請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44132完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃榮山 | |
| dc.contributor.author | Wei-Ting Hung | en |
| dc.contributor.author | 洪維廷 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:41:22Z | - |
| dc.date.available | 2011-08-13 | |
| dc.date.copyright | 2009-08-13 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-11 | |
| dc.identifier.citation | [1] 林輝政, '以海鱺、海藻及濾食性貝類整體育種、飼養、銷售、智慧財產保護平台之海產食物供應鏈研究(第一年期中進度報告) ', 行政院國家科學委員會補助專題研究計畫, 2007.
[2] 冉繁華, 海鱺 Handbook of Cobia, 2007年12月. [3] Yi-Chun Fang, 'The impacts of different immunization strategies of inactivated Photobacterium damselae subsp. piscicida on cobia specific immune response,' Graduate Institute of Zoology, National Taiwan University, 2009. [4] S. Makino and H. Cheun, 'Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores,' Journal of Microbiological Methods, vol. 53, pp. 141-147, 2003. [5] O. Lazcka, F. Campo, and F. Munoz, 'Pathogen detection: A perspective of traditional methods and biosensors,' Biosensors and Bioelectronics, vol. 22, pp. 1205-1217, 2007. [6] K. Hwang, J. Lee, J. Park, D. Yoon, J. Park, and T. Kim, 'In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever,' LAB on a Chip, vol. 4, pp. 547-552, 2004. [7] J. Lee, K. Yoon, K. Hwang, J. Park, S. Ahn, and T. Kim, 'Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein,' Biosensors and Bioelectronics, vol. 20, pp. 269-275, 2004. [8] G. Campbell and R. Mutharasan, 'Detection of Bacillus anthracis spores and a model protein using PEMC sensors in a flow cell at 1mL/min,' Biosensors and Bioelectronics, vol. 22, pp. 78-85, 2006. [9] G. Campbell, J. Uknalis, S. Tu, and R. Mutharasan, 'Detect of Escherichia coli O157: H7 in ground beef samples using piezoelectric excited millimeter-sized cantilever (PEMC) sensors,' Biosensors and Bioelectronics, vol. 22, pp. 1296-1302, 2007. [10] H. Butt, 'A sensitive method to measure changes in the surface stress of solids,' Journal of Colloid and Interface Science, vol. 180, pp. 251-260, 1996. [11] P. Skottrup, M. Nicolaisen, and A. Justesen, 'Towards on-site pathogen detection using antibody-based sensors,' Biosensors and Bioelectronics, vol. 24, pp. 339-348, 2008. [12] 黃榮章, '奈米力學建構之感測器應用於生物分子辨識之研究', 國立台灣大學應用力學研究所博士論文, 民國95年. [13] 蔡土及, 水產細菌學, 第33期, 農復會特刊, 民國六十八年三月. [14] Patrick R. Murray, Ken S. Rosenthal, George S. Kobayashi, Michael A. Pfaller原著, 陳豪勇鑑修, 王聖予, 李淑英, 林智暉編譯, 最新醫用微生物學, 藝軒圖書出版社與Elsevier (Singapore) Pte Ltd.合作出版, 2005. [15] Evaluations and Standards Laboratory, Centre for Infections, 'Identification of pasteurella species and morphologically similar bacteria,' 2007. [16] R. Berger, E. Delamarche, H. Lang, C. Gerber, J. Gimzewski, E. Meyer, and H. Guntherodt, 'Surface stress in the self-assembly of alkanethiols on gold,' Science, vol. 276, pp. 2021-2024, 1997. [17] J. Fritz, M. Baller, H. Lang, H. Rothuizen, P. Vettiger, and E. Meyer, 'Translating biomolecular recognition into nanomechanics,' Science, vol. 288, pp. 316-318, 2000. [18] B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, 'Single cell detection with micromechanical oscillators,' J. Vac. Sci. Technol. B, vol. 19, pp. 2825-2828, 2001. [19] B. Weeks, J. Camarero, A. Noy, A. Miller, J. De Yoreo, and L. Stanker, 'A microcantilever-based pathogen detector,' Scanning, vol. 25, pp.297-299, 2003. [20] T. Burg, M. Godin, S. Knudsen, W. Shen, G. Carlson, J. Foster, K. Babcock, and S. Manalis, 'Weighing of biomolecules, single cells and single nanoparticles in fluid,' Nature, vol. 446, pp. 1066-1069, 2007. [21] Roitt. Brostoff. Male原著, 陳豪勇 鑑修, 王聖予, 陳建和編譯, 免疫學 Immunology, 藝軒圖書出版社出版, 2000. [22] 林世明, '應用生化學課堂講義:Protein-protein interaction kinetics on the sensing chip', 2008. [23] L. Mello and L. Kubota, 'Review of the use of biosensors as analytical tools in the food and drink industries,' Food Chemistry, vol. 77, pp. 237-256, 2002. [24] 林世明, '應用生化學課堂講義:晶片蛋白質薄膜製造技術', 2008. [25] Roitt, Essential Immunology, London: Blackwell Science Ltd, 1997. [26] 林世明, '應用生化學課堂講義:Biosensor:surface plasmon resonance(SPR) ', 2008. [27] J. G. Quinn, R. O'Kennedy, M. Smyth, J. Moulds, and T. Frame, 'Detection of blood group antigens utilising immobilised antibodies and surface plasmon resonance,' Journal of Immunological Methods, vol. 206, pp. 87-96, 1997. [28] P. Fratamico, T. Strobaugh, M. Medina, and A. Gehring, 'Detection of Escherichia coli O 157: H 7 using a surface plasmon resonance biosensor,' Biotechnology Techniques, vol. 12, pp. 571-576, 1998. [29] G. Bokken, R. Corbee, F. Knapen, and A. Bergwerff, 'Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor,' FEMS Microbiology Letters, vol. 222, pp. 75-82, 2003. [30] I. Park, W. Kim, and N. Kim, 'Operational characteristics of an antibody-immobilized QCM system detecting Salmonella spp,' Biosensors and Bioelectronics, vol. 15, pp. 167-172, 2000. [31] D. Gryte, M. Ward, and W. Hu, 'Real-time measurement of anchorage-dependent cell adhesion using a quartz crystal microbalance,' Biotechnology Progress, vol. 9, pp. 105-108, 1993. [32] M. Tortonese, R. Barrett, and C. Quate, 'Atomic resolution with an atomic force microscope using piezoresistive detection,' Applied Physics Letters, vol. 62, pp. 834, 1993. [33] C. Ziegler, 'Cantilever-based biosensors,' Analytical and Bioanalytical Chemistry, vol. 379, pp. 946-959, 2004. [34] R. Sandberg, K. Molhave, A. Boisen, and W. Svendsen, 'Effect of gold coating on the Q-factor of a resonant cantilever,' Journal of Micromechanics and Microengineering, vol. 15, pp. 2249-2253, 2005. [35] M. J. Tudor, M. V. Andres, K. W. H. Foulds, and J. M. Naden, 'Silicon resonator sensors - interrogation techniques and characteristics,' Iee Proceedings-D Control Theory and Applications, vol. 135, pp. 364-368, 1988. [36] L. Xiaowei, W. Yajing, C. Rongyan, S. Changzhi, C. Weiping, and L. Jinfeng, 'Temperature characteristics of polysilicon piezoresistive nanofilm depending on film structure,' Nanoelectronics Conference, 2008. INEC 2008. 2nd IEEE International, pp. 909-913, 2008. [37] 劉曉為, 霍明學, 宋明浩, 王喜蓮, 潘慧艷, 揣榮岩, '摻雜濃度對多晶矽奈米薄膜應變係數的影響,' 半導體學報, 第27卷第7期, 2006年. [38] J. Thaysen, 'Cantilever for bio-chemical sensing integrated in a microliquid handling system,' Mikroelektronik Centret, Technical University of Denmark, 2001. [39] F. T. Goericke, 'Simulation, fabrication and characterization of piezoresistive bio-/chemical sensing microcantilevers,' Mechanical Engineering, Georgia Institute of Technology, 2007. [40] J. Thaysen, A. Boisen, O. Hansen, and S. Bouwstra, 'Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement,' Sensors & Actuators: A Physical, vol. 83, pp. 47-53, 2000. [41] P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, 'Optimised cantilever biosensor with piezoresistive read-out,' Ultramicroscopy, vol.97, pp. 371-376, 2003. [42] C. M. Hung, 'Fabrication and Characterization of A Piezoresistive Microcantilever Biosensor and System,' Institute of Applied Mechanics, National Taiwan University, 2007. [43] H. Park, J. Pak, S. Son, G. Lim, and I. Song, 'Fabrication of a microchannel integrated with inner sensors and the analysis of its laminar flow characteristics,' Sensors & Actuators: A. Physical, vol. 103, pp. 317-329, 2003. [44] M. L. Sushko, J. H. Harding, A. L. Shluger, R. A. McKendry, and M. Watari, 'Physics of Nanomechanical Biosensing on Cantilever Arrays,' Advanced Materials, vol. 20, pp. 3848-3853, 2008. [45] Yu-Cheng Lai, 'The study of different pH and chemical surface modification on a piezoresistive microcantilever biosensor,' Institute of Applied Mechanics, National Taiwan University, 2008. [46] Yi-Hsuang Lin, 'Thermal effect of self assembled monolayer with the detection of piezoresistive microcantilever beam,' Institute of Applied Mechanics, National Taiwan University, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44132 | - |
| dc.description.abstract | 近年來台灣的養殖魚業蓬勃發展,而水質檢測一直是其中不可或缺的一環,當魚群處於含菌量高於正常值的海水內,便會開始產生疾病甚至大量死亡,因此如何快速定性與定量檢測海水內之含菌量成為重要的課題。海鱺為台灣高經濟價值之海水養殖魚類之一,其受感染最嚴重之病原體為巴斯德桿菌,感染巴斯德桿菌症之魚群若不及時給予治療,則會引起細菌性敗血症,致死率相當高。
目前常見之生物感測器大多利用化學或螢光標定的方式來檢測,由於螢光處理複雜,發展免標定病原體之生物感測器是重要方向,本研究利用力學為基礎以微懸臂梁作為生物訊號的轉換機制,透過化學分子(Linker)鍵結專一性抗體與特定病原體,將生物鍵結時對微懸臂梁所產生的表面應力轉換成電訊號輸出,並以後端放大濾波電路處理再輸入電腦做分析。本研究以巴斯德桿菌作為應用對象,實驗結果顯示利用壓阻式微懸臂梁生物感測器檢測數個不同濃度之巴斯德桿菌液,可成功地偵測真實訊號,並以定性與定量地分辨不同濃度之訊號,也透過多次實驗得到每個濃度的訊號範圍(104~108 cfu/ml),並以掃描式電子顯微鏡的觀察得到巴斯德桿菌鍵結於微懸臂梁上的實證。藉由實驗可知本研究設計之壓阻式微懸臂梁生物感測器的最低量測濃度大約在2×104 cfu/ml,也是目前利用表面應力機制可量的最低濃度,且為目前量測裝置體積最小的系統,並且擁有快速檢測、即時取得反應訊號的優點。未來利用微機電製程來製作壓阻式微懸臂梁生物感測器,可將體積微小化並降低製造成本。 | zh_TW |
| dc.description.abstract | Aquaculture industry has gained prosperous and rapid development in Taiwan recently, in which the monitoring of water quality is an essential part of fish protection. When fish are being bred in seawater with bacteria concentration that is higher than standard value, mortality rises. Therefore, detection of bacteria in seawater with a quantitative, qualitative, and real-time monitoring method becomes an important issue. Cobia is one of high economical value aquaculture fish in Taiwan and is being seriously threaten by Photobacterium damselae subsp. Piscicida(Pdp.). If the infected fish is not being treated in time, it might lead to Pseudotuberculosis and will soon be decreased.
Presently, most biosensors are using chemical or fluorescence labeling for bacteria detection. For the purpose of label-free sensing, this study combines the mechanical theory and the transduction of bio-signal, and utilizes the surface stress change induced by the recognition of bio-molecule for on-site real time detection. The signal is presented as voltage output and is analyzed in the computer after amplification. This work shows the real reaction of quantitative and qualitative results capable of distinguishing various concentrations of Pdp. in liquid by the piezoresistive microcantilever. The sensing limitation is about 2×104 cfu/ml. Also, the SEM is used to observe the binding state of Pdp. onto the sensing surface of the microcantilever. In comparison to the resonant frequency microcantilever biosensors, the piezoresistive microcantilever biosensors have advantages over rapid detection and on-site real-time detection. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:41:22Z (GMT). No. of bitstreams: 1 ntu-98-R96543022-1.pdf: 5327336 bytes, checksum: 58f19281245bf2a425313d2aea2294e8 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 xi 符號目錄 xii 第一章 序論 1 1.1 前言 1 1.2 研究動機及目的 2 1.3 文獻回顧 3 1.3.1 巴斯德桿菌與巴斯德桿菌症 3 1.3.2 微懸臂梁生物感測器應用於生化檢測 5 1.4 論文大綱 9 第二章 生物感測器 11 2.1 免疫反應之簡介 11 2.1.1 抗體 13 2.1.2 抗原辨認 14 2.1.3 抗體親和力 15 2.1.4 細菌之免疫反應 16 2.2 生物感測器之基本原理 18 2.3 現有生物感測器之分類 19 2.4 辨識分子層之固定化技術 21 2.5 免標定病原體偵測之生物感測器 22 2.5.1 表層電漿共振式生物感測器 23 2.5.2 石英壓電晶體微天平式生物感測器 25 2.5.3 微懸臂梁式生物感測器 25 第三章 壓阻式微懸臂梁生物感測器 29 3.1 壓阻材料特性及壓阻效應之分析 29 3.1.1 壓阻因子 29 3.1.2 壓阻效應 33 3.2 微懸臂梁尺寸分析 37 3.3 量測電路分析 39 3.4 雜訊分析 41 第四章 壓阻式微懸臂梁生物感測器設計與製作 45 4.1 壓阻式微懸臂梁生物感測晶片設計與製作 45 4.1.1 壓阻形狀與尺寸之設計 45 4.1.2 微懸臂梁形狀與尺寸之設計 47 4.1.3 微懸臂梁生物感測晶片之製作 48 4.2 微流道系統之設計與製作 51 4.2.1 微流道系統之設計 51 4.2.2 微流道系統之製作 51 4.3 印刷電路板之設計 54 4.4 微懸臂梁晶片與微流道系統組裝說明 56 4.5 後端訊號放大濾波電路 58 第五章 實驗架構與結果討論 62 5.1 實驗架設 62 5.2 實驗流程 64 5.2.1 實驗方法 64 5.2.2 實驗步驟 66 5.3 實驗結果與討論 67 5.3.1 問題與討論 67 5.3.2 實驗結果 75 第六章 結論與未來展望 91 6.1 結論 91 6.2 未來展望 92 參考文獻 94 附錄 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微機電 | zh_TW |
| dc.subject | 微懸臂梁 | zh_TW |
| dc.subject | 壓阻 | zh_TW |
| dc.subject | 表面應力 | zh_TW |
| dc.subject | 巴斯德桿菌 | zh_TW |
| dc.subject | Microcantilever | en |
| dc.subject | Microelectromechanical system(MEMS) | en |
| dc.subject | Photobacterium damselae subsp. Piscicida | en |
| dc.subject | Surface stress | en |
| dc.subject | Piezoresistive | en |
| dc.title | 應用壓阻式微懸臂梁生物感測器偵測巴斯德桿菌之研究 | zh_TW |
| dc.title | Detection of Photobacterium damselae subsp. Piscicida by a Piezoresistive Microcantilever Biosensor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林世明,簡昭珩 | |
| dc.subject.keyword | 微懸臂梁,壓阻,表面應力,巴斯德桿菌,微機電, | zh_TW |
| dc.subject.keyword | Microcantilever,Piezoresistive,Surface stress,Photobacterium damselae subsp. Piscicida,Microelectromechanical system(MEMS), | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 5.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
