請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44148完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李篤中(Duu-Jong Lee) | |
| dc.contributor.author | Jung Tai | en |
| dc.contributor.author | 戴榮 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:42:06Z | - |
| dc.date.available | 2010-08-14 | |
| dc.date.copyright | 2009-08-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-11 | |
| dc.identifier.citation | Ali, S., Roberto, F., La fuente, Dona, A.C. (1998) , Meta pathway degradation of phenolics by thermophilic Bacilli. Enzyme and Microbial Technology 23, 462-468.
Al-Turki, A.I. (2009) , Microbial Polycyclic Aromatic Hydrocarbons Degradation in Soil. Research Journal of Environmental Toxicology 3, 1-8. APHA. (1998) , Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC. Arora, D.S., Sandhu, D.K. (1984) , Laccase production and wood degradation by Trametes hirsuta. Folia Mierobiol 29, 310-315. Asada, Y., Tokumoto, M., Aihara, Y., Oku, M., Ishimi, K., Wakayama, T., Miyake, J., Tomiyama, M., Kohno, H. (2006) , Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. International Journal of Hydrogen Energy 31, 1509–1513 An, H., Park, H., Kim, E. (2001) , Cloning and expression of thermophilic catechol 1,2 dioxygenase gene (cat A) from Streptomyces setonii. FEMS Microbiology Letters 195, 17-22. Baiocco, P., Barreca, A.M., Fabbrini, M., Galli, C., Gentili, P. (2003) , Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase–mediator systems. Organic and Biomolecular Chemistry 1, 191-197. Bajaj, M., Gallert, C., Winter, J. (2009) , Treatment of phenolic wastewater in an anaerobic fixed bed reactor (AFBR)—Recovery after shock loading. Journal of Hazardous Materials 162, 1330–1339. Bakker, G. (1977) , Anaerobic degradation of aromatic compounds in the presence of nitrate . FEMS Microbiology Letters 1, 103-108. Beneman, J. (1996) , Hydrogen biotechnology: Progress and prospects. Natyre Biotechnology 14 , 1101-1103. Benemann, J.R. (1999) , The technology of biohydroge. Biohydrogen, 19-30. Berry, D.F., Francis, A.J., Bollag, J.M. (1987) , Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Review 51, 43–49. Bollag, J.M., Shuttle, W.K.N., Anderson, D.H. (1988) , Laccase mediated detoxification of phenolic contaminants. Applied and Environmental Microbiology 54, 3086-3091. Burton, S.G., John, R.D., Perry, T.K., Peter, D.R. (1993) , Activity of mushroom polyphenol oxidase in organic medium. Biotechnology and Bioengineering 42, 938-944. Chen, C.Y., Yang, M.H., Yeh, K.L., Liu, C.H., Chang, J.S. (2008) , Biohydrogen production using sequential two-stage dark and fermentation processes. International Journal of Hydrogen Energy 33, 4755-4762. Claus, H. (2004) , Laccases: structure, reactions, distribution. Micron 35, 93-96. Crabbendam, P.M., Neijssel, O.M., Tempest, D.W. (1985) , Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture. Archives of Microbiology 142, 375-382. Dabrock, B., Bahl, H., Gottschalk, G. (1992) , Parameters affecting solvent production by Clostridium pasteurianum. Applied and Environmental Microbiology 58, 1233-1239. Edwards, W., Bowness, R., Leukes, W.D., Jacobs, E.P., Sanderson, R., Rose, P.D, Burton, S.G. (1999) , A capillary membrane reactor using immobilized polyphenol oxidase for the removal of phenols from industrial effluents. Enzyme and Microbial Technology 24, 209-217. Evans, W.C. (1977) , Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature 270, 17-22. Evans, W.C. (1988) , Anaerobic degradation of aromatic compounds. Annual Review of Microbiology 42, 289-317. Farooqi, I.H., Basheer, F., Ahmad, T. (2008) , Studies on biodegradation of phenols and m-cresols by upflow anaerobic sludge blanket and aerobic swquential batch reactor. Global NEST Journal 10, 39-46. Garcia, J.L., Patel, B.K.C., Ollivier B. (2000) , Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6, 208-226. Garzillo, A.M.V., Colao, M.C., Caruso, C., Caporate, C., Celletti, D., Buonocore, V. (1998) , Laccase from the white rot fungus Trametes trogii. Applied microbiology and biotechnology 49, 545-551. Ghioureliotis, M., Nicell, J. (1999) , Assessment of soluble products of peroxidase catalyzed polymerisation of aqueous phenol. Enzyme and Microbial Technology 25, 185-193. Giallo, J., Gaudin, C., Belaich, J.P., Petitdemange, E., Caillet-Mangin, F. (1983) , Metabolism of Glucose and Cellobiose by Cellulolytic Mesophilic Clostridium sp. Strain H10. Applied and Environmental Microbiology 45, 843-849. Gurujeyalekshmi, G., Oreil, P. (1988) , Isolation of phenol degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase. Applied and Environmental Microbiology 55, 500-502. He, Z., Wiegel, J. (1995) , Purification and characterization of an oxygen-sensitive reversible 4-hydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. Journal of Bacteriology 178, 3539-3543. Hublik, G., Schinner, F. (2000) , Characterization and immobilization of the laccase from Pleurotus ostreatus and its use for the continuous elimination of phenolic pollutants. Enzyme and Microbial Technology 27, 330- 336. Johjima, T., Ohkuma, M., Kudo, T. (2003) , Isolation and cDNA cloning of novel hydrogen peroxide dependent phenol oxidase from the basidiomycete Termitomyces albuminosus. Applied Microbiology and Biotechnology 64, 220-225. Kadhim, H., Graham, C., Baratt, P., Evane, C.S., Rastall, R.A. (1999) , Removal of phenolic compounds in water using Coriolus versicolor grown on wheat bran. Enzyme and Microbial Technology 24, 303-307. Kawai, S., Umezawa, T., Shimada, M., Higuchi, T. (1988) , Aromatic ring cleavage of 4,6-di(tert-butyl)guaiacol, a phenolic lignin model compound, by lactase of Coriolus versicolor. FEBS Letters 236, 309-311. King, P.W., Posewitz, M.C., Ghirardi, M.L., Seibert, M. (2006) , Functional Studies of [FeFe] Hydrogenase Maturation in an Escherichia coli Biosynthetic System. Journal of Bacteriology 188, 2163-2172. Kondo, Y., Kameyama, T., Tamiya, N. (1957) , Solubilization of The Particulate Hydrogen. The Journal of Biochemistry 44, 61-63. Kow, Y.W., Burris, R.H. (1984) , Purification and Properties of Membrane-Bound Hydrogenase from Azotobacter vinelandii. Journal of Bacteriology 159, 564-569. Kumar, N., Das, D. (2000) , Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochemistry 35, 589-593. Kunamneni, A., Camarero, S., García-Burgos, C., Plou, F.J., Ballesteros, A., Alcalde, M. (2008) , Engineering and Applications of fungal laccases for organic synthesis. Microbial Cell Factories 7, 32-49. Lay JJ, Lee YJ, Noike T. (1999) , Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research 33, 2579-2586. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) , Protein Measurement with The Folin Phenol Reagent. The Journal of Biological Chemistry 193, 265-275. Lu Y, Zhao HX, Zhang C, Lai QH, Xing XH. (2009) , Perturbation of formate pathway for hydrogen production by expressions of formate hydrogen lyase and its transcriptional activator in wild Enterobacter aerogenes and its mutants. International Journal of Hydrogen Energy 34, 5072-5079. Luke, A.K., Burton, S.G. (2001) , A novel application for Pseudomonas putida progress from batch culture to a membrane bioreactor for the bioremediation of phenols. Enzyme and Microbial Technology 29, 348-356. Lyon, E. J., Shima, S., Boecher, R., Thauer, R.K., Grevels, F.W., Bill, E., Roseboom, W., Albracht, S.P. (2004) , Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur cluster-free hydrogenase H2- forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. Journal of the American Chemical Society 126, 14239–14248. Nair, C.I., Jayachandran, K., Shashidhar, S. (2008) , Biodegradation of phenol. African Journal of Biotechnology 7, 4951-4958. Ng, T.K., ZEIKUS, J.G. (1982) , Differential Metabolism of Cellobiose and Glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum. Journal of Bacteriology 150, 1391-1399. Okeke, B.C., Paterson, A., Smith, J.E., Watson, C.I.A. (1997) , Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Applied Microbiology and Biotechnology 48, 563-569. Payot, S., Guedon, E., CaiIIiez, C., Gelhaye, E., Petitdemange, H. (1998) , Metabolism of cellobiose by Clostridiurn cellulolyticurn growing in continuous culture: evidence for decreased NADH reoxidation as a factor limiting growth. Microbiology 144, 375-384. Peters, J.W., Lanzilotta, W.N., Lemon, B.J., Seefeldt, L.C. (1998) , X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853–1858. Rachman, M.A., Furutani, Y., Nakashimada, Y., Kakizono, T., Nishio, N. (1997) , Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. Journal of Fermentation and Bioengineering 83, 358-363. Ramachandran, U., Wrana, N., Cicek, N., Sparling, R., Levin, D.B. (2008) , Hydrogen production and end-product synthesis patterns by Clostridium termitidis strain CT1112 in batch fermentation cultures with cellobiose or α-cellulose. International Journal of Hydrogen Energy 33, 7006-7012. Ride, J.P. (1980) , Physiological plant pathology 16, 187-196. Robert K., Scopes. (1994) , Protein Purification:Principles and Practice. Robles, A., Lucas, R., Cienfueges, A.D., Galvez, A. (2000) , Phenol-oxidase (laccase) activity in strains of the hyphomycete Chalara paradoxa isolated from olive mill wastewater disposal ponds. Enzyme and Microbial Technology 26, 484-490. Sakurai, A., Toyoda, S., Sakakibar. (2001) , Removal of bisphenol A by polymerization and precipitation method using Coprinus cinereus peroxidase. Biotechnology Letters 23, 995-978. Sasikala, K., Ramana, C.V. (1991) , Photoproduction of hydrogen from waste water of a lactic acid fermentation plant by a purple non-sulfur photosynthetic bacterium, Rhodobacter sphaeroides O.U.001. Indian Journal of Experimental Biology 29, 74–75. Sawers GR. (2005) , Formate and role of hydrogen production in Escherichia coli. Biochemical Society Transactions 33, 42- 46. Schneider, P., Michael, B.C., Kristine, M., Torben, Lars, K.S., Peter, R.O., Kiberly, M.B., Stephen, H.B., Feng, X. (1999) , Characterization of a Coprinus cinereus laccase. Enzyme and Microbial Technology 25, 502-508. Setti, L., Silvia, g., Giovanni, S., Pier, G.P. (1999) , Laccase catalyzed-oxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols. Enzyme and Microbial Technology 25, 285-289. Shashirekha, S., Uma, L., Subramanian, G. (1997) , Phenol Degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. Journal of industrial microbiology & biotechnology 19, 130-133. Steffens, L.J.C. (2002) , Over expression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215, 239-247. Strobel, H.J., Caldwell, F.C., Dawson, K.A. (1995) , Carbohydrate Transport by the Anaerobic Thermophile Clostridium thermocellum LQRI. Applied and Environmental Microbiology 61, 4012-4015. Solomon, E.I., Sundaram, U.M., Machonkin, T.E. (1996) , Multicopper oxidases and oxygenases. Chemical Reviews 96, 2563–2605. Sunita, M., Mitra, C.K. (1993) , Photoproduction of hydrogen by photosynthetic bacteria from sewage and wastewater. Journal of Biosciences 18, 155–160. Tay, J.H., He, Y.X., Yan, Y.G. (2001) , Improved anaerobic degradation of phenol with supplemental glucose. Journal of Environmental Engineering 127, 38-45. Thauer, R., Schlegel, H.G. and Barnea, J., Erich Goltze, Gottingen. (1976) , Limitation of microbial hydrogen formation via fermentation. Microbial Energy Conversion, 201-294. Thurston, C.F. (1994) , The structure and function of fungal laccases. Microbiology 140, 19–26. Turkarslan, S., Yiit, D.Ö., Aslan, K., Eroglu, I., Gunduz, U. (1998) , Photobiological hydrogen production by Rhodobacter sphaeroides O.U.001 by utilization of waste water from milk industry. In: Zaborsky OR, editor. Biohydrogen New York: Plenum Press, 151–156. Tschech, A ., Fuchs, G. (1987) , Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying Pseudomonas. Archives of Microbiology 148, 213- 217 Volbeda, A., Charon, M.H., Piras, C., Hatchikian, E.C., Frey, M., Fontecilla-Camps, J.C. (1995) , Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580–587. Wang, W., Jin, B., Mulcahy, D. (2008) , Impact of carbon and nitrogen sources on hydrogen production by a newly isolated Clostridium butyricum W5. International Journal of Hydrogen Energy 33, 4998-5005. Willis, A.T. (1991) , Anaerobic culture methods. Anaerobic Microbiology:A Practical Approach 1, 1-12. Wu, Y., Keith, F.T., Nihar, B., Jatinder, K.B. (1998) , A model for the protective effect of additives on the activity of horseradish peroxidase in the removal of phenol. Enzyme and microbial technology 22, 315-322. Xia, Z., Yoshida, T., Fonuoku, M. (2003) , Enzymatic degradation of highly phenolic lignin based polymers (lignophenols). European polymer journal 39, 909-914. Xiangchun, Q., Zhang, Y.M. (2003) , Biodegradation of 2,4 dichlorophenol in an airlift honeycomb like ceramic reactor. Process Biochemistry 38, 1545-1551. Yetis, M., Gunduz, U., Eroglu, I., Turker L. (2000) , Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U.001. International Journal of Hydrogen Energy 25, 1035-1041. Yokoi, H., Maeda, Y., Hirose, J., Hayashi, S., Takasaki, Y. (1997) , H2 production by immobilized cells of Clostridium butyricum on porous glass beads. Biotechnology Techniques 11, 431-433. Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S., Takasaki, Y. (2001) , Microbial hydrogen production from sweet potato starch residue. Journal of Bioscience and Bioengineering 91, 58-63. Zahida Deva, W., Gulam, M., Peerzuda, M.D., Diagambar, V.B. (1998) , Oxidation of phenols by horseradish peroxidase and lactoperoxidase compound II--kinetic considerations. Indian Journal of Biochemistry & Biophysics 35, 353-357. Zhang, X., Morgan, T.V., Wiegel, J. (1990) , Conversion of 13C-1phenol to 13C-4 benzoate, an intermediate in the anaerobic degradation of chlorophenols. FEMS Letters 67, 63-66. Zhu, H., Suzuki, T., Tsygankov, A.A., Asada, Y., Miyake, J. (1999) , Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. International Journal of Hydrogen Energy 24, 305–10. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44148 | - |
| dc.description.abstract | 本研究著重於使用Clostridium butyricum自含酚廢水中產氫。使用葡萄糖 (glucose) 和纖維二糖 (cellobiose) 為合成廢水中之主要碳源並且觀察其在含酚廢水中對於酚的耐受性和產氫能力。
在批次實驗中,發現C.butyricum在毒性環境中也能夠產生氫氣。氫氣產率對於以葡萄糖和纖維二糖為碳源分別為1.46 mole H2/mole glucose和2.11 mole H2/mole cellobiose而且在糖類發酵降解的過程中也觀察到酚有被降解掉。 在以cellobiose為碳源的批次實驗中發現最高的氫氣產率是發生在酚濃度為600 ppm的時候而不是無酚的環境,而漆氧化酶 (laccase) 的活性分佈與氫氣產率相同,在600 ppm時候最高,由於酚被漆氧化酶轉化成丙酮酸 (pyruvate) ,其在繼續被CoA轉化成acetyl-CoA時會釋放出氫氣,而較多的酚被轉化則在變成acetyl-CoA的過程中有較多的氫氣被釋放,這或許說明了所以在600 ppm時候氫氣產率最高的原因。而漆氧化酶的活性隨著酚濃度的更提高由於毒性對於C.butyricm的抑制造成活性開始下降。氫化酵素活性則是隨著酚濃度的提高而減少,在無酚濃度時的活性是最高的,但是若在培養液中有酚的存在則減少,在全部的產氫速度與氫化酵素的產速度中有一段差距,這段可能是由細胞膜上的氫化酵素 (membrane-bound hydrogenase) 所作用,而當酚濃度的提高,因為毒性對C.butyricum的抑制所以膜上的氫化酵素活性反而漸漸減少。 | zh_TW |
| dc.description.abstract | This thesis focus on the research of producing hydrogen in phenol-containing synthetic wastewater using Clostridium butyricum which has very good ability of hydrogen production by degrading hydrocarbons. And we use glucose and cellobiose as the main carbon source its concentration to culture and observe its resistance to phenol and ability of hydrogen production.
During batch experiment, we discover C.butyricum had bood performace of hydrogen production in toxic surrounding. The highest hydrogen production of C.butyricum is 1.46 mole hydrogen.mole-1 glucose and 2.11 mole hydrogen.mole-1 cellobiose when using glucose and cellobiose as main carbon source. We also found phenol was degraded during glucose and cellobiose fermentation. In cellobiose fermentation batch test, we found C.butyricum can produce higher hydrogen yield in phenol-containing medium than no phenol and the highest hydrogen yield is 2.11 at 600 ppm. The activity of laccase also was highest at 600 ppm. Maybe more phenol was cracked and converted to pyruvate by laccase and pyruvate was converted to acetyl-CoA and released hydrogen. Therefore more hydrogen was produced at 600 ppm phenol concentration. As the phenol concentration over 600 ppm the hydrogen yield began to decrease because high phenol concentration inhibit C.butyricum growth. Hydrogenase activity was decrease as phenol concentration increase. The activity of ydrogenase was highest when no phenol inside and cut down immediately in the presence of phenol. But it had a gap between overall hydrogen production rate and enzymatic hydrogen production rate. The difference maybe from membrane-bound hydrogenase. Membrane-bound hydrogenase activity was low gradually because the inhibition of phenol. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:42:06Z (GMT). No. of bitstreams: 1 ntu-98-R96524056-1.pdf: 1328634 bytes, checksum: 6a83d87ff0d5e823defc352aeb6ebe70 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要.........................................................................................................................I
英文摘要.......................................................................................................................II 目錄..............................................................................................................................III 圖目錄..........................................................................................................................VI 表目錄.......................................................................................................................VIII 第一章 前言................................................................................................................1 第二章 文獻回顧........................................................................................................2 2-1 生質產氫...........................................................................................................2 2-2 產氫之微生物群.................................................................................................4 2-2-1 Clostridium菌屬....................................................................................6 2-2-2 氫化酵素與漆氧化酶...........................................................................7 2-3 影響產氫的因素...............................................................................................11 2-3-1 碳源及氮源.........................................................................................13 2-3-2 酸鹼值(pH值).....................................................................................14 2-3-3 溫度.....................................................................................................15 2-4 酚的生物降解...................................................................................................15 第三章 實驗材料與方法..........................................................................................20 3-1 實驗材料...........................................................................................................20 3-1-1 微生物.................................................................................................20 3-1-2 培養基組成.........................................................................................20 3-2 實驗設計...........................................................................................................21 3-2-1 C.butyricum菌種保存.........................................................................21 3-2-2 厭氧消化實驗.....................................................................................22 3-3 實驗方法...........................................................................................................23 3-3-1 還原糖測定.........................................................................................23 3-3-2 總糖測定.............................................................................................24 3-3-3 蛋白質測定.........................................................................................25 3-3-4 生物產氣及氫氣組成測定.................................................................27 3-3-5 揮發性脂肪酸 (VFA) 測定...............................................................29 3-3-6 C.butyricum菌量分析.........................................................................29 3-3-7 化學需氧量 (Chemical Oxygen Demend, COD) 測定.....................30 3-3-8 酚測定.................................................................................................30 3-3-9 酸鹼值 (pH) 測定..............................................................................31 3-3-10 DNA萃取..........................................................................................31 3-3-11 聚合酶連鎖反應...............................................................................32 3-3-12 酵素測定...........................................................................................33 3-3-12-1 酵素活性定義...............................................34 3-3-12-2 氫化酵素萃取...............................................35 3-3-12-2-1 胞內氫化酵素萃取…………………………………...35 3-3-12-2-2 胞上氫化酵素萃取…………………………………...36 3-3-12-3 氫化酵素活性分析.......................................38 3-3-12-4 漆氧化酶萃取............................................39 3-3-12-5 漆氧化酶活性分析.......................................40 3-3-13 碳源測試...........................................................................................41 第四章 結果與討論..................................................................................................42 4-1 菌種鑑定...........................................................................................................42 4-2 碳源測試...........................................................................................................43 4-3 以葡萄糖為碳源在不同酚濃度中的產氫測試...............................................47 4-3-1 不同酚濃度中葡萄糖、pH和菌體濃度變化趨勢..............................47 4-3-2 氫氣產率、產氫速率與酚的生物降解.......................................52 4-3-3 代謝物與化學需氧量.........................................................................54 4-4 以纖維二糖 (Cellobiose) 為碳源並在不同酚濃度中的產氫測試...............58 4-4-1 纖維二糖的水解、pH值變化及生物產氣..........................................58 4-4-2 最大產氫量、產氫速度、氫氣產率與化學需氧量.............................63 4-4-3 揮發性脂肪酸、酵素作用、產氫機制與酚降解…….........................67 4-4-4 產氫機制.............................................................................................74 第五章 結論..............................................................................................................76 第六章 參考文獻......................................................................................................77 圖目錄 圖2-1 有機物厭氧代謝示意圖................................................................................3 圖2-2 Clostridium butyricum厭氧發酵代謝途徑…...............................................7 圖2-3 漆氧化酶對酚類化合物的反應機制............................................................8 圖2-4 中間介質與漆氧化酶的作用機制................................................................9 圖2-5 Clostridium屬的代謝酚途徑......................................................................16 圖2-6 脫硝細菌之酚厭氧代謝途徑......................................................................17 圖2-7 benzoic acid降解途徑..................................................................................18 圖2-8 甲烷化方式之酚厭氧代謝..........................................................................19 圖3-1 C.butyricum的TEM影像............................................................................20 圖3-2 125 ml血清瓶照..........................................................................................22 圖3-3 以葡萄醣為基質,DNSA法測得之還原醣標準曲線.................................24 圖3-4 以纖維二榶為基質,Anthrone法所測得之總糖標準曲線........................25 圖3-5 以BSA為標準,Lowry法測得之蛋白質標準曲線....................................27 圖3-6 以GC量測之氫氣檢量線............................................................................28 圖3-7 細菌生長階段和收集細胞萃取酵素最好時機..........................................34 圖3-8 硫酸銨飽和濃度對於蛋白質析出之影響..................................................36 圖4-1 經DNA萃取,PCR放後之電泳結果..........................................................42 圖4-2 EcoPlate之碳源分佈...................................................................................45 圖4-3 在37℃、150 rpm、葡萄糖為碳源之不同酚濃度的葡萄糖變化趨勢........49 圖4-4 在37℃、150 rpm、葡萄糖為碳源之不同酚濃度的pH變化圖..................50 圖4-5 在37℃、150 rpm、葡萄糖為碳源之不同酚濃度的菌體濃度變化............51 圖4-6 在37℃、150 rpm、葡萄糖為碳源之不同酚濃度C.butyricum的產氫速率圖..............................................................................................................53 圖4-7 在37℃、150 rpm、葡萄糖為碳源之不同酚濃度C.butyricum的氫氣產率圖..............................................................................................................53 圖4-8 在37℃、150 rpm、葡萄糖為碳源不同時間點之酚濃度化........................54 圖4-9 在37℃、150 rpm、葡萄糖為碳源之不同酚濃度COD變化.......................56 圖4-10 在37℃、150 rpm、不同酚濃度之纖維二糖水圖........................................59 圖4-11 在37℃、150 rpm、不同酚濃度之纖維二糖水解程度................................60 圖4-12 在37℃、150 rpm、不同酚濃度之pH值變化趨勢......................................61 圖4-13 在37℃、150 rpm、不同酚濃度之生物產氣量 (biogas)圖.........................62 圖4-14 在37℃、150 rpm、不同酚濃度之氫氣最大產量........................................63 圖4-15 在37℃、150 rpm、不同酚濃度之產氫速度................................................64 圖4-16 在37℃、150 rpm、不同酚濃度之氫氣產率................................................64 圖4-17 在37℃、150 rpm、不同酚濃度之COD圖...................................................66 圖4-18(a) 在37℃、不同酚濃度之氫氣產率氫化酵素氧化路徑活性...................67 圖4-18(b) 胞內 (Kameyama et al. 1957) 與胞上 (Schink et al. 1979) 氫化酵素萃取法所作之氫化酵素還原路徑活性……………………….……….68 圖4-18(c) 胞內與胞上 (Kow et al. 1984) 氫化酵素萃取法所作之氫化酵素還原路徑活性………………………………………………………………..68 圖4-19 在37℃、150 rpm之酚代謝圖......................................................................71 圖4-20 在37℃、不同酚濃度下漆氧化酶活性分佈圖…………………………....72 圖4-21 Membrane-bound hydrogenase電子傳遞產氫示意圖................................74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 廢水 | zh_TW |
| dc.subject | 氫氣 | zh_TW |
| dc.subject | Clostridium butyricum | en |
| dc.subject | wastewater | en |
| dc.subject | hydrogen | en |
| dc.title | 使用Clostridium butyricum自含酚廢水中產氫 | zh_TW |
| dc.title | Producing hydrogen from phenol-containing wastewater using Clostridum butyricum | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張嘉修(Jo-Shu Chang),朱曉萍,黃志彬(Chih-pin Huang),鄭俊華(Joo-Hwa Tay) | |
| dc.subject.keyword | 氫氣,廢水, | zh_TW |
| dc.subject.keyword | Clostridium butyricum,hydrogen,wastewater, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
