting in 227 deaths, have occurred since March 2013. Influenza A virus is a negative-sense, single-stranded, segmented RNA virus, of which genome encodes 11 viral proteins, including hemagglutinin (HA) and neuraminidase (NA). The influenza A viruses can be further divided into two groups based on their genetic and antigenic differences; accordingly H7N9 belongs to the group 2. As other influenza viruses current recommended anti-H7N9 therapy relies on early treatment with NA inhibitors. In spite of prior seasonal flu vaccination the neutralizing antibodies (Abs) elicited in people offer little cross-protection against H7N9. Moreover, the often fast and deleterious clinical course of patients warrants more effective therapeutics against H7N9. One potentially effective therapy is to utilize therapeutic human neutralizing Abs, which can not only synergize the efficacy of NA inhibitors but surrogate the needed humoral immunity during the window when the host has not yet developed anti-influenza neutralizing Abs. For this, in collaboration with the Development Center for Biotechnology we have generated human anti-H7N9 neutralizing Abs by single B-cell cloning of Ab genes from the circulating plasmablasts of an infected 53-year-old male. He returned from Suchow, Jiangsu Province on April 9 in 2013 and later admitted to NTUH on April 20 due to progressive dyspnea for four days and prior fever for three days. So for we have cloned some 80 human monoclonal Abs, at least three of which showed significant neutralization specific to H7N9 as well as cross-reactive to H1N1 and H3N2 viruses, respectively. The reactivity of these neutralizing Abs was further investigated using full-length and trimeric H7-transfected cells by flow cytometry and immunofluorescence. To identify the residues where these human neutralizing Abs recognized on HA, we performed epitope mapping using the full-length and domain-specific recombinant proteins of H7 by ELISA. Moreover, we developed a WSN (A/WSN/1933) strain-based pseudovirus and reassortant assay to examine the functionality of strain-specific vs. broadly neutralizing H7 mAb using cytopathic plaque detection and reporter gene activity as readouts. Future directions include Ab engineering of H7 mAb for optimization and in vivo experiments for evaluation of Ab efficacy. In summary, our results demonstrate a feasible approach to develop an effective therapeutic against the emerging zoonotic influenza virus and perhaps other viruses through passive immunity. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:42:08Z (GMT). No. of bitstreams: 1 ntu-104-R02443014-1.pdf: 3872080 bytes, checksum: 8b0b65963ab52cc04e60cdce2a6d38f0 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試審定書……………………………………………………………………………………i 致謝 ………………………………………………………………………………ii 中文摘要 ……………………………………………………………………………….iii Abstract ……………………………………………………………………………….v List of Figures ……………………………………………………………………….ix List of Tables ………………………………………………………………………..x List of Abbreviations ……………………………………………………………….xi List of Appendix ……………………………………………………………….…...xiii Chapter 1. Introduction……………………………………………………………….1 1.1 Antibody ……………………………………………………………………………2 1.1.1 The classes and structure of antibodies……………………………………..2 1.1.2 The functions of antibodies…………………………………………………....6 1.1.3 Monoclonal antibody-based therapeutics in the clinic………………………7 1.2 Influenza virus…………………………………………………………………….8 1.2.1 The genome composition of influenza virus………………………………….8 1.2.2 The epidemics of influenza virus…………………………………………….10 1.2.3 Antiviral strategy of influenza virus by inhibition of entry………………..11 1.2.4 Antiviral strategy of influenza virus by inhibition of replication…………..12 1.2.5 Antiviral strategy of influenza virus by inhibition of releasing……………13 1.2.6 The prevention of influenza virus…………………………………………… 14 1.3 Anti-viral therapeutic neutralizing antibody……………………………………15 1.3.1 The effect of anti-viral therapeutic neutralizing antibody…………………15 1.3.2 The production of therapeutic neutralizing antibody against viral infection……………………………………………………………………………....16 1.3.3 Therapeutic neutralizing antibodies against influenza virus………………18 1.4 Characterization of the H7N9 viruses……………………………………….…22 1.4.1 Three waves of H7N9 outbreak………………………………………...……22 1.4.2 Characterization of the H7N9 viruses……………………………….………23 1.4.3 Clinical presentations and therapeutic effects……………………………..23 1.5 Motivation…………………………………………………………………………25 Chapter 2. Materials and Methods…………………………………………………27 2.1 Reagents and antibodies……………………………………………………….28 2.2 Viruses and cells………………………………………………………………..28 2.2.1 HEK293T cells………………………………………………………………….28 2.2.2 A549 cells………………………………………………………………………29 2.2.3 MDCK cells…………………………………………………………………….29 2.2.4 WSN-based reassortant influenza virus…………………………………….29 2.3 Lymphocyte sorting from peripheral blood of the NTUH H7N9 patient……30 2.4 Single B-cell RT-PCR cloning of Ig genes……………………………………30 2.5 Construction of plasmids………………………………………………………31 2.5.1 pSecTag2-H1, H3, H5, H7 constructs……………………………………31 2.5.2 pFlu-HA-KpnI-XhoI……………………………………………………………32 2.6 Cell transfection…………………………………………………………………32 2.7 Western Blot……………………………………………………………………33 2.8 ELISA……………………………………………………………………………34 2.9 Antibody staining and flow cytometric analysis……………………………35 2.10 Immunofluorescence staining………………………………………………36 2.11 Plaque assay…………………………………………………………………36 Chapter 3. Results…………………………………………………………………38 3.1 Cloning of H7N9 neutralizing antibody genes from the patient’s plasmablasts…………………………………………………………………………39 3.2 H7N9 neutralizing mAbs were able to bind to H7 on HEK293T and A549 cells transfected with monomeric H7………………………………………………………………………………………39 3.3 Expression of trimeric H7 hemagglutinin in HEK293T cells and A549 cells respectively for binding assays of human anti-H7 monoclonal antibodies……41 3.4 Conversion of the whole IgG1 human anti-H7 monoclonal antibody to scFv-Fc format……………………………………………………………………………………42 3.5 H7 domain-specific constructs for epitope mapping…………………………43 3.6 Generation of equivalent HA domain constructs of other subtypes…………45 3.7 Generation of WSN-based reassortant influenza viruses……………………46 Chapter 4. Discussions………………………………………………………………49 Figures …………………………………………………………………………61 Appendix…………………………………………………………………………86 References……………………………………………………………………109 | |
| dc.language.iso | en | |
| dc.subject | 人源中和抗體 | zh_TW |
| dc.subject | H7N9禽流感病毒 | zh_TW |
| dc.subject | H7N9 Influenza Virus | en |
| dc.subject | Therapeutic Human Neutralizing Antibodies | en |
| dc.title | 治療性H7N9禽流感病毒人源中和抗體之製作與驗證 | zh_TW |
| dc.title | Generation and Characterization of Therapeutic Human Neutralizing Antibodies Against H7N9 Influenza Virus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳漢忠,王金和,王萬波 | |
| dc.subject.keyword | H7N9禽流感病毒,人源中和抗體, | zh_TW |
| dc.subject.keyword | H7N9 Influenza Virus,Therapeutic Human Neutralizing Antibodies, | en |
| dc.relation.page | 118 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 3.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
